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On the coefficient sheaf of equivariant elliptic
cohomology for finite groups II

By
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1. Introduction

This is a continuation of the study [25] of the coefficient sheaf of Ginzburg,
Kapranov and Vasserot’s axiomatic equivariant elliptic cohomology for a finite
group G. This cohomology theory, based on an elliptic curve E over a scheme
S, is a cohomological functor with some natural properties from the homotopy
category of finite G-CW-complexes to the category of coherent modules over
the structure sheaf OM(E,G) of the moduli scheme M(E,G) (denoted by χG in
[4]) of G-coverings of the elliptic curve E. (Here we restrict our attention to a
finite group, not considering general compact Lie groups.)

In [25] we studied the case that S is a Z[1/(6|G|)]-scheme, while this note
deals with an opposite case; namely the case that G is a finite p-group P and
that S is a Z/pr-scheme for a prime p greater than 3 and a positive integer r.
More precisely, we consider the case that the elliptic curve E is the Weierstrass
family Euniv⊗Z/pr defined by the equation y2 = 4x3−g2x−g3 over the scheme
S = M(1) ⊗ Z/pr = Spec(Z/pr[g2, g3,∆−1]) (∆ = g3

2 − 27g2
3). Then our main

result constructs the moduli scheme M(Euniv ⊗ Z/pr, P ) as an affine scheme
explicitly (Theorem 2.2) as in the case considered in [25], which provides a
description of the group of the global sections of the coefficient sheaf of an
equivariant elliptic cohomology based on Euniv ⊗ Z/pr for a finite p-group P
(Corollaries 2.3 and 2.4). A q-expansion of every (invariant) global section of
the coefficient sheaf could be called a (generalized) mod pr Thompson series.
We hope that this paper together with [25] would shed some light on a (global)
aspect of Hopkins-Kuhn-Ravenel character theory for elliptic cohomology from
the view point of moduli of Galois coverings of elliptic curves.

In Section 2 we recall the definition of the coefficient sheaf of axiomatic
equivariant elliptic cohomology and state our results. In Section 3 we study
moduli problem of P -coverings of p-ordinary elliptic curves by similar method
proving Theorem 2.3 in [25] and construct the moduli scheme M((Euniv ⊗
Z/pr)ord, P ) as an affine scheme (Theorem 2.1). Here (Euniv ⊗ Z/pr)ord =
(Euniv⊗Z/pr)×M(1)⊗Z/pr (M(1)⊗Z/pr)ord, (M(1)⊗Z/pr)ord = Spec(Z/pr[g2,
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g3,∆−1, E−1
p−1]) and Ep−1 is the Eisenstein series. In Section 4 we prove The-

orem 2.2 by using Theorem 2.1 with taking account of P -coverings of super-
singular elliptic curves. In the Appendix we give a brief account of Γ1(n)arith-
modular forms over Z[1/6]-algebras for the convenience of the reader.

2. Notation and statement of results

As in [25], for a finite group G, we denote by π1(X,G) the set of isomor-
phism classes of G-coverings of a locally noetherian scheme X. (As in [25] all
schemes are assumed to be locally noetherian.)

Let E → S be an elliptic curve over a locally noetherian scheme S equipped
with a section i : S → E and ωE denote the invertible sheaf i∗Ω1

E/S on S. Let
(Sch/S) and (Sets) denote the category of locally noetherian S-schemes and
the one of sets respectively. Let

π1
E,G : (Sch/S) −→ (Sets)

be the functor defined by

π1
E,G(T ) = π1(ET , G) (∀T ∈ (Sch/S))

where ET = E ×S T . Let M(E,G) denote the coarse moduli scheme in the
sense of [25, Definition 2.1] (if it exists) and pE,G : M(E,G) → S be the S-
scheme structure on M(E,G). Let ωE,G denote the invertible sheaf p∗E,GωE
on M(E,G). Then the coefficient sheaf of an equivariant elliptic cohomology
Ell∗G(?), based on an elliptic curve E, on finite G-CW-complexes is defined by

EllkG(pt) =

{
ω
⊗− k

2
E,G (k even),

0 (k odd).

(As remarked in [25] we should have non-trivial Ellodd
G (pt) in general if S is not

a Z[1/|G|]-scheme.)
For a fixed prime p (in this note, greater than 3), let R∗

1(pn) =
R∗(Γ1(pn)arith) be the graded ring of Γ1(pn)arith-modular forms (Γ00(pn)arith-
modular forms in [10, Chapter II]) over Z[1/6] (see the Appendix). Partic-
ularly R∗

1(1) is the graded ring of Γ(1)-modular forms over Z[1/6]; R∗
1(1) =

R∗(1) = Z[1/6][g2, g3,∆−1] (∆ = g3
2 − 27g2

3). Let M1(pn) = M(Γ1(pn)arith) =
SpecR∗

1(pn). For a fixed positive integer r, let R∗
1(pn)r = R∗

1(pn) ⊗ Z/pr and
M1(pn)r = M1(pn) ⊗ Z/pr = Spec(R∗

1(p
n)r). Let R∗

ord,r = Z/pr[g2, g3,∆−1,

E−1
p−1], where Ep−1 is the Eisenstein series, and Mord

r = (M(1) ⊗ Z/pr)ord =
SpecR∗

ord,r. Let Euniv ⊗ Z/pr and Eord
univ,r = (Euniv ⊗ Z/pr)ord be the ellip-

tic curves defined by the same Weierstrass equation y2 = 4x3 − g2x − g3 over
M(1)r = M1(1)r and Mord

r respectively.
Let C1(P ) denote the quotient set of Hom(Z/|P |, P ) divided by the obvious

conjugation action of P . Then we have an action of (Z/|P |)× on C1(P ) by using
a canonical action of (Z/|P |)× on Z/|P | given by

(σ, g) �→ gσ (∀σ ∈ (Z/|P |)×, ∀g ∈ P ).
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Let R∗(Eord
univ,r, P ) denote the graded ring of all (Z/|P |)×-equivariant maps

Map(Z/|P |)×(C1(P ), R∗
1(|P |)r) from C1(P ) to R∗

1(|P |)r with obvious ring struc-
ture and grade. Here the action of (Z/|P |)× on R∗

1(|P |)r is a canonical one
described in Section 3. Let R∗(Euniv ⊗ Z/pr, P ) be the graded subring of
R∗(Eord

univ,r, P ) defined by R∗(Euniv ⊗ Z/pr, P ) = {f ∈ R∗(Eord
univ,r, P ) | f(e) ∈

R∗(1)}, where e denotes the conjugacy class of the trivial homomorphism.
With the above notation we have

Theorem 2.1.

M(Eord
univ,r, P ) = SpecR∗(Eord

univ,r, P ).

Theorem 2.2.

M(Euniv ⊗ Z/pr, P ) = SpecR∗(Euniv ⊗ Z/pr, P ).

(Note that a coarse moduli scheme does not commute with base change in
general and hence that Theorem 2.1 is not an obvious consequence of Theorem
2.2.)

From these results we can describe the group of the global sections of
coefficient sheaf of an equivariant elliptic cohomology based on Eord

univ,r and
Euniv ⊗ Z/pr for a finite p-group P . But the arguments are completely anal-
ogous to those for Euniv[1/|G|] dealed with in [25] and so we will only give
their statements. Let (Ellordr )∗P (pt) and (Ell⊗Z/pr)∗P (pt) denote the group of
all global sections of the coefficient sheaf of an equivariant elliptic cohomology
based on Eord

univ,r and Euniv ⊗Z/pr for a finite p-group P respectively. Then we
have

Corollary 2.3. For every integer k there are isomorphisms

(Ellordr )2kP (pt)
∼=−→ R∗(Eord

univ,r, P )

and

(Ell ⊗ Z/pr)2kP (pt)
∼=−→ R∗(Euniv ⊗ Z/pr, P ).

The first isomorphism is R∗(Eord
univ,r, P )-linear and the second one is R∗(Euniv⊗

Z/pr, P )-linear. Both isomorphisms are canonically determined by choosing a
nowhere vanishing invariant differential on Eord

univ,r and Euniv ⊗ Z/pr respec-
tively.

We can make ωEord
univ,r,P

(resp. ωEuniv⊗Z/pr,P ) into an (R0
ord,r)

× (resp.
R0(1)×r )-equivariant invertible sheaf by choosing a nowhere vanishing invari-
ant differential on Eord

univ,r (resp. Euniv ⊗ Z/pr), say, ωuniv = dx/y. Then we
have

Corollary 2.4. The isomorphisms above, associated with ωuniv, induce
isomorphisms

(Ellordr )2kP (pt)(R
0
ord,r)× ∼=−→ R−k(Eord

univ,r, P )
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and

(Ell ⊗ Z/pr)2kP (pt)R
0(1)×r

∼=−→ R−k(Euniv ⊗ Z/pr, P )

respectively.

3. Moduli of P -coverings of p-ordinary elliptic curves

In this section we will give a sketch proof of Theorem 2.1 without de-
tailed arguments. It would be easy to complete all the arguments by con-
sulting Sections 3 and 4 of [25]. Let Ẽord

univ,r = Eord
univ,r ×Mord

r
M1(|P |)r and

R∗(Ẽord
univ,r, P ) = Map(C1(P ), R∗

1(|P |)r), where the Mord
r -scheme structure of

M1(|P |)r is a standard one (see below Proposition 3.2). (From now on we will
often suppress subscript r from our notation.) Then we have

Theorem 3.1.

M(Ẽord
univ,r, P ) = SpecR∗(Ẽord

univ,r, P ).

The proof of this result is completely parallel to that of Theorem 3.1 in
[25]; Only changes needed are the following.

The Z/n × Z/n-covering E(α) of an elliptic curve E with naive level n
structure α played a fundamental role in [25]. Here we need to replace it by
the Z/pn-covering E(ι) of an elliptic curve E with Γ1(pn)arith-structure ι over
Z/pr-scheme constructed as follows.

Let E be an elliptic curve over a Z/pr-scheme T with Γ1(pn)arith-structure

ι : µpn ↪→ E[pn].

Let E′ = E/ι(µpn) and

π : E −→ E′

be the projection. Dualizing, we get a homomorphism

πt : E′ −→ E

whose kernel is, by Cartier-Nishi duality (see [11, 2.8] and [6, Sections 2.6.3
and 2.6.4]), isomorphic to (Z/pn)T via an isomorphism

ι′ : (Z/pn)T
∼=−→ Kerπt

which is canonically determined by ι. It is easy to see that this

πt : E′ −→ E

is a Z/pn-covering of E with Z/pn-action on E′ given by the composition

E′ ×T (Z/pn)T
1E′×ι′−−−−→ E′ ×T Kerπt −−−−→ E′,

where the second morphism is induced by the group scheme structure on E′.
This is the desired Z/pn-covering E(ι). With this notation Proposition 3.7 in
[25] is now replaced by
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Proposition 3.2. Let T be a connected Z/pr-scheme and E be an el-
liptic curve over T with Γ1(|P |)arith-structure ι. Then there is a canonical map

θ(E, ι) : π1(E,P ) −→ C1(P )

such that :
(1) It is bijective if T = SpecK with K algebraically closed field (of char-

acteristic p).
(2) It is natural with respect to arbitrary base change T ′ → T with T ′

connected.

The rest of the proof of Theorem 3.1 goes as that of Theorem 3.1 in [25]
and is left to the reader.

Next to deduce Thereom 2.1 from 3.1 is again done by very similar ar-
gument of deducing Theorem 2.3 from Theorem 3.1 in [25] by replacing the
GL2(Z/n)-covering

M(n) −→M(1)

by the following (Z/pn)×-covering (and hence the relevant group GL2(Z/n) by
(Z/pn)×).

First note that we have a canonical (Z/pn)×-action on R∗
1(pn) defined by

(σ, f) �→ f(Ẽord
univ, ω̃univ, σ

−1ιuniv) (∀σ ∈ (Z/pn)×, ∀f ∈ R∗
1(p

n)),

where ιuniv is a fixed Γ1(pn)arith-structure on Ẽord
univ and σ−1ιuniv is the one

given by the composition

µpn
σ−1

−−−−→ µpn
ιuniv−−−−→ Ẽord

univ[p
n].

This action induces a canonical action on M1(pn). We also have a canonical
injection

R∗
ord −→ R∗

1(p
n) (f �→ f(Ẽord

univ, ω̃univ)),

since the existence of a Γ1(pn)arith-structure on an elliptic curve over a Z/pr-
scheme implies that the curve is p-ordinary (fiber-by-fiber ordinary) and the
Eisenstein series Ep−1 gives Hasse invariant after mod p reduction (see [6,
Section 2.9.1] and [9, 2.0 and 2.1]). Hence we have a canonical morphism

M1(pn) −→Mord

and we can prove that this morphism is Galois with Galois group (Z/pn)×

acting on M1(pn) as defined above (cf. [11, 4.9] and [6, Section 2.9.2]). Now
we also get an induced action of (Z/pn)× on M̃ord

P = M(Ẽord
univ, P ) given, on

the coordinate ring, by

(σ, f) �→ σfσ−1 (∀f ∈ R∗(Ẽord
univ, P )).
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Let Mord
P be a quotient of M̃ord

P by this action; explicitly given by Mord
P =

SpecR∗(Eord
univ, P ). Then Mord

P has a unique Mord-scheme structure such that
the diagram:

M̃ord
P −−−−→ Mord

P� �
M1(pn) −−−−→ Mord

is commutative.
The rest of the proof is again left to the reader.

4. P -coverings of non-p-ordinary elliptic curves and the proof of
Theorem 2.2

The purpose of this section is to prove Theorem 2.2. We begin with the
following result about P -coverings of non-p-ordinary elliptic curves.

Proposition 4.1. Let E be an elliptic curve over a connected Z/pr-
scheme T and X → E be a P -covering of E. If E has a supersingular fiber
then there is a finite etale (necessarily) surjective Z/pr-morphism T ′ → T with
T ′ connected such that the P -covering XT ′ = X ×E ET ′ → ET ′ = E ×T T ′ is
trivial. In particular if E has a supersingular fiber then the P -covering Xt̄ → Et̄
is trivial for every geometric point t̄→ T .

The proof of this result is very similar to that of Proposition 3.8 in [25] by
the fact that

Homcont(π1(E), P ) = ∗
for any supersingular elliptic curve E over an algebraically closed field of char-
acteristic p (see Appendix B of [25]); so we will omit it.

Let MP = SpecR∗(Euniv ⊗ Z/pr, P ). Then it is easy to see that MP is
obtained by glueing Mord

P = M(Eord
univ, P ) and M(1) together along the open

subscheme Mord, i.e., MP = M(Eord
univ, P ) ∪Mord M(1). Here Mord is regarded

as an open subscheme of M(Eord
univ, P ) via the ring homomorphism

R∗(Eord
univ, P ) −→ R∗

ord = R∗
1(|P |)(Z/|P |)× (f �→ f(e)).

Now we define a natural transformation

ψ(?) : π1(?) = π1
Euniv⊗Z/pr,P (?) −→ h(?) = (Sch/M(1))(?,MP )

as follows. For an M(1)-scheme T let T supsing = {t ∈ T |(Euniv)t is supersingu-
lar}. Then for a connected M(1)-scheme T with T supsing = ∅, i.e., T is actually
an Mord-scheme, we define

ψ(T ) : π1(T ) −→ h(T )
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by the composition

π1(T ) = π1
ord(T )

ψord(T )−−−−−→ hord(T ) −−−−→ h(T ),

where

ψord(?) : π1
ord(?) = π1

Eord
univ,P

(?) −→ hord(?) = (Sch/Mord)(?,Mord
P )

is a natural transformation which makes Mord
P into a coarse moduli scheme for

π1
ord and the second map is an obvious inclusion. If T supsing 	= ∅ then we define

ψ(T ) : π1(T ) −→ h(T )

by the composition

π1(T ) −→ (Sch/M(1))(T,M(1)) ↪→ h(T ),

where the middle set consits of a single element. Then we can easily prove
that the above ψ uniquely extends to a natural transformation on (Sch/M(1))
by Proposition 4.1 and it is clear that the resulting ψ is bijective on every
geometric point of M(1) by Theorem 2.1 and Proposition 4.1. To see that this
(MP , ψ) is actually a coarse moduli scheme for π1 let N be an M(1)-scheme
together with a natural transformation

ψ′(?) : π1(?) −→ h′(?) = (Sch/M(1))(?, N).

Let Nord = N ×M(1) M
ord then for any Mord-scheme T the natural map

(h′)ord(T ) = (Sch/Mord)(T,Nord) −→ h′(T )

is bijective. Therefore there is a unique natural transformation on (Sch/Mord)

(ψ′)ord(?) : π1(?) −→ (h′)ord(?)

such that for any Mord-scheme T , ψ′(T ) is factored into

ψ′(T ) : π1(T )
(ψ′)ord(T )−−−−−−→ (h′)ord(T )

∼=−−−−→ h′(T ).

Thus there is a unique Mord-morphism

χord : Mord
P −→ Nord

such that

((χord◦)ψord)(T ) = (ψ′)ord(T )

for any Mord-scheme T . Let

χsupsing : M(1) −→ N
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denote the M(1)-morphism ((ψ′(M(1)))(trivial class). Then it is easy to see
that χord and χsupsing coincide on the open subscheme Mord and hence they
define an M(1)-morphism

χ : MP = Mord
P ∪Mord M(1) −→ N.

Now we can easily prove that this χ is a unique M(1)-morphism with the
property that (χ◦)ψ = ψ′ on (Sch/M(1)) by using Theorem 2.1 and Proposition
4.1.

Appendix A. Review of Γ1(n)arith-moduli problem over Z[1/6]

In this appendix we will give a brief account of Γ1(n)arith-modular forms
in the sense of Katz [10, Chapter II]. Our main references are [10, Chapter
II], [11] and [6, Chapter I–III]; particularly Hida’s recent book [6] contains
most necessary information about scheme theory. For simplicity we exclude
characteristic 2 and 3 which does not matter in this note.

Let E be an elliptic curve over a (not necessarily locally noetherian) scheme
S. For a positive integer n let E[n] denote the kernel of multiplication by n
map on E:

[n] : E −→ E.

Then a Γ1(n)arith-structure on E is an inclusion of group schemes over S:

ι : µn,S ↪→ E[n].

For arbitrary scheme S a Γ1(n)arith-test object over S is a triple (E,ω, ι)
consisting of an elliptic curve E over S, a nowhere vanishing invariant differ-
ential ω on E and a Γ1(n)arith-structure ι on E; particularly a Γ1(1)arith-test
object is nothing but a Γ(1)-test object (E,ω). Let M(Γ1(n)arith)S denote the
functor from (Sch/S) to (Sets) defined by

M(Γ1(n)arith)S(T ) = the set of isomorphism classes of

Γ1(n)arith-test objects over T .

Then we have

Theorem A.1 ([10, 2.5]). The functor M(Γ1(n)arith)Z[1/6] is repre-
sentable by an affine Z[1/6]-scheme M(Γ1(n)arith).

It is clear that for any Z[1/6]-scheme S, the scheme M(Γ1(n)arith)S =
M(Γ1(n)arith) ×SpecZ[1/6] S represents the functor M(Γ1(n)arith)S .

Now in Appendix A of [25] we have already seen that the functor
M(Γ(n)arith)Z[1/6] from (Sch/Z[1/6]) to (Sets), defined by

M(Γ(n)arith)Z[ 16 ](T ) = the set of isomorphism classes of

Γ(n)arith-test objects over T ,
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is representable by an affine scheme M(Γ(n)arith) = SpecR∗(Γ(n)arith). Then
we have a canonical action of µn,Z[1/6] = HomZ[1/6]-grp(Z/n, µn) on
M(Γ(n)arith) defined by

(λ, (E,ω, β)) �→ (E,ω, λ−1β),

where the Γ(n)arith-structure on E: λ−1β is given by

(λ−1β)(ζ,m) = β(ζλ−m,m).

This action yields a coaction

ψ : R∗(Γ(n)arith) −→ Z[16 ][t]/(tn − 1) ⊗R∗(Γ(n)arith)

of the Hopf algebra associated with the affine group scheme µn,Z[1/6] on the
coordinate ring R∗(Γ(n)arith) of M(Γ(n)arith) and let R∗(Γ1(n)arith) denote the
graded subring of R∗(Γ(n)arith) consisting of all primitive elements with respect
to this coaction. Let M(Γ1(n)arith) be a quotient of M(Γ(n)arith) by the ac-
tion of µn,Z[1/6] above; explicitly given by M(Γ1(n)arith) = SpecR∗(Γ1(n)arith).
Then we can prove that this M(Γ1(n)arith) actually represents the functor
M(Γ1(n)arith)Z[1/6] by the facts that: (1) The restriction of a universal
Γ(n)arith-structure βuniv:

βuniv|µn,R∗(Γ(n)arith) : µn,R∗(Γ(n)arith)

↪→ (µn × Z/n)R∗(Γ(n)arith)

∼=−→ Euniv[n] ⊗R∗(Γ(n)arith)

descends to a Γ1(n)arith-structure on Euniv ⊗R∗(Γ1(n)arith):

ιuniv : µn,R∗(Γ1(n)arith) ↪→ Euniv[n] ⊗R∗(Γ1(n)arith).

(2) Every Γ1(n)arith-structure on any elliptic curve E over a scheme S extends
to a Γ(n)arith-structure after some finite etale surjective base change S′ → S by
self-duality of E[n] (see [11, 2.8 and 8.10] and [6, Sections 2.6.3 and 2.6.4]). (3)
The set of such Γ(n)arith-structures is principal homogeneous under the action
of µn(S′) above. We omit the details.

For any Z[1/6]-algebra R, the graded ring R∗(Γ1(n)arith)R =
R∗(Γ1(n)arith)⊗R is, by definition, the graded ring of Γ1(n)arith-modular forms
over R. For any Γ1(n)arith-test object (E,ω, ι) over any R-algebra B we have
a unique R-algebra homomorphism

R∗(Γ1(n)arith)R −→ B

classifying (E,ω, ι) and we denote the image of an element f of R∗(Γ1(n)arith)R
under this homomorphism, the value of f on (E,ω, ι), by f(E,ω, ι).

Remark A.2. Over any Z[1/n]-scheme, Γ1(n)arith-structure on an el-
liptic curve is the same as Drinfeld style Γ1(n)-structure but slightly different
in general. For example, over Fp, all supersingular elliptic curves are automat-
ically excluded in Γ1(p)arith-moduli problem (cf. [6, Section 2.9]).
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