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Weak approximation, Brauer and R-equivalence
in algebraic groups over arithmetical fields

By

Nguyéii Qud¢ THANG*

Abstract

We prove some new relations between weak approximation and some rational equivalence relations
(Brauer and R-equivalence) in algebraic groups over arithmetical fields. By using weak approximation
and local-global approach, we compute completely the group of Brauer equivalence classes of connected
linear algebraic groups over number fields, and also completely compute the group of R-equivalence
classes of connected linear algebraic groups G, which either are defined over a totally imaginary number
field, or contains no anisotropic almost simple factors of exceptional type 3°Dy, nor Es. We discuss
some consequences derived from these, e.g., by giving some new criteria for weak approximation in
algebraic groups over number fields, by indicating a new way to give examples of non stably rational
algebraic groups over local fields and application to norm principle. Some related questions and rela-
tions with groups of Brauer and R-equivalence classes over arbitrary fields of characteristic 0 are also
discussed.

Introduction

Let G be a linear algebraic group defined over a field k. There are two
closely related questions in the arithmetic theory of algebraic groups over fields:
the question of weak approximation and that of rationality of a given G. It is
very difficult to study such questions for arbitrary groups over arbitrary fields.
One should restrict to some class of groups and fields which are convenient in
application.

Let X be a smooth algebraic variety defined over a field k of characteristic
0. X = X x k, where k is an algebraic closure of k. Denote by #:X the usual
Brauer group of X.Br(X) the cohomological Brauer group Hg,(X,G,,,) of X,
Br;(X) = Ker (Br(X)—Br(X)), Bro(X) = Im (Br(k) — Br(X)). Following Manin,
Colliot-Théléene and Sansuc (see [MI1]. [M2], [CTSI], [CTS2]). one defines the
Brauer equivalence and R-equivalence as follows. First we construct a smooth
compactification X of X over k and we define a pairing

X (k) x Br(X) — Br(k).(x.b) — b(x).
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where b € H3(X.G,,) and h(x) is the equivalence class of central simple algebras

over k, which is considered as an element of Br(k).

Two points x, y € X (k) are said to be Brauer equivalent (Br-equivalent) if for
any b e Br(X), we have h(x) = b(y). The equivalence relation on X (k) induced
from the Br-equivalence relation on X (k) is called Brauer equivalence relation
and we denote by X (k)/Br the set of Brauer equivalent classes of X (k). It was
shown in [CTSI], p. 212, that the above definition does not depend on the choice
of smooth compactification X. Two points x, y € X(k) are called R-cquivalent
if there is a sequence of points z; € X(k),x = z), y = z,, such that for each pair
i Zis1 there is a k-rational map f : P! — X regular at 0 and 1, with £(0) = z,.
f(l)y=ziy1. 1 <i<n—1). We denote by X (k)/R the set of R-equivalent classes
of X(k).

In the definition of Brauer equivalence above, one may also restrict to the
subgroup Br; X of BrX to get a weaker equivalence relation. However, if X is
rational over k (which is the main case we are interested in), it is known (cf. e.g.
[CTS1], Lemme 16) that these two notions coincide. Moreover in [loc.cit], Prop.
16, it was shown that the Brauer equivalence is weaker than R-equivalence, i.e..
two points of X (k), being R-equivalent, are necessarily Br-equivalent. In [loc.cit],
basic theory of Brauer equivalence on tori defined over a field £ of characteristic 0
has been developed. In particular, in the arithmetic case, i.e., when k is a local or
global field, formulae for computations of the group T(k)/Br are given and it turns
out to be a birational invariant of 7. Though T'(k)/Br is ““‘computable”, the group
itself and its computation is in general non-trivial.

In a subsequent paper [S]|. Sansuc developed Brauer theory of linear algebaic
groups G over number fields, and applied it to obtain certain fundamental sequences
connecting various arithmetic (obstruction to weak approximation), cohomological
(Tate—Shafarevich group) and geometric invariants (the first Galois cohomology of
the Picard group of a smooth compactification of G over an algebraic closure of k)
for connected linear algebraic groups G over number fields k.

In this paper we continue the approach taken by Colliot-Théléne and Sansuc,
to obtain certain connections between the above arithmetic, cohomological and
birational (Brauer and R-) invariants of connected linear algebraic groups G over
local and global fields of characteristic 0. As it was pointed out above. in general,
the group of Brauer equivalence classes of G is non-trivial, even in the case of
tori. Therefore it is natural to ask what kind of analogs in the case of arbitrary
connected linear algebraic groups one can have.

In this paper we recall some useful facts from the Brauer theory in Section 1.
In Section 2 we discuss a relation between the defect (obstruction) in weak ap-
proximation and the groups of Brauer and R-equivalence classes of tori over
number fields, and in Section 3 we extend some results obtained here to the general
case of connected linear algebraic groups over number fields. In particular re-
garding the group G(k)/Br, we computed it completely, which in fact gives apriori
(or preliminary) information on the group G(k)/R. In Section 4 we present our
main results and applications to obtain some new criteria for weak approximation,
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by recovering, extending, and giving some analogs to some classical results obtained
by Colliot-Thélene and Sansuc, Harder and Sansuc. Until recently it was not
known whether the group G(k)/R is always finite for any connected linear al-
gebraic group G defined over a number field k. In his paper in 1993 (|G2)), Gille
gave a proof of this finiteness properly by using his norm principle and Kato-
Saito’s Hasse principle in higher dimension class field theory. However it was not
known how one can compute the actual group G(k)/R, nor even suggested how it
might look like. One of main results of this section (and of the paper) is Theorem
4.12, which allows us not only to have a new elementary approach to this finiteness
result for all connected linear algebaric groups G (without using difficult higher
dimensional Hasse principle), but also, by using the corresponding result for tori
done in [CTSI], to compute completely the group G(k)/R for those connected
linear algebraic groups G, which either are defined over a totally imaginary
number field k, or contain no anisotropic almost simple factors of exceptional type
36Dy, nor Eg. In these last critical cases. it reduces the computation of G(k)/R to
a particular case of a well-known Platonov-Margulis conjecture about the normal
structure of almost simple simply connected groups over number fields.

After the completion of this paper (cf. earlier versions of the paper:
Preprint ICTP (September 1997). Duke University E-print alg-geom/9711015), there
appeared the paper [G3] where Gille gave detailed proof of main results of [Gl],
[G2] with some refinements. It turned out that these refinements have one small
overlap with our paper (being indicated below). Also. the exact sequence relating
the defect of weak approximation and groups of R-equivalence classes [T4] was
also discussed. In this paper we use some concepts and techniques developed
in [CTS1], [CTS2], [G1], [G2] (with complete exposition in [G3]), [S]. In certain
sense. this paper is a complement to these works.

Notation. For a reductive group H, we call torus quotient of H the
factor group of H by its semisimple part [H, H]. Any connected linear algebraic
group G over a field k of characteristic 0 is a semidirect product G = LR,(G).
where L is a Levi (reductive) k-subgroup of G, and R,(G) is the unipotent radical
of G. L is unique up to conjugacy by elements from G(k) and by convention, we
call the semisimple part of G the semisimple part of some fixed Levi k-subgroup of
G. Let S be a finite set of valuations of a global field k, and G a connected linear
algebraic group defined over k. Denote by Cls(G(k)) the closure of the group
G(k) in the product topology. where G(k) is embedded diagonally into the direct
product [],.¢ G(k,) and G(k,) has the v-adic topology, induced from that of k.
We say that G has weak approximation with respect to S (or in S) if Cls(G(k)) =
[1,cs G(ky), and has weak approximation over k if it is so for any finite S. Let

A(S.G) = [] Gk)/Cls(G(K)).  A(G) = [] Glkv)/CUG(K)).
reS v

the obstruction (or defect) of weak approximation in S and over k, respectively.

where C/ denotes the closure in the product topology. Let G(k)/R (resp.

G(k)/Br) denote the group of R-equivalence (resp. Br-equivalence) classes of G
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over k. Let (-)” be the group Hom (-,Q/Z), and ()" be the group Hom (-.Gy,).
III(-) denotes the Tate—Shafarevich group of (-). We denote also by Br,X :=
Br, X /BroX. the arithmetic Brauer group of X. By H'(k,G) we denote the Galois
cohomology of G. Regarding the classification of absolutely almost simple al-
gebraic groups we refer to [Ti].

1. Recall of some basic facts from Brauer theory of algebraic groups [CTSI1],
ISI

Let T be a torus defined over field k of characteristic 0 which is split over a
Galois extension K/k with Galois group g. A k-torus N is called induced (or
quasi-split), if its character module N has a Z-basis, over which Gal(k/k) acts by
permutations. A k-torus S is called g-flusque torus over k if H™'().S) = 0 for all
subgroup h = g. It is well-known (([CTS1], [V1]) that any torus T above has a
g-flasque resolution, i.e., an extension

(1) l-S—>N->T—1

of T, where S is a g-flasque k-torus, and N is an induced k-torus. Denote by
Br(k.K) the kernel of H?(k.G,) — H*(K.G,,). The exact sequence (1) induces a
homomorphism

) H'(k,S) — H2(k,T),

which is injective., since N has trivial l-cohomology.
One has a cup-product

T(k) x H (K /k. T) > Br(k.K).
which defines, via (2), a pairing

B T(k) x H'(K/k.S) > Br(k.K).
We have

1.1. Theorem ([CTSI1]). Prop. 17 and Corol.). 1) The map [ defines the
Brauer equivalence relation over T(k), hence also a map

y: T(k)/Br — Hom (H' (K /k, S). Br(k.K)).
2)  We have the following anti-commutative diagram
T(k)/R —1— T(k)/Br
| |
H'(k.S) —~— Hom (H'(K/k.S).Br(k,K))
Here 0 is an isomorphism [ CTS1, Theorem 2], and w comes from the cup-product

H'(k.S) x H' (k. $) > H3(k.G,,).
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3) T(k)/Br ~1Im(w) and T(k)/Br is a birational invariant in the class of
k-tori, stably equivalent to T.

4) If k is a p-adic local field, the Brauer equivalence on T(k) coincides with
R-equivalence on T(k) and

T(k)/Br ~H'(k,S)™.
5) If k is a number field, and u is the composition map

H'(k.$) % [[H'*.$) 5 [[H' k. §)

then T(k)/Br ~ [Im (4)/Im ()]~ .

1.2. Theorem ([CTS1]), Prop. 19). With above notation, let k be a number
field  We have the following exact sequences:

(R) 0 — II(S) — T(k)/R ™ [ T(ki)/R — A(T) — 0,
(V) 0— A(T) - H' (k.S)~ — III(T) — 0.

Slightly in different form, the exact sequence (V') is due to Voskresenskii. The
following result gives us the group structure on G(k)/Br, induced from that of
G(k). Denote by Br,G the kernel of the homomorphism BriG — Br k, defined
by specializing at the unit element e € G(k), which is isomorphic to Br,(G) ([S],
Lemme 6.9).

1.3. Proposition ((CTS1], p. 216, [S], Lem. 6.9(1)). Let K be a field and G
a connected linear algebraic group over K, assumed to be reductive if K is not
perfect.  Then the pairing

G(K) x Br,G — Br K

is biadditive. In particular, G(K)/Br has a natural group structure induced from
G(K).

The following well-known fact (which is a direct consequence of the Hasse
principle for Brauer group of global fields) was mentioned in [MT):

1.4. Proposition (MT]). Let X be a smooth variety defined over a number
field k. Then the restriction map

X (k)/Br — ] X (k.)/Br

is injective.

1.5. Remarks. 1) Notice that in Theorem 1.2, we have identified III(S)
with a subgroup of T'(k)/R via the isomorphism 6 of Theorem 1.1, 2). The exact
sequence (V), which is due to Voskresenskii (see e.g. [V1], [S]), has been extended
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to the case of arbitrary connected linear algebraic groups over number fields by
Sansuc [S].

2) We are interested in Brauer equivalence relation for connected linear
algebraic groups, which are rational over algebraic closure k of k, hence their
smooth compactifications are also rational and the Br-equivalence and Br-
equivalence are the same.

Our objective is to study the analogs of the exact sequence (R) in the case of
Brauer and R-equivalence over local and global fields. for tori in particular, and
for connected linear algebraic groups in general.

2. A Brauer relative of exact sequence (R) for algebraic tori

Let S be a finite set of valuations of a number field k, T a k-torus. T :=
[l,es T(k,). Denote by RT(L) (resp. BT (L)) the set of elements of T(L) which
are R- (resp. Br-) equivalent to | in T(L), where L is a field extension of k. Let
RTs =1],cs RT (k). BTs = [[,cs BT (k:). The following result was mentioned in
[V2] (which is valid also for any field k with non-trivial v-adic valuations).

2.1. Proposition. RTs < Cls(T(k)) and is an open subgroup in Ts.
From above one derives the following
2.2. Corollary.

AS.T) ~ Coker(T(k)/R - H T(k,,)/R>.

reS
A(T) ~ Coker(T(k)/R -] T(k,.)/R).

2.3. Corollary. BTs < Cls(T(k)).

Proof. If v is a non-archimedean, then Theorem 1.1.. (4) tells us that
BT (k,) = RT(k,). If v is archimedean, then it is well-known that 7 is rational
over k,, hence has trivial groups T'(k.)/Br and T(k,)/R, ie., BT(k.) = RT(k,).

In what follows we identify 7(k) with a subgroup of Ts via diagonal
embedding.

2.4. Proposition. We have
1) A(S.T) ~ Coker(T(k)/Br — [1,cs T(k:)/Br).

2) A(T) =~ Coker(T(k)/Br — [],. T(k.)/Br).
Proof.  Notice that
Coker(T(k)/Br — Ts/BTs) = Ts/T(k)BTs

— Ty/Cls(T(k)).
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since BTs contains RTs so is also an open subgroup of Ts. So 1) and 2) follow
by noticing that for almost all v

T(k.)/Br = 1.
by [CTSI], p. 205.

We have the following close analog of an exact sequence in [CTSI] (see

Theorem 1.2 above) in the case of R-equivalence of algebraic tori over number
fields.

2.5. Proposition. 1) With above notation we have the following exact se-
quence

I — T(k)/Br =5[] T(ke)/Br — A(T) — 1.
2)  With notation of Theorem 1.1, if the restriction map H'(k.S) — H' (k.. S)
is surjective for all v, then Ker (w) = III(S).

Proof. 1) follows directly from Propositions 1.4 and 2.4.
2) First we show that under the given assumption,

Ker (w) < II(S).
Consider the following commutative diagram'
H'(k.S) —2—  Hom (H'(k.S),Br(k))
|
[LH'(k.S) % [I,Hom (H'(k,.S).Br(k,))
where o’ is an isomorphism by Tate—Nakayama duality. We have, e.g. for v ¢ o
H'(k,.S) ~H'(k..S)"~
~ Hom (H'(k., $).Q/Z)
= Hom (H'(k,, S), Br(k,))

Therefore it suffices to show that o’(¢(Ker(w))) =0. Denote res.: H'(k.-) —
H'(k,.-) the restriction map of cohomology when passing to completion k,. Since
for xe H'(k.S), w(x) is the map

y— (x)U(y). yeH'(k.S),

the v-component of w’(¢(x)) is given by

@'(g(x)), 1y, = (reso())U(y,). y, e H' (k. S).

! This diagram is in fact commutative as soon as the equality Ker(w) = I1I(S) is established.
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Since the cup-product is compatible with restriction maps. and each y, e H' (k,, S)
has the form res,(y). v e H'(k.S),

(resy(x))U (p,) = (resy(x)) U (res,(y)) = res,(xUy).
Therefore, if x e Ker (w), then res,(xUy) =0 for all v. hence
Ker (w) < Ker (¢) = I1I(S).
Next we show that III(S) < Ker(w). This is true in general without the
condition on res, above. We prove that there exists an exact sequence as follows
0 — Ker (w) > 11(S) £ T(k)/Br.

We define the map f: III(S) — T(k)/RL T(k)/Br to be the composite map,
where i is the restriction of the isomorphism d7':H'(k.S) — T(k)/R (see
Theorem 1.1) to III(S), and p is the projection. We show that B is a trivial
homomorphism, and « is just the identity map.

a) Ker(f) = Ker(w). We have

Ker(w) = {xe H'(k.S) : (x)U(y) =0.Vy e H (k. S)}.
We have an isomorphism ¢ : T(k)/R ~ H'(k.S) (([CTSI, Théoréme 2]), so
Ker (B) = {x e 1II(S) c H'(k,S) : 67" (x) € BT/RT}
— 11I(S) NS(BT/RT)
= {xelll(S): (x)U(y) =0.¥ye H'(k.S)},

hence Ker (f) < Ker (w).
b) Im(f) = Ker(y;)(=0). Consider the following commutative diagram

nes) —— Tk)/R -2 I, T(k,)/R

\, l” zl"'
T(k)/Br — I, T(k,)/Br
If xeIm(f), then x = p’(i(s)), s e III(S). Since proi=0 by Theorem 1.2, we
have
q'(pr(i(s))) = rr(p'(i(5)))
=7yr(x)
=0,

ie. x eKer(yr).

Conversely, if xe Ker(yr). x= p'(t), since p’ is surjective. Then 0=
yr(p'(1) = ¢’ (pr(2)). so pT() 0, since ¢’ is an isomorphism (see Theorem
1.1 (4)). Hence 7 € Ker (py) = Im (/) since the upper row is exact by Theorem 1.2.
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Since y; is injective (see Proposition 1.4), f is trivial and « is an isomorphism.
Hence 2) is proved.

As a consequence of the above proposition, we have the following

2.6. Proposition. We have the following exact sequence connecting the two
groups of rational equivalence classes

0— II(S)— T(k)/R— T(k)/Br — 0.
In particular, the order of T(k)/Br is equal to the index ny:=[T(k)/R:11(S)].

Proof. We have (with above notation) the following commutative diagram.

| —— HI(S) —— T(k)/R - [I,T(ks)/R —— A(T) — 1

N
1 —— T(k)/Br - [[,T(k.)/Br —— A(T) — 1.

In this diagram. A7 is induced from A7 and is just the quotient map. Indeed. we
have the vertical isomorphism ““~” due to Theorem 1.1, 4), and it is clear that

Ar(Ker (pr)) = Ker (y7).
Therefore it follows that
(T(k)/R)/Ker (pr) ~ T(k)/Br

and we are done.

3. Some reductive analogs

In this section we prove some analogs of results in Section 2 for the case of
connected reductive groups G over number fields k. First we recall the following

3.1. Proposition ([T4]). Let G be a connected linear algebraic groups defined
over a number field k. S a finite set of valuations of k. For each ve S denote by
RG, the subgroup of G(k,) consisting of elements R-equivalent to 1, and by RGs the
direct product of RG, for ve S. Then RGs < Cls(G(k)).

3.2. Proposition ([T4]). Let G, k, S be as above. Then we have the following
canonical isomorphisms

1) A(S.G) ~ Coker(G(k)/R — [],c5 G(k.)/R).
2) A(G) =~ Coker(G(k)/R — [], G(k,)/R).
We have the following analog in the case of Brauer equivalence relation.

3.3. Theorem. Let G, k, S be as above. Let BG, be the subgroup of G(k,)
consisting of elements which are Br-equivalent to 1, and BGs be the direct product
of BG,. Then
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Proof.  We follow the proof given in [T4]. We know by [CTSI] that for a
torus T over k, T(k,)/R = T(k,)/Br, hence it follows that the Theorem holds for
tori. Now we may assume that G is not a torus. Further we just follow the
proof given in [T4], where R is replaced by Br everywhere.

3.4. Theorem. With notation as above we have the following canonical
isomorphisms

1) A(S.G) ~ Coker(G(k)/Br — [],cs G(k,)/Br).

2) A(G) ~ Coker(G(k)/Br — [],G(ky)/Br).
In other words, we have the following exact sequence

0 — G(k)/Br — [ [ G(k,)/Br — A(G) — 0.

Proof. The same as in 2.4, by making use of Proposition 3.3.
We need the following technical result.

3.5. Proposition ([O]). Let G be a connected reductive group defined over a
field K. There exists a connected reductive K-group H with simply connected
semisimple part and an induced K-torus Z such that the following sequence is exact.

|-Z—-H—->G—- 1.
(Such H is called in the literature also a z-extension of G over K.)

The relation between the groups of Brauer equivalence classes of G and H is
shown in the following statement, where we restrict ourselves only to the case of a
field k of characteristic 0. In the second statement, the finiteness is not new, but
we give a simple proof of this fact.

3.6. Proposition. Let k be a field of characteristic 0.
1) If H is a z-extension of a connected reductive k-group G then there is a
canonical isomorphism

H(k)/Br ~ G(k)/Br.

2) If kis a local or number field. then for any connected linear algebraic group
G. the group of Brauer equivalence classes G(k)/Br is finite.

3) Let k be a field of characteristic 0 and let k(t) be rational function
field in variable t.  Then the group of Brauer equivalence classes of a conected
linear algebraic group G is stable under field extension k — k(t), ie., G(k)/Br ~
G(k(t))/Br.

First we need the following (perhaps well-known to experts, but I do not know of
any reference).

3.6.1. Lemma. Let X 55 Y be a morphism of smooth varieties defined over
a field k of characteristic 0, where X (k) # &, Y(k) # &, n* :Br Y — Br X is the
induced homomorphism.
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a. The following diagram is commutative
X(k) x BrjX \
J/n L' Br k
Y (k) x Br Y/
i.e. the pairing
X (k) x BriX — Brk
is functional in X. ie., given xe€ X(k), beBr X, then
" (b)(x) = b(n(x)).

b. Assume further that X, Y arc quasi-projective and irreducible and n admits
a k-section i 'Y — X. Then n and i extend to certain smooth compactifications ',
% of X.Y, respectively, i.e. we have the following commutative diagram

! .
Q[ (-—7,!' ({y

I

X —=" Y
where 7' has k-section i’ extending i.

Proof. a) Let xe X(k), y=n(x)e Y(k). Denote by Oy .y  the local
ring of X (resp. Y) at x (resp. »). One has the following commutative diagram

2
(= > (0=
¢ Y.y (/X..\‘

k

We denote

a:=Gal(k/k).  (fo)eZXa. (%)

the absolute Galois group of k£ and a 2-cocycle representative of be Br Y,
respectively. Then by [S]. Lemme 6.2, b(y) is the class [f, ()] in Brk. This
2-cocycle gives rise to a 2-cocycle [f;, o] eZz(g,(O;-,‘l‘_) which is nothing else
than a representative of ¢ = n*(b). Then a(x) is just the class of

(fs.ro )] = [fs (=(x)] = [f..(»)] € Brk.

Therefore

" (h)(x) = b(n(x))

as required.
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b) Denote by & (resp. %) the closure of X (resp. Y) in P" (resp. P"") for
some embedding X — A" — P" (resp. Y — A" — P”"). Since n is given by poly-
nomial functions over k, it defines uniquely a k-morphism 7; : # — % extending x,
since X, Y are dense in 2, %, respectively. In similar way we get extension /; of i.
If & and % are smooth we are done. Otherwise, assume first that % is singular
and Z denotes the singular locus of %. Let Z’' = n7!(Z). Then by blowing-up Z°
(resp. %) with center in Z' (resp. Z) we arrive at the following commutative
diagram (see e.g. [Ha], Ch. II, Sec. 7, 7.12-7.16):

' ;
r — @

!

D T ay

One checks that
iz =i'(m'(2) =2

Therefore in the above diagram one obtains also a k-morphism i’ : %’ — &'
making the diagram commute.

We show that 7’ has i/ as its k-section. Let ' = f~'(Z"), Z =47 '(2).
We have the following commutative diagram

AN =V Y\
b
IN\Z' —=F WI\Z

Let ye #'\Z be an arbitrary element. Then we have

g(@'(i'(»))) = m(f(I'(¥)))
=m(i(9() = (m o i)(g(y))
=9(»),
hence we have
(7' 0 i)y, = id.
Since #'\Z is Zariski-dense in %', it follows that n’ o i’ = id as required.
By Hironaka [Hi], after a finite number of blow-ups, we may assume that Z is

singular and % is smooth. This time we apply the same argument as above to get
the following commutative diagram

’ .
(ZI/ ! ——)7,.‘!/ fl !

BN

Yoe==n
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where we blow-up the singular locus Z’ of 2 (to get ') and its inverse image
i~N(Z'") (to get #'). Again as above we can show that i’ is the cross-section of
n’. By our construction, Z’ and %' are smooth, projective and f and ¢ define
k-isomorphisms from some open subsets UcZ and V<% to X and
Y. respectively. Thus we obtain smooth compactifications of X and Y with desired

properties. The proof of the lemma is complete.
Proof of Proposition 3.6. 1) Let n: H— G be the projection. It induces
an epimorphism
H (k) — G(k),
hence also an epimorphism
H(k)/Br — G(k)/Br.
We show that #n’ is injective. Since Z is an induced k-torus, it is well-known that
there is a k-section
i:G— H, noi=idg.

By Lemma 3.6.1, b) We may choose k-compactifications .#,% of H, G, respectively
with the following commutative diagram (notice that .#. % are k-rational)

H (k) x Br%’\
[k X Bﬂg/Brk

Since moi=idg, it follows that we have
(mroi)" =i*on* =idp 4.
Therefore i* is surjective. Now assume that s € H(k) such that
n(h)Ug =0, VgeBr%.
Let g =n(h). Then by Lemma 3.6.1, a) we have
i(g)Uh =n(i(g))Ui*(h) =0,  VheBr#,

since i* is surjective. This implies that i(g) is belong to the class B#(k) of all
elements with trivial cup-product with Br #. Since

n(h) =g =n(i(y)),

one deduces that 1 = i(g)z, with = e Z(k). Since Z is k-rational, = is R-equivalent
to the identity element e in Z(k), it follows that s is R-equivalent to i(g), hence also
Br-equivalent to i(g). Since i(g) € B#(k), hence h € B# (k), too, and we are done.

(In the case 2) we can prove our statement by using 2). Indeed, we have a
birational equivalence

H~GxZ,
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and this induces a bijection (see [CTSI], Section 7)
H(k)/Br ~ (G(k)/Br x Z(k)/Br) ~ G(k)/Br.

since H(k)/Br is finite by 2), n’ is injective, hence also an isomorphism.)

2) We present two closely related proofs, one of which is a direct proof by
using Theorem 3.4 above.

First proof. One reduces easily to the case where G is a connected reductive
group. Take a z-extension H of G as above. We will show that H(k)/Br is finite.
Let H = SG. where G is a simply connected semisimple group and S a central
torus of H. We have the following exact sequence of k-groups

l-G—oH—T—1

where T is a torus.

First we assume that k£ is a number field. Let #..7 be smooth compac-
tifications of H.,T, respectively, with a k-morphism =n’': . # —  extending the
projection H — 7. We have the following commutative diagram, where all rows
are exact by the main result of Sansuc [S]

0 —— A(H) —— H'(k,Pic #)° —— III(H) —— 0

L
0 — A(T) —— H'(k.Pic.7)” —— IKT) —— 0

where «,f,y are induced by .

By Lemma 3.8 (to be proved below) « is an isomorphism. We want to show
that y is injective (i.e. also a monomorphism of abelian groups, by [S]). We have
the following commutative diagram

J i

T(k)y ——» H'(*kG) —— H'G*kH) —— H'(*%T)
|

M, Tk) —— [LH'(k.G) —— [, H' Gk H) — [[,H'(k.T)

where s is the diagonal embedding. The Hasse principle for simply connected
groups says that p is a bijection. It is clear that j maps 11I(H) into I1I(T). hence
it induces a map

4 HI(H) — HI(T).

Due to the functoriality of the commutative group Il over number field ([S]), 4 is
also a homomorphism of commutative groups.

If x € III(H) such that j(x) =0 in H!(k, T) then x = i(g), where g € H'(k. G).
Hence ¢(i(g)) = i'(p(g)) is the trivial element in [[,H' (k.. H), so p(g) € Im (8").
plg) =0'(r). Let [] T(k,) =Ty xT;.0" =0, .0;), where T, =[], T(ko).
Ty =logo T(k). 0, : T = [1,ey H' (k. G). 6 : Ty —> 1,4, H' (k. G) = 0. Let
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t=(tx.ty). Thend'(t) = (6. (t,).0). Since T(k) is dense in T,., we may choose
a sequence t, € T(k) such that t,. = lim, t,. Since [], ... H'(k,,,G) is finite, we
conclude that for some N large enough, we have J. (1) =9’ (1,) with n> N.
Therefore p(g) = p(d(t,)) or g =4d(¢,), since p is a bijection (Hasse principle).
Therefore x =0 and we have a monomorphism

(3) HI(H) — 11I(T)
as claimed.

From the above commutative diagram we conclude that f is injective which
says that the functorial homomorphism

(4) H'(k.Pic 7) — H'(k.Pic .#)

is surjective. By Lemma 16 of [CTSI], the Brauer equivalence defined on .#
(resp. ) coincides with the equivalence relation defined by the following pairing

H (k) x H'(k.Pic #) — Brk

(resp.
T (k) x H'(k.Pic ) — Brk.)

By Lemma 3.6.1 we have the following commutative diagram

H (k) x H'(k,Pic #)

j'n Al\n' \ Br &
R
T (k) x H'(k.Pic 7)
Assume that he H(k) c # (k) with z(h)UH'(k.Pic 7) =0. Then we have
n*(a)(h) = a(n(h)) =0

for all aeH'(k.Pic.7), and from surjective map in (4) we derive that
hUH'(k.Pic #) =0. Thus we have proved that z induces an injective homo-
morphism

H(k)/Br — T(k)/Br.

Therefore, the statement of 2) follows, if k& is a number field, since if k is a field
of finite type over Q and by [CTSl], Corollaire 1, p. 217, T(k)/Br is finite.
Therefore H(k)/Br. and a fortiori G(k)/Br, is also finite.

If k is a local field. we may assume that k is non-archimedean, since otherwise
the rational equivalence relations considered are trivial. Then we may invoke the
finiteness of the group H(k)/R proved by Voskresenskii [V2] to ensure the finite-
ness of H(k)/Br due to the surjectivity H(k)/R — H(k)/Br (([CTSI1], Prop. 16).

Second proof. By using Theorem 3.4 we see that the number field case is
reduced to the case of local fields, since we know |CSTI]| that for almost all
v, G(k,)/R (hence also G(k,)/Br) is trivial. In the local field case we may use the
finiteness of G(k,)/R proved by Voskresenskii as above.
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3) It is well-known that the natural homomorphism Br k — Br k() is
injective. Therefore the induced homomorphism i: G(k)/Br — G(k(t))/Br is
injective. To show that i is surjective we use the stability theorem due to Gille
[G1, 3], which says that G(k)/R ~ G(k(r))/R. Let xe G(k(r)). Then there exists
y e G(k) such that x = y(mod. RG(k(t))). hence x = y(mod. BG(k(1))). ie.. i
is surjective.

3.6.2. Remark. It was proved in [G2], [G3]. that if k is a number field then
G(k)/R is finite, hence G(k)/Br is also. Here we did not use this finiteness result
of Gille in the proof.

In the local non-archimedean field case we have the following result.

3.6.3. Proposition. Let

1 -G—oHLT—1

be an an exact sequence of connected linear algebraic groups defined over a non-
archimedean local field k. of characteristic 0 where G is semisimple, simply con-
nected and T is a torus. Then we have

H(k,)/Br ~ T(k.)/Br.

Proof. We make use of Kneser's Theorem on the triviality of H' of simply
connected groups. In fact, from the exact sequence of cohomology we see that n
is surjective on k,-points, thus gives a surjective map

n': H(k,)/Br — T(k,)/Br.

By the proof of Proposition 3.6 (see (4') above) the natural homomorphism
H — T induces the following injective map of commutative groups

H(k)/R — T(ky)/R.
hence from the surjectivity of n’ above we conclude that H(k,)/Br ~ T'(k,)/Br.

Before we give the formulation of one of main results, we recall some definition
and notation of Section 2.4.

Given a torus T defined over a number field & we denote by V(T) a smooth
compactification of T over k and by S the Neron—Severi k-torus of T, which is by
definition the Cartier dual to the Picard group of V(T)(= V(T) x k), S ~ Pic V(T).
The first Galois cohomology of S, which depends on T, does not depend on the
chosen smooth compactification, and so is the Shafarevich-Tate group I1I(S). By
Proposition 2.5 we have the following exact sequence

| — T(k)/Br 2 [ T(ki)/Br — A(T) — 1.

A connection between the above sequence for a connected linear algebraic group G
and the one for torus quotient of a z-extension of reductive part of G is given by
the following theorem.
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3.7. Theorem. Let G be a connected linear algebraic group defined over a
number field k.  Then we have the following commutative diagram, all rows of which
are exact sequences

I —— G(k)/Br —> [1,G(k,)/Br —— A(G) —— 1

!
I —— T(k)/Br —"— [I,T(k,)/Br —— A(T) — 1

where T is the torus quotient of any z-extension H of the reductive part of G, and all
vertical maps are (functorial) isomorphisms (including local components ones). In
particular, the image of G(k)/Br via yg is a finite group of order nr, where the
notation is as above.

Proof. The exactness of the above sequences follows from Propositions 2.5,
1) and 3.4. By Proposition 3.6, 1), there is a canonical (functorial) isomoprhism
G(K)/Br ~ H(K)/Br for any extension field K/k. Therefore it suffices to prove
theorem 3.7 for H.

We have the following commutative diagram (see the notation above).

| —— H(k)/Br —— [, H(k,)/Br —— A(H) —— 1

I I |
| —— T(k)/Br — T[,T(k,)/Br —— A(T) —— 1
where p.¢q.r are natural maps, induced from the projection pr: H — T. By
Proposition 3.6.3, p is injective and ¢ and all its local components of are

isomorphisms.
Next we need the following

3.8. Lemma. With above notation, we have a canonical isomorphism of finite
groups

A(G) ~ A(H) ~ A(T).

Proof. The first isomorphism is from [T4]. Consider the following com-
mutative diagram

)

H(k) —— T(k) ——  H'(k,G)
Lo
Hs —— Ts —A’ HueSHl(ka)

where we take S a sufficiently large finite set of valuations of k containing all the
archimedean ones, such that
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A(H) = Hs/Cls(H(k)).
A(T) = Ts/CIs(T(K)).

It is a general and well-known fact (see, e.g. [T4] for a discussion with references)
that for any linear algebraic group P over k, Cls(P(k)) is an open subgroup of
Ps. Also any connected linear algebraic group satisfies weak approximation with
respect to the set oo of archimedean valuations.

Let ts e Ts, ts = (. 1), where 1, (resp. t) is the oo-(resp. finite) component
of ts. Let 1, € T(k) such that /im, t, = t,. Then for n large enough, the element
(tn. 1) is very close to (7,.1,) in the S-adic (product) topology, i.e., (f;17,c.1) is
approaching 1 in Ts. Since Clg(T(k)) is open, there is N such that if n > N, then

(£t . 1) € Cls(T(k)).
1e.,
(toos ’n) € C/S(T(k))
Since 15 = (t5.1,)(1,1,'t/), it follows that
(7) each coset of Ts/Cls(T(k)) has a representative from 1 x Ts_.

Since H'(k,.G) is trivial for v non-archimedean by Kneser’s Theorem [Kn2]. it
follows that

Ts_ =n(Hs_»)
and from (7) we derive that the natural homomorphism
A(S.H)=A(H) S A(T) = A(S.T)

is surjective.
Next we show that 7 is injective. Let hg € Hg such that n(hs) € Cls(T(k)).
Then

n(hs) = limy t,, t, € T(k),
hence from the commutative diagram (6) we derive
| =dn(hs) = lim, 6(t,).

(Notice that here one endows H'(k.G).H'(k.,G) with discrete topologies. and
one checks readily that all maps in the diagram (6) are continuous.) Since
HpesHl(kv~G) is finite, there is N; such that if n > N, then d(¢,) = 1. Let
h, € H(k), such that n(h,) = t,. Then lim, n(h;'hs) = 1 since Cls(H(k)) is open
in Hg, we deduce that

hy'hs € GsCls(H (k))

for n large.
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Since G has weak approximation property (Kneser-Harder Theorem, see e.g.
[S)). we have Gs = CIs(H(k)), hence hs € Cls(H(k)) as required. Hence A(H) ~
A(T) and the lemma is proved.

Continuation of the proof of Theorem 3.7. In the diagram (5) we know that
r is an isomorphism by Lemma 3.8, ¢ is an isomorphism and p is injective by
Proposition 3.6.3. It follows that y; and y; have isomorphic images. Therefore

H(k)/Br % T(k)/Br.
In particular, the order of G(k)/Br is equal to nr.

We have the following result which is an analog of [CTSI], Prop. 18, and [S].
Th. 3.3. Let G be a connected linear algebraic group defined over number field
k.H be a z-extension of a Levi subgroup of G.T be torus quotient of H, which
is split over a finite extension K of k. Denote by S the Neron—Severi torus of T,
Vo the (finite) set of all valuations of k, such that their extensions of K have non-
cyclic decomposition groups. Then for any finite set W of valuations of & we
have the following formulas

3.9. Corollary (of the proof of Lemma 3.8). There are canonical iso-
morphisms of finite groups

A(W.G) ~ A(W,T) ~ Coker (H'(k,S) - 11 H'(k,,,S)>,

re W

WUV,

A(G) ~ A(T) ~ Coker(Hl(k,S) - 1] H'(k,,,S)),

Proof. The proof of the first isomorphisms in these chain of isomorphisms
follows directly from the proof of Lemma 3.8 above. The last ones related with S
are deduced from Theorem 1.2 (well-known).

4. Some variations and applications to weak approximation

In this section we consider some applications of results obtained in previous
sections, and also of those obtained in [T4]. We keep our notation as above.
First we derive from Proposition 3.3 the following.

4.1. Proposition. Let S be a finite set of valuations of k and G a connected
linear algebraic group over k. If G has trivial group G(k,)/Br of Brauer equiv-
alence classes for all ve S, then G has weak approximation property in S.

4.2. Conversely, assume that G does not have weak approximation property
with respect to some v (necessarily non-archimedean). Then G has non-trivial
group G(k,)/Br by Proposition 3.3, hence also non-trivial group G(k.)/R.
Therefore G is not stably rational over k,, and a fortiori, over k.
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4.2.1. Remarks. 1) Usually counter-examples to weak approximation over
number fields k& serve as examples of linear algebraic k-groups, which are non
stably rational over k only. The statement 4.2 above shows that these examples
are, in fact, stronger in the sense that they serve also as examples of non stably
rational groups over bigger fields (say k). Of course, this remark can be also
derived from the fact that the Brauer—Manin obstruction to weak approximation
in connected algebraic groups is the only one ([S]) and the reader may consult a
variety of examples in [S].

2) We mention the following one of the main results due to Sansuc [S],
Corollaire 9.7, in the case G has no simple component of type Eg (and also goes
back to Voskresenskii in torus case). Since the Hasse principle is also holds for Eg
by Chernousov, the following holds.

4.2.2. Theorem ([S], Cf. Thm 9.5.). If G is a connected linear algebraic
group, defined over a number field k, then we have the following exact sequence

(V) 0 — A(G) — H!(k,Pic ¥(G))~ — III(G) — 0.

In particular, if H'(k,Pic V(G)) is trivial, then G has weak approximation over k
and satisfies Hasse principle for H'.

We derive the following consequence of the proofs given in Section 3. In
particular, to some extent, it explains what is behind the mysterious relation
between the basic arithmetic and geometric invariants A(G), III(G) and
H'!(k,Pic ¥(G)) of a connected linear algebraic group G defined over a
number field & given by the above theorem.

4.2.3. Proposition. Let G be a connected linear algebraic group over a
number field k, H a z-extension of a k-Levi subgroup of G, T the torus quotient of
H. Then there are canonical isomorphisms of finite commutative groups

A(G) ~ A(T), H'(k.Pic V(G))~ ~ H!(k,Pic V(T))~, I(G) ~ 1I(T),
where V(G),V(T) are some smooth compactifications of G. T over k, respectively.

Proof. Recall that we have canonical isomorphism A(G) ~ A(H) (see [T4])
and by Lemma 3.8 we have A(G) ~ A(T) (canonically). Let

l1-Z—-H-—->G-—1

be the given z-extension of G. We show that the projection = : H — G induces an
isomorphism of commutative groups

II(H) ~ II[(G).
Indeed, we have the following commutative diagram with exact rows

0 —— H'(kH L H*G — Hk2Z)

l | |

0 — JI,H'(k,.H) —— TI,H'(k,,G) — T[], H*(k..2Z)
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It is clear (by using the Hasse principle for Brauer group of global fields) that the
induced map

I(H) — 11(G)

is onto. From the first row one sees that it has trivial kernel and by twisting
argument one can see also that it is injective. By functoriality of III we have

HI(H) ~ 11(G)

as isomorphism of commutative groups. (I became aware afterwards that the
above isomorphism was mentioned earlier in [K], Lemma 4.3.2. b).)
Now by the functoriality of the exact sequence

0 — A(H) — H'(k,Pic V(H))™ — III(H) — 0

in the argument H, we deduce (by diagram chasing) that 7 induces a canonical
isomorphism of finite groups

H'(k.Pic V(H))~ ~ H'(k,Pic V(G))".

We know from the proof of Proposition 3.6, 2) that there is canonical injective
homomorphism of commutative groups

j MI(H) — 1I(T).

We now show that j is surjective.
For a smooth k-variety X we denote by #:(X) the usual Brauer group (of
equivalence classes of Azumaya algebras over X) of X,

Bra(X) = Ker (B1(X) — #:(X))/Im (Br k — 4:(X)).

#:°(X) the subgroup of all elements of #,(X) which have trivial images via
localization maps #u,(X) — Bur.( Xz, ).

By [S], Corollaire 6.11, we have the following exact sequence (by using the
simply connectedness of G)

0— #:T — %:H.
hence we also have the following exact sequence
0— B, T — B, H,
and from this we derive the following monomorphism
B:°(T) — %B:°(H),
and by taking the Pontryagin dual we have a surjective homomorphism
(#:°(H))™ — (#:°(T))".

By [S], Théoreme 8.5 (in combining with Chernousov’s result on Hasse principle
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for Eg), we have a functorial isomorphism of commutative groups
HI(G) ~ #:°(G)~

or for arbitrary connected linear algebraic group G over k. From the above we
see that it yields a surjective homomorphism

HI(H) — 1I(T)
as required. Thus we have canonical isomorphisms
I(G) ~ III(H) ~ 1II(T).

Now one can use the functoriality of the exact sequence (V) and canonical iso-
morphisms A(G) ~ A(H) ~ A(T) and III(G) ~ III(H) ~ III{T) to get the iso-
morphism

H'(k,Pic V(G))~ ~H'(k,Pic V(H))~ ~H!(k,Pic V(T))"~.

Another (more functorial) way to see this canonical isomorphism is as follows.
Instead of using the exact sequence (V'), we use the following exact sequence for
any connected linear algebraic group G defined over a number field k£ (see [S],
Corollaire 8.14):

(S) 0 — A(G) — #1,(G)~ — II(G) — 0.

where %:,(G) is the subgroup of all elements of #+,(G) which have almost all
zero-images via localization maps

RB1,(G) — %7’0(Gkr)'

Then one can check without difficulties that we have the following canonical
isomorphisms

RBry(G) =~ Biroy(H) =~ RBa,(T)
and we may use (S) together with canonical isomorphism (see [S], Corollaire 9.4)
B1,(G) ~ Br,(V(G)) ~ H' (k. Pic V(G)).

Yet another way to prove our proposition is to use Kottwitz’s theory [K]| saying
By (G) ~ H'(k,Z(G)), where G is the connected Langlands’ dual of G and Z(G)
denotes the center of G.

The proposition follows.

4.2.4. Remarks. One can give, along the proof given by Sansuc (which does
not use the exactness proved for tori by Voskresenskii), an alternative (“short-cut™)
proof of Theorem 4.2.2 (i.e. the exactness of the sequence (V)) by assuming only
the exactness of this sequence for tori already proved by Voskresenskii [V1].

Step 1. We have [VI] the following exact sequence

0 — A(T) —» H'(k.Pic V(T))~ — II(T) — 0.
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STeEP 2. We have (see above)
A(T) ~ A(H) ~ A(G), I(T) ~ II(H) ~ 11I(G).

STep 3. Since V(T).V(H).V(G) are k-rational, and H*(k.G,,) =0 (well-
known), we derive from [MI1], Lemme 3, and [V3] (that for almost all v.
H'(k,.Pic (G)) =0 and from the well-known fact that the torus dual to
Divy vy ¥ V(X) is an induced torus, by combining with the exact sequence

0— AnV(X) = #nX — H(k, Divy v\ 5)
the following
H'(k.Pic V(X)) ~ B1,(V(X)) ~ B1,(V(X)) = Br,(X).

where X stands for T.H.G.
Step 4. We have %4, (T) ~ Bro(H) ~ #B2,(G), as one can check easily (see
above). Now the exact sequence (V) for G follows from these steps.

One may ask, by comparing with 4.2, if we have a similar situation assuming
that A(G) =0, and III(G) # 0. However it is not true as the following classical
example shows.

Example. Let a.h € Z (the integers), and let K = Q(y/a.vh). be a bi-qua-
dratic extension of Q, where Q denotes the rational numbers. Denote by
T(a,b) = RQ}Q(G,,,). Then (see [CTS1], Prop. 7, or [VI1], p. 157) we have

H'(Q, Pic V(T)) = Z/2Z.

If we choose a.b such that all the decomposition groups for K are cyclic then it is
known (by Serre) that A(T) =0. For example, a« = 5,b = 29 satisfy this con-
dition. However, one checks that 7T(5,29) is rational over all completions of Q.
but II(7(a.b)) = Z/2Z.

In the next result we consider some applications to weak approximation in
semisimple groups defined over number fields k.

4.3. Theorem. Let G be a semisimple k-group such that G is of inner type
over k, for all ve S. Then G has weak approximation over k with respect to S. In
particular, if G is of inner type over k, it has weak approximation over k.

The theorem follows from the following

4.4. Proposition. If us a group over k,, G is an inner type then G has trivial
group G(k,)/R.

First we need the following result due to Gille |Gl], Prop. 2.3.
4.4.1. Proposition ((Gl]). Let

| = F G 56— 1
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be an isogeny of connected reductive groups, all defined over a field k of char-
acteristic 0 and Ci(k) = Gy(k)/A(G\(k)). Then the following sequence of groups is
exact

R

Gi(k)/R — Ga(k)/R 25 C1(k)/R.
where the R-equivalence relation on C;(k) is induced from that on C;(k(r)).

Note. In the case that H'(k. G)) is trivial, we identify C;(k) with H'(k.F)
and also write the above exact sequence in the form

Gi(k)/R — Gy(k)/R — H'(k.F)/R — 0.

Proof of Proposition 4.4. We distinguish two cases.

1) ve oo. Itiswell-known that any connected linear algebraic group G over
R has trivial group of R-equivalences. Here is a short indication of proof. One
reduces easily to proving that any semisimple element s € G(R) is R-equivalent to
1. But this follows from the fact that s belongs to some torus defined over R, and
any such torus is rational over R.

2) v is non-archimedean. Let G, be a k,-split form of G, which is obtained
from G by an inner twist. Denote by F the fundamental group of G, which is the
same for G;. One can check that simply connected groups have trivial groups of
R-equivalence classes, we have by Proposition 4.4.1 (|G1], Prop. 2.3) the following
exact sequences

(8) 0 — G,(k,)/R — H'(k..,F)/R — 0,
9) 0 — G(k,)/R — H'(k..F)/R — 0.

Here we identify H'(k,. F) with the factor group Gy(k,)/n(G,(k.)) (resp. G(k,)/
n(G(k,))). where 7 : G, — G, (resp. n: G — G) is the simply connected covering of
G, (resp. G) and take the factor group modulo the rational relation induced on
H'(k.,F). We have also used the Kneser Theorem on the triviality of H'(k.. G,)
and Hl(k,,,G). Since G is rational over k,, the second group in (8) is trivial,
therefore by (9) the group G(k,)/R is also trivial.

Thus by this proposition, and by Proposition 3.3, G has weak approximation with
respect to S and Theorem 4.3 is proved.

4.5. Remarks. 1) One cannot simply drop the inner type assumption, since
there are examples of semisimple quasi-split groups over number fields which do
not have weak approximation property. First examples of such groups were given
by Serre (see [Knl] and [S] for more information).

2) In the case of number field, this result also extends the previously known
(but more general) result by Harder, namely we derive from Theorem 4.3 the
following.

4.5.1. Corollary (Harder [HI]). If a semisimple group G defined over a
number field k is split over k, of all ve S, then G has weak approximation in S.
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Now we apply our results to give new proofs (and also discuss some extension)
of some results due to Harder and Sansuc. In the following theorem, the first
result is due to Harder (([H2], Satz 2.2.3) and the second is due to Sansuc ([S], Cor.
5.4). The third, in the case that the given group is semisimple and split over a
metacyclic extension of the given number field, is also due to Sansuc.

Let 7: G — G be a central isogeny of semisimple groups, all defined over a
field k, where G is simply connected covering of G. 7 is called a normal isogeny
(after Harder [H2]) if x:= Ker = can be embedded into an induced k-torus M,
such that M/u is also an induced k-torus. One can show, for example, that
adjoint groups have normal isogenies.

4.6. Theorem. The following groups have weak approximation property over
number fields.

1) ([H2]) Semisimple groups which are images of normal isogenies;

2) ([S]) Absolutely almost simple groups;

3) Inner forms of connected reductive groups which are split over a metacyclic
extension of k, for all non-archimedean v.

Moreover, two connected reductive groups, which are inner form of each other
have the same group of R-equivalence classes over local non-archimedean fields.?

Proof. 1) Letm: G — G be a normal isogeny defined over a number field .
and S any finite set of valuations of k. We show that for all ve (S — o).
G(K,)/R is trivial. Indeed, let = Ker n, M be an induced k-torus, such that
M /u is also an induced k-torus. As above (see Proposition 4.4.1), we have the
following exact sequences

G(k.) — G(k.) — H' (k. ) — 0.
G(k,)/R — G(k,)/R — H'(ky. 1) /R — 0.

One can show easily that G(k,)/R is trivial. (Here is a short argument. One
reduces to almost simple case. If G is isotropic, then it is well-known that G(k,)
has no nontrivial normal subgroup, i.e. G(k,) = RG(k,), since RG(K,) is a normal
Zariski dense subgroup of G(k,). Otherwise, G is of inner type A, by a result of
Kneser, and in this case the result is well-known.)

Hence we have an isomorphism

G(k.)/R ~H"(k,, 1)/ R.
By considering similar exact sequences
ls>pu—>M—M -1,
M(k.)/R — M'(k,)/R — H"(k,.u)/R — 0,

where M. M’ are induced tori and using that M. M’ are rational, we get that

2 This last fact was also mentioned independently by Gille in [G3].
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H'!(k,.u)/R is trivial, and so is G(k.)/R. Therefore G has weak approximation
over k by Proposition 3.3.

In the case G is an adjoint group, we can use a direct argument as
follows. We may use the following (easy to show) fact: adjoint groups over local
p-adic fields are rational. This was mentioned in the preprints [T1]-[T2]. One
may also argue as follows. Let G, be a quasi-split inner form of G defined over &,
and F be its fundamental group. By using the same argument we have in the
proof of Proposition 4.4, one concludes that G(k,)/R is trivial for all v. Therefore
by Proposition 3.3, G has weak approximation over k.

2) Let G be an (absolutely) almost simple k-group. We want to show that
for any finite set S of valuations of k, G(k,)/R is trivial for all ve S. [In fact, one
can show a stronger result in this case: see the paper by Chernousov and Platonov:
The rationality problem of simple algebraic groups, C. R. Acad. Sci. Paris 322
(1996), 245-250, which have many results overlapped with results of [T2], where
also other results were mentioned:

If v is a non-archimedean valuation, then G is rational over k, if G is not of
type Ay.)

Here we can use the following simple argument as follows. Let G, be an
almost simple quasi-split inner form of G. As in the case 1) we are reduced to
proving the statement for quasi-split groups. Assuming that G is not split, then G
is of type A,, D,, Eg, or 36Dy, Let T be a maximal k-torus of G containing a
maximal k,-split torus of G. If G is not of trialitarian type, then we know by Tits
[Ti] that T is split by a quadratic extension of k,. The structure of tori split over
a quadratic extensions are well-known: they are direct product of groups of type
G, Rg i (G), or R(Kl}k._(G,,,) where K/k, is a quadratic extension of k.. In
particular they are rational over k,, and so is G by Bruhat decomposition (see, e.g.,
[BT]). In the trialitarian case one proves in the same way that maximal tori
containing a maximal split torus are rational. Thus by Proposition 3.3, G has
weak approximation in S for any S, thus also over k.

3) a) First we show that if S is a finite set of valuations of k and G is a
connected reductive group which is split over metacyclic extension /, of k, for
each non-archimedean ve S then G has weak approximation with respect to S.
In fact we prove the following stronger result.

4.7. Proposition. If G is a connected reductive group defined over a non-
archimedean k. and split over a metacyclic extension 1, of k, then G(k,)/Br is trivial.

Proof. 1t can be shown that there exists a maximal k,-torus T of G which is
split over /,. (And in the case of number field k, one can show that there exists a
maximal k-torus T such that T is /,-split for ve S.) Let H be a z-extension of G.

| »Z>H5G—1.

Let Ty be the maximal k,-torus of G such that T is mapped onto T via n. Let
G be the simply connected covering of the semisimple part G’ of G. and let T be
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the maximal k,-torus of G which is mapped into T via the composite map
G- G —G.
We have the following exact sequences of tori.
(10) |1 -Z—->Ty—T—1,
(11) 1> T > Ty—T)— 1.

It is clear from (10), (11) that T is also split over /, for all veS. By [CTSI],
Corollaire 3, p. 200, we have

T(k,)/R=T(k.)/R={l}., VYveS.

therefore Ty(k.)/R={1},VveS.
Now we consider a maximal k,-split torus 77 of G. Then

Zo(T)) =T'H'.

where T’ is the connected center and H' is a semisimple k.-group, anisotropic over
ke. If H' is trivial, i.e., G is quasi-split over k,, then the torus 7' is split over
metacyclic extension /,, so has trivial group of R-equivalence classes by [CTSI1].
Corollaire 3, p. 200, and so is G, since G and Z;(T)) are birationally equivalent
over k, (using Bruhat decomposition). Therefore G(k,)/Br is trivial also. One
may therefore assume that H' is non-trivial, and by replacing G by Zg(T;), one
may assume that G has semisimple part G’ anisotropic over k.

By using a consequence of the Kneser’s Theorem on the triviality of H' of
simply connected groups over local non-archimedean fields [Kn2], we see that G’
is necessarily a product of almost simple k,-factors of type 'A, which may be taken
to be absolutely almost simple. So we have

G=H x-xH,.

where H; is simply connected of type 'A, _; for all i.

We now recall the construction of the z-extension H of G. Let G=G'P,
where P is a k,-torus. Let F=G'NP. F,={(f.f™"): f € F} and we have the
following exact sequence

1> F -G xP—G-l.
By taking the composite of two isogenies
GxP—G xP—G.
we have an isogeny
1-F -GxP— G-l

Thus one sees that since G is of inner type (in fact the product of groups SL), the
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group F’ can be embedded into a split torus Z defined over k,. Then we take

Fl={(f./7"): feF'}
and take
H=(Zx (G x P))/F|.

From the very construction is follows from (10), (11) that Ty is split over /,.
Since T and Ty are split over /.. the same holds for 7). Therefore To(k,)/R
is trivial by [CTSI1], p. 200. Since Ty(k.)/R = To(k.)/Br ((CTSI1], p. 217) and
H(k,)/Br = Ty(k,)/Br by Proposition 3.6.3 and the proof given there, we see
that H(k,)/Br = G(k,)/Br = {1}. The proof of 4.7 is complete.

Now we see that G(k,)/Br=1 for all veS. Thus G has weak approxi-
mation for any given finite set S, which means that G has weak approximation
over k.

3) b) Now we assume that G is an inner form of a group G. First we
prove the last statement in 3) of the theorem.

We need the following very useful fact, which is due to Ono in the case of
tori.

4.8. Lemma (Sansuc [S|, Lem. 1.10). Ler G be a connected reductive group
defined over a field k. There exists a number n, induced k-tori T and T’ such that
we have the following central k-isogeny

|l > F—G"xT' - G"xT — 1,
where G is the simply connected covering of the semisimple part G' of G.

The finite covering of an algebraic group by a direct product of simply
connected group with an induced torus (such as G" x T’ — G”" x T above) is
called after Sansuc ([S]. p. 14) a special covering. 1t is obvious that to prove our
statement we may assume that the group G itself has a special covering

(12) - F-G6xT' 561

defined over k. Since the inner twist does not effect the center it is obvious that
we have also a special covering

(13) | F>G xT' =G — 1,

where G, is the simply connected covering of the semisimple part of G;. The
exact sequences (12) and (13) induce the following exact sequences of groups of
R-equivalences

(14) (G(k.) x T'(k,))/R — G(k.)/R — H'(k,. F)/R — 0,
(15) (Gi (k) x T'(k,))/R — Gy(k,)/R — H'(k,,F)/R — 0.

(compare with (8) and (9)). Since the first groups in the exact sequences (14), (15)
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are trivial, we obtain
G(k,)/R ~ Gy(k,)/R ~H"(k,.F)/R.

Now assume that G; is an inner form of a group G satisfying 3) a) above.
We will show that G; has weak approximation with respect to any finite set S of
valuations v where G has metacyclic splitting field extension /,/k,. By Proposition
3.4, it suffices to show that G (k,)/Br is trivial for all ve S.

Let G = G’'S, where G’ is the semisimple part of G, and S a central torus.
Let F=SNG', G be the simply connected covering of G’, ng:G — G’ the
canonical isogeny. As in part a) we denote

Fi={(f.f""):feF} —>5SxG,
so we have a central isogenies

4

12 F —>SxG —-G=S8G —1,
I -FB—-SxGhsxa =1,

where F> = {(x.1): xe Ker(ng)} ~ Ker ng. Denote by

n:SxG— SG'
the composite of isogenies « and f,7: (s.g) — sng(g). Then one checks that

wi=Ker = {(n(g).57') : g e ng (F))
~ 15! (F)
— F := Cent(G)

Since G is an inner twist of G. G| = SG/, where G| is the semisimple part of G,
and SNG| =SNG =F. We define

= {(x.x7") s xeud,

H = (Z x (S x G))/n.

Hy = (Zx(SxG))/u.
Then from the construction it follows that

H=GP, H =GP
where P is the connected center of H and H,, and also
(16) GNP=G NP
Therefore we have

(17) TQI=H/G:T| ::H[/Gl.
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From the proof of the part a) above (Proposition 4.7) we see that T)(k,)/Br
is trivial since Ty(k,)/Br(= H(k,)/Br = G(k,)/Br) is trivial (see the proof of 4.7
of part a)). Therefore by Proposition 3.6.3 and relations (16), (17) H,(k,)/Br
(which is isomorphic to Ty (k,)/Br) is also trivial, thus so is G)(k,)/Br. The proof
of Theorem 4.6 is complete.

Now we consider some other analogs related with R-equivalence relations.
We have the following extension of similar property of tori (see Theorem 1.1, (4))
over completions of a number field k.

4.9. Theorem. Let G be a connected linear algebraic group defined over a
local field k.. Then the group of R-equivalence classes and the group of Brauer
equivalence classes coincide:

G(k,)/R = G(k,)/Br.
Proof.  As above, we may assume that v is non-archimedean and G is reductive.

Step 1. Let G be a connected reductive k-group, G, be its quasi-split inner
form defined over k,. Then we have

(18) G(k,)/R ~ G,(k.)/R.
This has been proved in Theorem 4.6, 3).

Step 2. Let G, be a connected reductive quasi-split k,-group. Then
(19) G,(k))/R = G, (k,)/Br.

Proof. Take a maximal k -torus T of G, containing a maximal k,-split torus
S of G,. Then we have

T =2g,S),
and Bruhat decomposition for G, shows that (see (CTSI1], Section 7) we have
T(k.)/R = G,(k,)/Br.
T(k,)/Br = G,(k.)/Br.
Since for tori T we have
T(k.)/R = T(k,)/Br,
by Theorem 1.1, 4), hence G,(k.)/R = G,(k.)/Br.

Step 3. If G, is a quasi-split inner form of a connected reductive k.-group G,
then

(20) G(k,)/Br ~ G,(k.)/Br.

Indeed. by Proposition 3.6 we may asume that the semisimple part G (resp.
G,) of G (resp. G,) is simply connected. From the proof of Theorem 4.6. 3) b (see
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(16), (17)), it follows that we have the following canonical isomorphism
G,/G,~G/G=~T,

where T is quotient torus of G (and T is defined on the same field as G). We
know by Proposition 3.6.3 that

Gy(ky)/Br ~ T(k,)/Br ~ G(k.)/Br.
hence (20) holds.
Now the theorem follows from the combination of (18), (19), (20).

4.10. Remarks. 1) In [CTS2|, Remarque 2.8.17, it was shown that for a
given smooth variety X over a local p-adic field and under some condition (H))
on the universal torsor under some torus, the Brauer and R-equivalence are the
same. Also, it is a very general method to obtain such kind of results (e.g. one
may obtain similar results for tori over p-adic fields (see [CTS2], Section 2, for
details).

2) All results above tell us that if a connected reductive group G over a
number field k fails to have weak approximation over k, then for some valuation v
(which is necessarily non-archimedean), and the quasi-split inner form G, of G
(which is necessarily non-split), we have G,(k,)/Br # 1.

3) Our assumption in Theorem 4.6 on the existence of metacyclic
extension of k, splitting G has local character, so it is weaker than that of Sansuc
[S]. Corollaire 5.4, p. 34.

The following local-global statement (or principle) would show that our result
is equivalent to that of Sansuc:

A connected reductive group G defined over a number field k has a metacyclic
splitting field if and only if it is so over all completions k, of k.

4) Equally, it is natural (and important) to ask for which class ¢ of finite
groups the following holds. We say that a finite Galois extension k'/k is a %-
extension if Gul(k’/k) e 4. We require that & be a kind of formation of groups.
i.e., it is closed with respect to the operations of taking subgroups. factor groups
and finite direct product. Then we ask when the following holds:

A connected reductive group over a number field k has a G-splitting ficld if and only
if it is so over all completions k,.

Now we are able to formulate and prove a close analog of the exact sequence
(Br) for groups of R-equivalence classes.

4.11. Theorem. Let G be a connected linear algebraic group defined over a
number field k. Let H be a z-extension of the reductive part of G, T be its torus
quotient and S be the Neron-Severi torus of T. Then in the following exact
sequence

(R') I — Ker pg — G(k)/R™S [ G(k)/R — A(G) — |
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the subgroup XKer p; has finite index ny = [T(k)/R:1II(S)], (or the same,
Card(T(k)/Br)) in G(k)/R. Moreover the following sequence is exact
1 — Ker p; — G(k)/R — G(k)/Br — 1,

and the image of G(k)/R in [],G(k,)/R, being isomorphic to G(k)/Br, is also
isomorphic to T(k)/Br.

Proof. The fact that the first sequence is exact follows from Proposition 3.2.
From Theorem 3.7 we have the following commutative diagram with exact rows

PG

1 —— Kerp; — G(k)/R —— [],G(k,)/R —— A(G) —— 1

@) J Ji J l
1 —— Gk)/Br - T],G(k,)/Br —— A(G) —— 1.

In the above diagram, the homomorphism Ag is induced from A; since we have the
vertical isomorphism “~" due to Theorem 4.9, and it is clear that

hg(Ker (pg)) = Ker (7).
Therefore it follows that

(G(k)/R)/Ker (pg) ~ G(k)/Br

and the image of G(k)/R in the product [[, G(k,)/R is isomorphic to the group
G(k)/Br ~ T(k)/Br and has order equal to ny = [T'(k)/R : I1I(S)] by Proposition
2.6 and Theorem 3.7.

From Theorem 4.11 it follows that to determine the structure of G(k)/R
one needs to understand the structure of Ker p;, which is given in the following
theorem. We also derive the following analog of the exact sequence (R) in
Section 1 in the case the number field £ is totally imaginary and also in many
other cases, namely if the semisimple part of G contains no anisotropic factors of
(exceptional, trialitarian) type D4 nor Eg.

4.12. Theorem. 1) Let G be a connected linear algebraic group defined over
number field k. Then we have the following commutative diagram, where all rows
and columns are exact sequences

G(k)/R —— G(k)/R

IR

’

| —— Kerp; —— G(k)/R —*— G(k)/Br —— 1

14 q rl >

r

| —— 1I(S) —— T(k)/R —2o T(k)/Br —— 1
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and G 5 G, is the simply connected covering of the semisimple part Gy of G, T is the
torus quotient of the reductive part of a z-extension H of G. S the Neron—Severi
torus of T and r is an isomorphism.

2) If the semisimple part of G contains no anisotropic almost simple factors of
types Dy (trialitarian) nor Eg then G(k)/R = 1. In particular, p and q are iso-
morphisms, G(k)/R ~ T(k)/R and the following exact equence (R') holds for G.

(R') I — 1I(S) — G(k)/R ™[] Glky)/R — A(G) — 1.

In general, (R") holds for all connected linear algebraic groups G if and only if all
simply connected almost simple groups have trivial group of R-equivalence classes.

3) If k is totally imaginary number field. then p, g are also isomorphisms and
the exact sequence (R') holds for G.

First we need the following results.

4.13. Theorem ((CM], Thm. 4.3.). Let G be an almost simple alyebraic group
of outer type *A, defined over a field k. G(k) = SU(®, D), where @ is the associated
hermitian form with respect to an involution J of second kind over a division algebra
D of center K. Let X; (resp. X)) be the group of elements which are J-symmetric
(resp. with J-symmetric reduced norm) of D. Then

G(k)/R~Z2'/%;.

4.14. Theorem ((H3)]). Assume that k is totally imaginary number field.
Then any simply connected semisimple k-group has trivial (Galois) 1-cohomology,
and anisotropic almost simple k-groups are of type A,.

4.15. Proposition ([T4]). Let H be a z-extension of a connected reductive
group G, all defined over a field k. Then the natural projection H — G induces
canonical isomorphism of abstract groups

H(k)/R ~ G(k)/R.

Proof of Theorem 4.12. 1) The assertion regarding the exactness of two
rows and that r is an isomorphism in the above diagram follows from the com-
mutative diagram (21), and the bijectivity of r follows from Theorem 3.7.

4.16. Lemma. With above notation, Ker q = Ker pg.

Proof Indeed, if x e Kerg then r(ig(x)) = A7r(g(x)) =0, hence Ag(x) =0
since r is an isomorphism. As we mentioned above, the rows in the diagram
are exact, so x € Ker pg.

The following is a well-known (and trivial) result from homological algebra.

4.17. Lemma. In the above diagram. p is surjective if and only if q is
surjective.
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4.18. Lemma. Let T be a torus defined over a field k, S a finite set of discrete
valuations of k. Then

Cls(RT (k)) = RTs.

In particular, if S consists of real valuations then RT (k) is dense (in the S-adic
topology) in T(k).

Proof. Let

| sNsPLT S

be a flasque resolution of 7 over k. Here P is an induced k-torus and N is
flasque. By [CTS1], Théoréme 2, in the above exact sequence we have

q(P(k)) = RT (k).
hence
Cls(RT (k)) = Cls(q(P(k))).
If x e q(Cls(P(k))).x = ¢(y). where y = lim, p,.p, € P(k) then
x = q(limy p,) = lim, q(p,)
€ Cls(q(P(k))) = Cls(RT (k)),

hence ¢(Cls(P(k))) < Cls(RT (k)).
Since P has weak approximation property, Cls(P(k)) = Ps, and as mentioned
above, ¢(Ps) = RTs, hence

RTs < Cls(RT(k)).

On the other hand, by Proposition 2.1, RTs is an open subgroup of T's containing
RT (k), hence the first assertion follows. The rest of the lemma follows from the
previous one and also from the fact that any torus over the real numbers are
rational. :

4.19. Lemma. With notation as in the theorem, q (hence also p) is surjective.
Proof. We need only show that
T(k) = q(G(k))RT (k).

where we may assume that G has simply connected semisimple part G, and ¢ :
G — T = G/G is the projection.
By Lemma 4.18 we know that

T, = Cl(RT(k)).
For x e T(k) we have
x = limy ¥y, 1, € RT (k)
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(the limit is taken with repsect to the archimedean oo-topology). We have the
following commutative diagram similar to (6):

J

G(k) —— T(k) ——  H'(k,G)

I

3

Gy — T, —— l_[veocHl(kl‘-G)

where all rows are exact and all arrows are continuous with respect to the
topologies induced from G, and T,. We have

0o (B(x)) = lim, 65 (B(ra))
=0, (f(rn)). Vi > Ny,

for some fixed Ny, since [] H'!(k,.G) is finite. Hence

0 (B(x)) = (d(x))
= y(é(r,,))

for n > Ny. Since y is an isomorphism (i.e. bijection) by Hasse principle, one
concludes that

o(x) =o(ry), Vn > Ny.
One checks. by using the interpretation of the coboundary map J (see [Se]) that
x = ruq(9),
for some ¢ € G(k). Thus
T (k) = RT (k)q(G(k)),
ie., ¢ (and p, by Lemma 4.17) is surjective.

With this lemma, the proof of the exactness of the first column in Theorem
4.12 is complete. Next we consider the exactness of the second column. We
have the following general result.

4.20. Lemma. Let k be a field of characteristic 0, G a connected reductive
group with simply connected semisimple part G, T = G/G. Then we have the
following exact sequence of groups

G(k)/R — G(k)/R — T(k)/R.

Proof. 1t is obvious that if the lemma is true for some power G" =G x - --
x @G, then it is also true for G, so by virtue of Lemma 4.8 we may assume that G
has a special covering G x T’, where T’ is an induced k-torus, and we have the
following exacts sequence of algebraic groups, all defined over k:

| 5 F>GxT —-G—1,



282 Nguyéii Quo¢ Thang

where F is a finite central subgroup of G x T'. From this we derive the following
3 x 3-commutative diagram

| — FNG —— F LR

l— G —— GxT' T’ 1
i n

l — G — G T 1

| 1 1

Since G is simply connected, / is an isomorphism, hence FN G =1, and u is also
an isomorphism. From the diagram above we derive the following commutative
diagram

(G(k) x T'(k))/R —*~ G(k)/R —— H'(k.F)/R

S

T'(k)/R — T(k)/R —— H'"(k.F")/R

where all rows are exact (see Proposition 4.4.1), and ' is an isomorphism. Since
T' is an induced k-torus, T'(k)/R =1, and

(G(k) x T'(k))/R ~ G(k)/R.

If x e G(k)/R such that ¢’'(x) =1, then by chasing on this diagram we see that
x € Im &, thus

Ker ¢’ = Im (G(k)/R — G(k)/R)
as required.

From this the exactness of the second column of the diagram in the theorem is
proved, hence we have finished the proof of 1).

2) The “general” part of 2) follows directly from 1). Next we show that if
the semisimple part of G does not contain anisotropic almost simple factors of
exceptional types Dy and Eg then (R’) holds for G.

To see this, we reduce the proof to the following situation. Namely, one may
assume that the group G above is connected reductive with anisotropic semisimple
part. Indeed, it is clear that we may assume G to be reductive.

Step 1. If H is an almost simple simply connected group over k then H(k) has
no proper noncentral normal subgroups except possibly for the following types:
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e anisotropic A,, D4 (exceptional), E;
e isotropic exceptional types *E}° 2EX.

This is the result of many authors and the readers are refered to Chapter 9,
Section 9.1 of [PR] for further information. (Quite recently Y. Segev and G. Seitz
announced that the Platonov—Margulis conjecture is true for the case 'A,.)

Step 2. If H is as in Step 1, but H can be of anisotropic type A,, then
H(k)/R = 1.

This follows from Step 1, the well-known fact that RH(k) is an infinite
normal subgroup of H(k), Theorem 4.13 in combination with results of Wang
(that the group SK;(4) =1 for any central simple algebra 4 over number field
k), and the result of Platonov-Yanchevskii (that 2/X; =1 for number field k).

421. Lemma. If H is simply connected either of isotropic type *E3° or 2E¥
then H(k)/R=1.

Proof. If S’ is a maximal k-split torus of H, then it is well-known by [CTSI]
that we have the following functorial isomorphism of abstract groups

H(K)/R=Zy(S')(K)/R,
for any field extension K of k. Hence by Theorem 3.4, we have
A(H) ~ A(Zy(S")).

(One can show in general that this last isomorphism holds for any field k, see [T3].)
Cast 2E®. Let S’ be a maximal k-split torus of H. The Tits index of H is
as follows '

e — — e
/
O ——e
N\
e — — @0
One can check that the centralizer Z := Zy(S’) of S’ in H is
Zu(S"y=S'L,

where L is an almost simple simply connected k-group of type 2As. Since L(k)/R
=1 by Step 2, from the result of 1) (namely from the commutative diagram in the
theorem), we have the following exact sequence (R’) for Z:

(23) I — 1I(S) = Z(k)/R - [[ Z(ko)/R — A(Z) — 1,

where S is the Neron-Severi torus of the torus Z/L since Z is the z-extension of
itself. Since Z/L is a k-split torus, S has trivial cohomology, so III(S) is trivial.
As we notice earlier that

Z(k,)/R ~ H(k,)/R
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is trivial for all v since H is simply connected, hence from (23) it follows that
l=Zk)/R=H(k)/R

as required.
Case 2EZ’. The Tits index of H is as follows

/!
e— —eo 1
N

We have
Z:=Zy(S")=S'Ty)L,

where L is a simply connected k-group of (classical) type D4 (hence satisfies
L(k)/R=1), and Ty is a one-dimensional k-torus. As above we have the exact
sequence (R’) for the group Z. In this case, the torus quotient

T=2Z/L=ST,/(STyNL)

is a two-dimensional k-torus, which is rational over k by a classical result of
Voskresenskii [V1]. Therefore

T(k)/R = 1.

By [CTSI], Proposition 19(ii), we have the following exact sequence

0 — (7)™ — Br,X — [[BroX. — T(k)/R™ — 1I(S)™ — 0.

(Here X denotes a smooth compactification of T over k and S = Pic(X).) In
particular, III(S) = 0. Further we argue as above to obtain that Z(k)/R is trivial,
hence so is H(k)/R.

So from 1), Steps 1, 2 and from Lemma 4.21 it follows that the exact sequence
(R") holds for G except possibly the case the semisimple part of G contains
anisotropic almost simple factors of exceptional types D4 and/or E¢. Hence 2) is
proved.

3) We claim that H(k)/R = | for any almost simple simply connected group
H over k. If H is anisotropic then by Theorem 4.14, H is of type A, and the
claim follows from Steps I, 2 in 2). Also from there, by combining with Lemma
4.21, we know that the claim holds for any isotropic group H. So over totally
imaginary fields k, H(k)/R is trivial for all simply connected semisimple k-groups
H. To obtain (R’) we may use the result of 1) and Theorem 4.11. We supply
also a proof of this fact independent of 1) as follows.

By using the same argument as in the proof of Theorem 4.4 (or 4.6) and
by using the Harder’s result on the triviality of the Galois cohomology of simply
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connected groups (Theorem 4.14), we can show that
G(k)/R ~ G,(k)/R,

where G, is a quasi-split inner form of G over k and we may assume also that G
has simply connected reductive part and that G is reductive. Let T, be a maximal
k-torus of G, containing a maximal k-split torus S of G,. By the same argument
as in the proof of 4.6, 4.7, it follows that G and G, have isomorphic torus
quotients 7. It is also well-known that for simply connected quasi-split semi-
simple groups G;, any maximal torus containing a maximal k-split torus is also
quasi-split (i.e. induced) torus. Denote such a torus by 7,. Then

l—>T(;—>Tl,—+T—>l

is an exact sequence of k-tori, and T‘; is cohomologically trivial. Since this is a
z-extension, from Proposition 4.15 it follows that

T,(k)/R = T(k)/R,

hence
G(k)/R ~T(k)/R.

and this is true for any field extension of k. In particular,
G(k,)/R ~ T(k,)/R

for all v, hence from (R) we deduce the exact sequence

(R') I — 1I(S) = G(k)/R — [[ G(k)/R — A(G) — 1,

where T is the torus quotient of any z-extension of G and S is its Neron—Severi
torus.
The proof of Theorem 4.12 is therefore complete.

Remark. In our earlier preprint [T4], we propose another way to express an
exact sequence connecting groups of R-equivalence classes, weak approximation
obstruction A(G) and the Tate—Shafarevich group of some finite Galois module.
It is clear that the above exact sequence (R’) is, in a sense, more true (or natural)
analog of the initial exact sequence (R) for tori established by Colliot-Théléne and
Sansuc.

We derive the following consequence describing a relation between RG(k) and
RGs, extending the corresponding result for tori (Lemma 4.18) over number fields.

4.22. Theorem. Let k be a number field, S u finite set of valuations of k, G a
connected linear algebraic k-group. Then

BGs = RGs = Cls(RG(k)) = Cls(BG(k)).

In other words, the groups RG(k) and BG(k) have weak approximation over k.
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Proof.  We claim that
RGs = n(Gs)CIs(RG(k)).
where 1 : G — Gy is the universal covering of the semisimple part Gs of G.

We may assume that G is reductive. We first show that RGs contains the set on
right hanside. It is known and easy to see that RGs is an open subgroup in
[l,cs G(k:), hence also closed. We know that for simply connected groups

Gs = RGs = Cls(G(k)),
hence

n(Gs) = n(RGs) = RGs,
and

n(Gs)Cls(RG(k)) < RGs.

To prove the other inclusion, first we assume that G is the semisimple part of G.
Let T=G/G. We have the following commutative diagram

Gk) —L— Tth) —°— H'(k,6)

oo |

Gs —2— Ts —2— [l..sH'(k.G)
Let xe RGs. Then p(x) € RTs = Cls(RT(k)) by Lemma 4.18, so

p(x) = limy, ry, rn € RT (k).
Then
o(ra) = d(p(x)) =1. n— o,
hence
o(ry) =1, Yn> N,
for some fixed N. Therefore r, € p(G(k)),r, = p(gn).gn € G(k) for n > N. Thus
lim, p(xg,') = 1.

Let -
G=GT',

where T’ is a k-torus. The natural isogeny
pGxT =G
induces an open map

p':G~5><T§—->GS.



Weak approximation 287

In particular, GsT§ is an open subgroup of Gs. Since Cls(RT’(k)) = RT}
by Lemma 4.18, and RT{ is open in T§ by Proposition 2.1, it follows that
CIs(RT'(k)) is open in T4 Hence GsCls(RT'(k)) is an open subgroup of Gs.
and so is GsCls(RG(k)). Let V,.n=1.2.... be a nested system of open neigh-
bourhoods of 1 in T such that V,,; < V, for all n,

ﬂnV”: {l}’

and p(xg;') € V,, for all n. Then
xg; e p7 (V). Vh.

Since 7’ is rational over k. T¢ = Cls(RG(k)) and since GsT} is an open subgroup
of Gg, it follows that for all n we have

xe p ' (Vi)gn = p~' (V) GsCls(RG(k)).
Since

mnp_l(V") = p_](ﬂ,,Vn)
=p (1)
= Gs.

so (V,) form a nested system of open neighbourhoods of Gs. Therefore for
some N,

p~'(Va) = GsCIs(RG(k)).  ¥n>N.
since GsCls(RG(k)) is an open subgroup of Gs. Thus
x € GsCls(RG(k)) = Cls(G(k))Cls(RG(k)).

since, by Kneser’s and Harder’s results, G has weak approximation property
over k.
In general case, let H be a z-extension of G,

1 Z—>HS G- 1,

where 7 induces the covering isogeny G — G, = G. By Proposition 4.15 the pro-
jection 7 induces surjections

RHs — RGs.  RH(k) — RG(k).

hence
RGS = H(RHS)

= n(Gs)Cls(RH (k)))
= n(Gs)n(Cls(RH (k)))
< n(Gs)Cls(n(RH (k)))
= 7(Gs)Cls(RG(k)),
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and the claim is proved. Since RG(k) is an infinite normal subgroup of G(k).
Cls(RG(k)) is an infinite normal subgroup of Cls(G(k)) = Gs. It is known that
Gs has no proper infinite normal subgroup (consequence of Kneser—Tits conjecture
over local fields). Thus

Cls(RG(k)) = Gs.
hence
Gs = Cls(RH (k))

and RGs = Cls(RG(k)). The assertion regarding BGs follows from Theorem 4.9.
Theorem 4.22 is proved.

We derive also the following finiteness result of the group of R-equivalence
classes in a slightly different way than the one given in [G2]. Namely we do not
use the Kato-Saito’s Hasse principle for arithmetical varieties (compare [G2] and
[G3]).

4.23. Theorem (G2, G3)). If k is a number field then G(k)/R is finite.
Proof. From well-known theorem of Margulis—Prasad it follows that if G
is a simply connected semisimple k-group then G(k)/R is finite. From the com-

mutative diagram in Theorem 4.12 and from the finiteness of T'(k)/R (see [CTSI1],
Corol. 2, p. 200) it follows that G(k)/R is finite.

4.24. Corollary. Let G be an adjoint semisimple group defined over a number
field k and G be its simply connected covering. If G(k)/R=1 then G(k)/R=1.
In particular, it is so if G contains no anisotropic factors of exceptional types Dy, Eg.

Proof. Let F :Ker(G—>G),G,,,G¢, be quasi-split inner forms of G.G
respectively. Denote by T‘,. T, their corresponding maximal k-torus containing
maximally k-split torus, which are known to be induced tori. From the exact
sequence

G(k)/R — G(k)/R — H'(k,F)/R,

and from the assumption it follows that G(k)/R — H'(k.F)/R is injective. By
considering the corresponding sequence for tori

T,(k)/R — T,(k)/R — H'(k.F)/R — 0.
(we use the fact that H'(k, 71,) = 0) and from the fact that these tori are induced,

so we have trivially H'(k. F)/R = 0. thus G(k)/R is trivial.

5. Remarks, problems and conjectures

5.1. From Theorem 4.12 it follows that over an arbitrary field k, the
finiteness of groups G(k)/R for connected reductive groups G depends only on the
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finiteness of tori and simply connected groups over k. It seems natural to state
the following

Problem 1. Study the finiteness of G(k)/R and G(k)/Br for connected linear
algebraic groups G over finitely generated (over the prime field) k.

Problem 2. Same problem as above, but only for purely transcendental extensions

of Q.Q,.R.C.

5.2. It is natural to make the following

Conjecture 1.  The exact sequence (R') holds for any connected linear algebraic
group G over any number field k.

Notice from above that this conjecture is equivalent to the following conjecture

Conjecture 2. G(k)/R is trivial for anisotropic almost simple simply connected
group G of exceptional type Dy or E¢ over a number field k.

As we have seen from above, the last conjecture is a consequence of another
stronger conjecture due to Platonov and Margulis. (See [PR, Chapter 9] for more
information.)
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