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Abstract

Abhyankar-Moh and Suzuki proved that if an irreducible polyno-
mial f ∈ C[x1, x2] in two complex variables x1 and x2 defines the affine
plane curve C = (f = 0) ⊂ A2, which is isomorphic to the affine line:
C ∼= A1, then f is a variable of C[x1, x2], i.e., there exists a polynomial
g ∈ C[x1, x2] such that C[f, g] = C[x1, x2] (cf. [A-M75], [Su74]). In
this article, we prove under some additional assumptions that the sim-
ilar result holds in the three-dimensional case, namely, if an irreducible
polynomial f ∈ C[x1, x2, x3] in three complex variables x1, x2 and x3

defines the hypersurface S = (f = 0) ⊂ A3, which is isomorphic to the
affine plane: S ∼= A2, then f is a variable of C[x1, x2, x3], i.e., there
are polynomials g, h ∈ C[x1, x2, x3] such that C[f, g, h] = C[x1, x2, x3].
Moreover, we shall determine the detailed form of such a polynomial
f ∈ C[x1, x2, x3] for the special case.

1. Introduction

Throughout the present article we work over the field of complex num-
bers C. Let f ∈ C[x1, . . . , xn] be an irreducible polynomial in n complex
variables x1, . . . , xn. Suppose that the hypersurface S := (f = 0) ⊂ An :=
Spec(C[x1, . . . , xn]) defined by f is isomorphic to the affine (n − 1)-space:
S ∼= An−1. Then Abhyankar-Sathaye Embedding Problem in dimension n
(abbreviated (A-S;n)) asks whether or not the polynomial f is a variable of
C[x1, . . . , xn], i.e., there exist the polynomials f1 := f, f2, . . . , fn ∈ C[x1, . . . ,
xn] such that C[f1, . . . , fn] = C[x1, . . . , xn]. Another relevant important prob-
lems are to determine the form of such a polynomial f ∈ C[x1, . . . , xn] defining
a hypersurface which is isomorphic to An−1 (we call this problem (Poly;n)) and
to settle the structure of the group AutC(C[x1, . . . , xn]) of polynomial auto-
morphisms of the polynomial ring C[x1, . . . , xn] (we call this problem (Aut;n)).
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642 Takashi Kishimoto

Note that if (A-S;n) is true, then (Poly;n) and (Aut;n) are essentially the same
problem.

In the case n = 1 the problems (A-S;1), (Aut;1) and (Poly;1) are easy. In
the case n = 2, Abhyankar-Moh and Suzuki showed independently that (A-S;2)
holds true (cf. [A-M75], [Su74]). Furthermore, Jung and Van der Kulk settled
the problem (Aut;2) (cf. [Ju42], [Ku53]). Hence we can solved (Poly;2) by com-
bining (A-S;2) with (Aut;2). Meanwhile, in the case where n ≥ 3 the problems
(A-S;n), (Poly;n) and (Aut;n) are still open. We consider the problems (A-S;3)
and (Poly;3) mainly in this article.

Suppose that an irreducible polynomial f ∈ C[x1, x2, x3] in the polynomial
ring in three complex variables x1, x2 and x3 defines the hypersurface S := (f =
0) ⊂ A3 := Spec(C[x1, x2, x3]) which is isomorphic to the affine plane: S ∼= A2.
In these notations and the setting, we shall summarize the partial affirmative
results concerning (A-S;3):

When the above polynomial f is of the form f = gx3 − h, where g, h ∈
C[x1, x2], then (A-S;3) holds true (cf. Sathaye [Sa76], Russell [Ru76], Miyanishi
[Miy78a]). More generally, Wright proved that (A-S;3) holds true for the case
where f is of the form f = gxm

3 − h, where g, h ∈ C[x1, x2] and m is a positive
integer (cf. [Wr78]). In the case where the polynomial f ∈ C[x1, x2, x3] is of
degree deg(f) = 3, Ohta (cf. [Oh99]) determined all the standard forms of such
a polynomial f (which consists of nine different types). On the other hand,
in the case where deg(f) = 4 and the closure in P3 of S ∼= A2 is normal and
has a triple point, Ohta (cf. [Oh01]) also determined all the standard forms of
such a polynomial f (which consists of fourteen types). In both cases, Ohta
constructed explicit automorphisms of C[x1, x2, x3] sending f to the standard
variable x1. Consequently he showed that (A-S;3) holds true for such cases.

With the notations f ∈ C[x1, x2, x3] and A2 ∼= S = (f = 0) ⊂ A3 =
Spec(C[x1, x2, x3]) as above, since the problem (A-S;3) is obvious in the case
where the degree deg(f) of f is one, we may and shall assume that d :=
deg(f) ≥ 2 in the subsequent argument. We embed the affine three space
A3 into the projective three space P3 canonically as the complement of the
hyperplane H0 := (x0 = 0), where (x0 : x1 : x2 : x3) is the homogeneous coor-
dinate of P3. We denote by X the closure in P3 of the hypersurface S ⊂ A3,
and denote by L := X ∩ H0 the (set-theoretic) intersection of X and H0. In
this article we consider the hypersurface X satisfying the following condition
(†):

(†) L is a line in P3 and the hypersurface X ⊂ P3 has the multiplicity
d− 1 along the line L; mult LX = d− 1, where d ≥ 2 is the degree of X.

For the simplicity we say that a polynomial f ∈ C[x1, x2, x3] satisfies (†)
if the closure X in P3 of the hypersurface (f = 0) ⊂ A3 satisfies the above
condition (†). Then our main result in the present article is the following:

Theorem 1.1. Let f ∈ C[x1, x2, x3] be an irreducible polynomial of
degree d := deg(f) ≥ 2 in three complex variables x1, x2 and x3. Suppose that
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the hypersurface S := (f = 0) ⊂ A3 := Spec(C[x1, x2, x3]) defined by f is
isomorphic to the affine plane: S ∼= A2, and that f satisfies (†). Then f is a
variable of C[x1, x2, x3].

Remark 1. Three dimensional Abhyankar-Sathaye Embedding Prob-
lem (A-S;3) may not be solved in the full generality. It is, however, important
to consider the criteria for the polynomial f ∈ C[x1, x2, x3] to be a variable. In
this point of view, Theorem 1.1 is significant.

Our argument for the proof of Theorem 1.1 is, roughly speaking, stated as
follows: With the notations and the assumptions as in Theorem 1.1, we consider
the irreducible linear pencil Λ(f) := {Xα|α ∈ C} ∪ {X∞ := dH0} on P3

spanned by X0 = X and X∞, where Xα is the closure in P3 of the hypersurface
Sα := (f = α) ⊂ A3 defined by f − α for α ∈ C and d = deg(f) ≥ 2. In
order to prove Theorem 1.1, we are devoted to showing that the affine surfaces
Sα are isomorphic to the affine plane A2 for all α ∈ C. To see this, we
blow up P3 along the line L = X ∩ H0, say σ : V → P3, and denote by
E := σ−1(L) ∼= P1 × P1 the exceptional divisor. For any irreducible Cartier
divisor Z ⊂ P3, we denote by Z ⊂ V the proper transform of Z on V . Then
the proper transform Λ(f) by σ of Λ(f) is the linear pencil on V spanned by X
and dH0 +E. It is then an important step to investigate the scheme-theoretic
intersection X · E of X and the exceptional divisor E. As seen in Section 3,
there are (d− 1) different types, say TYPE(d, λ) (0 ≤ λ ≤ d− 2), concerning
the configuration of the intersection X ·E (cf. Lemma 3.3). Nevertheless Λ(f)
still has the base locus, we can see that X is smooth and, moreover, that the
members Xα of Λ(f) are normal and smooth along Xα − Sα for all α ∈ C.
For any α ∈ C, the normal affine surface Sα has a compactification Sα ↪→ Xα

such that the boundary Xα − Sα has the same weighted dual graph as that of
the boundary X − S (cf. Lemma 3.5). Consequently, we can see that Sα are
isomorphic to the affine plane for all α ∈ C; Sα

∼= A2 (cf. Lemma 3.7). Thus
all the closed fibers of the polynomial map f : A3 = Spec(C[x1, x2, x3]) →
A1 := Spec(C[f ]) associated to the canonical inclusion C[f ] ↪→ C[x1, x2, x3]
are isomorphic to the affine plane and, furthermore, the generic fiber of it
is isomorphic to the affine plane defined over the function field C(f) of the
base curve A1, i.e., C[x1, x2, x3]⊗C[f ]C(f) ∼= C(f)[2]. As a consequence, it
follows that this polynomial map is a trivial A2-bundle structure over the base
curve A1 = Spec(C[f ]), hence there are two indeterminates u and v over C[f ]
such that C[f ] ⊗ C[u, v] = C[f, u, v] ∼= C[x1, x2, x3]. Thus f is a variable of
C[x1, x2, x3].

As remarked above there are (d−1) cases TYPE(d, λ) (0 ≤ λ ≤ d−2) with
respect to the scheme-theoretic intersection X ·E. Applying the arguments in
Section 3 to prove Theorem 1.1 and the general theory of the generically rational
polynomials (cf. Miyanishi-Sugie [Mi-Su80]), we can determine the concrete
form of such a polynomial f ∈ C[x1, x2, x3] of TYPE(d, λ) with d − 2λ ≥ 0
(cf. Theorem 4.1).

This article is organized as follows: In Section 2, we have some preliminary
results about the (minimal) normal compactifications of the affine plane A2.
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We shall give the characterization of the affine plane A2, which asserts that
the affine plane can be determined by the weighted dual graph of the boundary
divisor. This characterization is needed in Section 3 in order to consider the
intersection X ·E and deduce that the affine surfaces Sα are isomorphic to the
affine plane; Sα

∼= A2 for all α ∈ C. Furthermore, we recall the recent result
of Kaliman and Zaidenberg (cf. [Ka-Za01]) concerning the generic fiber of a
given A2-fibration. In Section 3, we shall prove Theorem 1.1. In Section 4, we
consider the problem (Poly;3) and solved it for TYPE(d, λ) with d − 2λ ≥ 0
(see Theorem 4.1).

Acknowledgements. The author would like to express his gratitude
to Professor Masayoshi Miyanishi for his valuable advice and encouragement
during the preparation of the present article. He also would like to express his
gratitude to Professors Joost Berson and Tomoaki Ohta for pointing out the
errors in the earlier version of the present article and giving him very useful
comments.

2. Preliminaries

In this section we shall study the compactifications and the characteriza-
tion of the affine plane A2. Furthermore, we recall the result of Kaliman and
Zaidenberg concerning the generic fiber of an A2-fibration. These results are
used in Section 3 to prove Theorem 1.1.

Definition 2.1. A pair (Y,∆) of a smooth projective surface Y and a
(reduced) divisor ∆ :=

∑
i ∆i on Y is called a compactification of A2 if the

complement Y − ∆ is isomorphic to the affine plane A2. We say a pair (Y,∆)
to be a normal compactification of A2 if it is a compactification of A2 and ∆ is
a simple normal crossing divisor on Y . If, furthermore, the divisor ∆ =

∑
i ∆i

satisfies the following condition (∗), then a pair (Y,∆) is called a minimal
normal compactification of A2:

(∗) if a component ∆i of ∆ is a (−1)-curve on Y , then ∆i∩∆ − ∆i consists
of at least three points.

The classification of the weighted dual graphs of the boundaries of the
minimal normal compactifications of the affine planes A2 is summarized as
follows:

Lemma 2.1 ([Mo73], [Ki02]). Let (Y,∆) be a minimal normal com-
pactification of the affine plane A2. Then the weighted dual graph of ∆ is a
linear tree of smooth rational curves which is one of the following types (i)–(iii):

(i) �1

(ii) � �0 m
(m �=−1)

(iii) ∆(1) � � � ∆(2) (m>0),
−(m+1) 0 m
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where ∆(i) (i = 1, 2) is either an empty or a linear tree of smooth rational
curves each of which has self-intersection number less than or equal to −2.

Remark 2. In fact, Morrow [Mo73] (see also [Ki02]), furthermore, gives
the complete list of the minimal normal compactifications of the affine plane
A2. But, for our purpose to prove Theorem 1.1, we have only to obtain Lemma
2.1.

The following lemma means that the affine plane A2 can be characterized
by the weighted dual graph of the boundary divisor.

Lemma 2.2. Let T be a normal affine surface. Suppose that T is em-
bedded into a normal projective surface Y in such a way that Y is smooth along
the boundary ∆ := Y − T , each irreducible component of ∆ is isomorphic to
the smooth rational curve and the weighted dual graph of ∆ coincides with that
of a boundary divisor with respect to a suitable normal compactification of the
affine plane A2. Then T is isomorphic to A2.

Proof. Our proof consists of five steps:

Step 1. By our assumption we can construct a birational map φ : Y · · · →
Y ′ which is composed of the blowing-ups of the points on the boundary ∆
(including infinitely near points) and the contractions of the (−1)-curves each
of which is either a proper transform of a component in ∆ or a proper transform
of a component produced in the previous blowing-up process in such a way that
the new boundary divisor ∆′ := Y ′ − T is a smooth rational curve with self-
intersection number 1. (Since φ has no affection on T , we may and shall assume
that Y ′ contains T as a Zariski open subset.) Let Sing(Y ′) = {p1, . . . , ps} be
the singular points on Y ′ (if there exist at all). Note that these points are
located on T by the assumption. We denote by µ : Y → Y ′ the minimal
resolution of Y ′ and denote by Ej := µ−1(pj) the exceptional set over the
point pj for 1 ≤ j ≤ s.

Step 2. Let ∆ denote the proper transform of the curve ∆′ on Y . Since
the minimal resolution µ has no affection on ∆′, we have (∆

2
) = (∆′2) = 1.

Then we claim the following:

Claim. Y is a rational surface.

Indeed, since (∆
2
) > 0 and (KY · ∆) < 0, Y is either a rational surface or

an irrational ruled surface. Suppose that Y is an irrational ruled surface. Then
there exists a P1-fibration g : Y → B, where B is a smooth projective curve of
genus > 0. Since (∆

2
) > 0, ∆ is not contained in any fiber of g, hence it is a

quasi-section of g. Since ∆ ∼= P1 and ∆ is a quasi-section of g, it follows that
B ∼= P1 by Lüroth theorem, which is a contradiction. Hence Y is a rational
surface as desired.



�

�

�

�

�

�

�

�

646 Takashi Kishimoto

We take an arbitrary point on ∆, say p, and denote by π : Ŷ → Y the
blowing-up at p, and denote by ∆̂ (resp. Ê := π−1(p)) the proper transform of
∆ on Ŷ (resp. the exceptional curve of π). Since ∆̂ ∼= P1 and (∆̂2) = 0, we
have the following exact sequence:

0 → ObY → ObY (∆̂) → OP1 → 0.

From the induced cohomology exact sequence and the fact that H1(Ŷ ,ObY ) = 0
(see Claim), we have h0(∆̂,ObY (∆̂)) = 2. The linear pencil |∆̂| on Ŷ is base
point free and defines the P1-fibration ĥ := Φ|b∆| : Ŷ → P1.

Step 3. Let ρ : Ỹ → Y ′ denote the blowing-up at the point µ(p) ∈ ∆′

with the exceptional curve Ẽ and let ∆̃ denote the proper transform of ∆′ on
Ỹ . Then we have the following commutative diagram:

Ŷ
ν−→ Ỹ

π

� �ρ

Y
µ−→ Y ′

where ν is the contraction of Êj := π−1(Ej) to the point pj for 1 ≤ j ≤ s.
(Note that since ρ induces an isomorphism between ρ−1(T ) and T , we may and
shall identify the point ρ−1(pj) with pj for 1 ≤ j ≤ s.) Since Êj ∩ ∆̂ = ∅, Êj

is contained in a fiber of ĥ for 1 ≤ j ≤ s. Hence ĥ induces the P1-fibration
h̃ : Ỹ → P1 satisfying ĥ = h̃ ◦ ν. The restriction of h̃ to the complement
Ỹ − (∆̃ ∪ Ẽ) ∼= T gives rise to a fibration h : T → B, where B := P1 − h̃(∆̃) ∼=
A1. The general fibers of h are isomorphic to the affine line A1 because, for
any fiber l ∈ |∆̃| of h̃, we have (l · Ẽ) = (∆̃ · Ẽ) = (∆̂ · Ê) = 1, i.e., Ẽ is
a cross-section of h̃. Note that since T ∼= Ỹ − (∆̃ ∪ Ẽ) is affine and Ẽ is a
cross-section of h̃, all the fibers of h̃ are irreducible and reduced.

Step 4. We shall show that T is, in fact, smooth. Assume to the contrary
that T is not smooth, i.e., Sing(T ) = {p1, . . . , ps} 
= ∅. Let l̃1 denote the fiber
of h̃ passing through the sigular point p1. As remarked above, l̃1 is irreducible
and reduced. Let p1, . . . , pt exhaust all the singular points of T contained in
l̃1. Then the fiber ν∗(l̃1) of ĥ consists of the proper transform l̂1 of l̃1 on Ŷ and
the components of the exceptional sets Ê1, . . . , Êt. Note that each component
of Êj is not a (−1)-curve because ν is the minimal resolution of Ỹ . Hence l̂1 is
the unique (−1)-curve contained in ν∗(l̃1). Note that the multiplicity of l̂1 in
the fiber ν∗(l̃1) is one, so there exists a (−1)-curve in ν∗(l̃1) other than l̂1 (cf.
[Miy01, Chapter 3, Lemma 1.4.1]). This is a contradiction. Thus T is smooth.

Step 5. We consider the A1-fibration h : T → B on the smooth affine
surface T , all the fibers of which are isomorphic to the affine line A1. Thus
h is an A1-bundle structure over the base curve B ∼= A1 (cf. [Kam-Miy78]).
Since Pic(B) = 0, h is, in fact, a trivial A1-bundle structure over B ∼= A1, i.e.,
T ∼= B × A1 ∼= A1 × A1 ∼= A2. This completes the proof of Lemma 2.2.
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It is well-known that the generic fiber of a given A1-fibration between the
smooth quasi-projective varieties is isomorphic to the affine line defined over
the function field of the base variety (cf. [Kam-Miy78]). The following result
due to Kaliman and Zaidenberg is the two-dimensional analogy, and we shall
use it to prove Theorem 1.1 at the final step.

Theorem 2.1 ([Ka-Za01, Theorem 0.1]). Let f : Z → B be the mor-
phism between smooth, quasi-projective varieties. Suppose that the general fibers
of f are isomorphic to the complex affine plane A2. Then the generic fiber of f
is isomorphic to the affine plane A2

C(B) defined over the function field C(B) of
the base variety B. Equivalently, there exists a nonempty Zariski open subset
U ⊆ B such that the restriction f |f−1(U) : f−1(U) → U is a trivial A2-bundle
structure.

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Let f ∈ C[x1, x2, x3] be an irre-
ducible polynomial of degree d := deg(f) ≥ 2 in three complex variables x1, x2

and x3 such that the hypersurface S := (f = 0) ⊂ A3 := Spec(C[x1, x2, x3])
defined by f is isomorphic to the affine plane S ∼= A2. We embed the affine
three space A3 into the projective three space P3 as the complement of the
hyperplane H0 := (x0 = 0) ⊂ P3 : (x0 : x1 : x2 : x3). We denote by X ⊂ P3

the closure of S in P3 and denote by L := X ∩H0 the set-theoretic intersection
of X and H0. Suppose that X satisfies (†) (see Section 1), namely, L is a line
in P3 and X has the multiplicity d− 1 along L; multLX = d− 1. In order to
show that f is a variable of C[x1, x2, x3], we have to see that the affine surfaces
Sα := (f − α = 0) ⊂ A3 defined by f − α are isomorphic to the affine plane;
Sα

∼= A2 for all α ∈ C. The almost all parts of this section are devoted to
proving Sα

∼= A2 for all α ∈ C.
Let Λ(f) be the irreducible linear pencil on P3 spanned by X and dH0. It

is clear that Λ(f) consists of Xα (α ∈ C) and the non-reduced member dH0,
and it has the base locus along the line L, i.e., Bs Λ(f) = L, where Xα is the
closure in P3 of the affine surface Sα (α ∈ C). We denote by σ : V → P3 the
blowing-up of P3 along the line L and denote by E := σ−1(L) ∼= P1 × P1 the
exceptional divisor of σ. Then we have:

Lemma 3.1. With the notations as above, we have E|E ∼ −M0 + f0,
where M0 (resp. f0) is the class of the fiber on E ∼= P1×P1 such that σ(M0) = L
(resp. σ(f0) is a point).

Proof. We can write KV = σ∗(KP3)+E ∼ −4σ∗(H0)+E = −4H0−3E,
where H0 is the proper transform of H0 on V . On the other hand, by the
adjunction formula, we have KE = (KV + E)|E ∼ (−4H0 − 2E)|E. Since
KE ∼ −2M0 − 2f0 and H0|E is linear equivalent to M0 on E, we have E|E ∼
−M0 + f0.

We denote by Λ(f) the proper transform by σ of Λ(f) and denote by Z
the proper transform on V of a Cartier divisor Z on P3. It is then clear that
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Λ(f) is spanned by X and dH0 + E. Indeed, since multLX = d − 1 by the
assumption, we have σ∗(X) = X + (d − 1)E ∼ dσ∗(H0) = d(H0 + E), hence
X ∼ dH0 + E. We calculate the intersection of X and E:

Lemma 3.2. With the notations as above, we have X|E ∼ (d−1)M0 +
f0.

Proof. Since X ∼ dH0 +E, H0|E ∼M0 and E|E ∼ −M0 +f0 (cf. Lemma
3.1), we have X|E ∼ dH0|E +E|E ∼ dM0 + (−M0 + f0) = (d− 1)M0 + f0.

We put L := H0 ∩ E, which is a line on H0
∼= P2 and is linear equivalent

to M0 on E ∼= P1 × P1. Now we have to observe not only the relation X|E ∼
(d − 1)M0 + f0 (cf. Lemma 3.2) but also the concrete configuration of the
(scheme-theoretic) intersection X|E . Namely, we have the following result,
which is an important step to prove Theorem 1.1:

Lemma 3.3. With the notations as above, the configuration of the
scheme-theoretic intersection X|E (∼ (d − 1)M0 + f0; see Lemma 3.2) coin-
cides with one of the following (d− 1)-types ; TYPE(d, λ) (0 ≤ λ ≤ d− 2):

TYPE(d, λ): X|E = Cλ + (d− λ− 1)L, where Cλ is an irreducible curve
such that Cλ ∼ λM0 + f0 on E ∼= P1 × P1 (0 ≤ λ ≤ d− 2).

Proof. Our proof consists of four steps.

Step 1. We can write the intersection X|E(∼ (d−1)M0+f0; see Lemma
3.2) of X and the exceptional divisor E as X|E = Cλ +

∑r
i=1miLi, where Cλ

is an irreducible curve such that Cλ ∼ λM0 + f0 (λ ≥ 0) on E, and each Li is
linear equivalent toM0 on E such that Li 
= Lj (i 
= j) and

∑r
i=1mi = d−λ−1.

In Steps 1 through 3 below, we shall prove that the situation r ≥ 2 can not
occur and, in fact, r = 1. Assume to the contrary that r ≥ 2 and denote
by H(i) ⊂ P3 the hyperplane passing through the line L such that its proper
transform H(i) on V meets the exceptional divisor E along Li for 1 ≤ i ≤ r.
Note that Li is a line on H(i) ∼= P2. We then have the following:

Claim 1. H(i) meets X along the curve Li scheme-theoretically, i.e.,
X ·H(i) = Li for 1 ≤ i ≤ r.

Note that X|H0
∼ (dH0 +E)|H0

∼ L, hence X meets H0 along the curve L
scheme-theoretically, i.e., X ·H0 = L. Since H(i) is linear equivalent to H0, it
follows that X ·H0 = L is homologous to X ·H(i). Thus we have X ·H(i) = Li

as desired.

As seen in the proof of Claim 1, X meets H0 along the curve L(= H0 ∩ E),
hence L is contained in the intersection X ∩ E. Thus we may assume that
L1 = L.

Step 2. Next we prove the following:
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Claim 2. X is smooth.
Indeed, since X − (X ∩ (H0 ∪ E)) = X − (Cλ ∪ L1 ∪ · · · ∪ Lr) ∼= S ∼= A2,

it follows that Sing(X) ⊆ Cλ ∪ L1 ∪ · · · ∪ Lr. We take an arbitrary point
p ∈ Cλ ∪ L1 ∪ · · · ∪ Lr. When p ∈ Li for some i, we take the line lp( 
= Li)
on H(i) ∼= P2 intersecting Li at p. Then we have the following inequality (cf.
[Oh99, Lemma 1]):

mult pX ≤ i(X|
H(i) · lp; p).

Note that X|
H(i) = Li by Claim 1, hence the right hand side of the above

inequality is 1 by the choice of the curve lp. Thus we have mult pX = 1, i.e., p
is a smooth point of X. On the other hand, when p ∈ Cλ and p /∈ Li for all i,
we take the curve lp on E intersecting Cλ at p transversally. (Note that since
Cλ

∼= P1 by the genus formula, in particular Cλ is smooth, we can take such a
curve lp.) Then, as above, we have the following inequality (cf. [Oh99, Lemma
1]):

mult pX ≤ i(X|E · lp; p).
Note that X|E = Cλ +

∑r
i=1miLi, the curve lp meets Cλ at p transversally

and that lp does not meet Li at p for all i. Hence the right hand side of the
above inequality is i(Cλ · lp; p), which is 1 by the choice of the curve lp. Thus
mult pX = 1, i.e., X is smooth at p. As a consequence, X is smooth.

Step 3. Now we need the numerical data of the intersection numbers on
the smooth projective surface X. Namely, we shall prove the following:

Claim 3. X is rational, (Li · Lj)X = 0 and (Cλ · Li)X = 1 for 1 ≤ i, j ≤ r.
The first assertion is clear. Note that H(i) · X = Li (cf. Claim 1) and

H(i) ·H(j) = 0 for any 1 ≤ i, j ≤ r in H4(V ;Z). Hence we have (Li · Lj)X =
H(i) ·H(j) ·X = 0, which proves the second assertion. For the last assertion,
we note that Cλ = E|X −∑r

i=1miLi = E|X −∑r
i=1miH(i)|X . Hence we have

(Cλ · Li)X = (E−∑r
j=1mjH(j) ·H(i) ·X) = (E ·H(i) ·X). On the other hand,

since X ∼ dH(i)+E, the above equality is (E ·H(i) ·dH(i)+E) = (E ·H(i) ·E) =
(Li

2
)
H(i) = 1 as desired.

By Claims 2 and 3 above, it follows that S ↪→ X is a normal compactifica-
tion of the affine plane S ∼= A2 (see Definition 2.1) with the boundary divisor
X−S = Cλ ∪ L1∪· · ·∪Lr. We can obtain the minimal normal compactification
of the affine plane S ∼= A2 (see Definition 2.1) by the successive contractions
of the (−1)-curves in Cλ ∪ L1 ∪ · · · ∪ Lr. By Claim 3, only the component Cλ

can be a (−1)-curve in the boundary components Cλ ∪ L1 ∪ · · · ∪ Lr, and if
Cλ is a (−1)-curve then we denote by τ : X → X ′ the contraction of Cλ and
denote by L′

i the image on X ′ of Li. Note that (L′
i
2) = 1. Thus either S ↪→ X

or S ↪→ X ′ is the minimal normal compactification of the affine plane S ∼= A2.
But in any case, if r ≥ 2, this is a contradiction to Lemma 2.1. Hence we have
r ≤ 1.
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Step 4. As remarked in Step 1, since the intersection X∩E contains the
curve L = L1, we have r = 1 and, so, we can write X|E = Cλ + (d− λ− 1)L,
where Cλ is an irreducible curve such that it is linear equivalent to λM0 + f0
on E ∼= P1 × P1 for some 0 ≤ λ ≤ d− 2. This completes the proof of Lemma
3.3.

Furthermore, we have the following:

Lemma 3.4. With the notations as above, X is isomorphic to a Hirze-
bruch surface of a suitable degree. The curve Cλ (resp. L) is a cross-section
(resp. a fiber) on X.

Proof. By the same arguments as in Claims 2 and 3 of Lemma 3.3, it
follows that X is smooth and that Cλ

∼= L ∼= P1, (L
2
)X = 0 and (Cλ · L)X =

1. Hence S ↪→ X is a normal compactification of the affine plane S ∼= A2

(see Definition 2.1) such that the boundary X − S = Cλ ∪ L consists of two
smooth rational curves Cλ and L. We consider the linear system |L| on X,
which is, in fact, a base point free linear pencil on X (see the argument of
Lemma 2.2, Step 2). It is then easy to see that this pencil defines a P1-bundle
structure Φ|L| : X → P1 and that Cλ is a cross-section of Φ|L| by noting that
(Cλ · L)X = 1 and X − (Cλ ∪ L) ∼= S ∼= A2 is affine. Hence X is a Hirzebruch
surface of a suitable degree and Cλ (resp. L) is a cross-section (resp. a fiber)
on X.

Now we shall observe the general members of the linear pencil Λ(f) on
V ; see the argument before Lemma 3.2. It is clear that Λ(f) is composed of
the proper transforms Xα on V of Xα (α ∈ C) and the reducible member
dH0 + E. Since X ∩H0 = L and X ∩ E = Cλ ∪ L (cf. Lemma 3.3), we have
BsΛ(f) = Cλ∪L. We have the following result concerning the general members
Xα of Λ(f):

Lemma 3.5. With the notations as above, we have:
(1) Xα|H0

= L and Xα|E = Cλ + (d− λ− 1)L for all α ∈ C,
(2) Xα − Sα = Cλ ∪ L and Xα is smooth along the curve Cλ ∪ L for all

α ∈ C,
(3) (Cλ

2
)Xα

= −d+ 2λ, (L
2
)Xα

= 0 and (Cλ · L)Xα
= 1 for all α ∈ C.

Proof. (1) Since Xα is linear equivalent to X, it follows that Xα|H0
is

numerically equivalent to X|H0
= L on H0

∼= P2. Note that Xα meets H0

along L because of Bs Λ(f) = Cλ ∪ L. Hence we have Xα|H0
= L. Similarly,

Xα|E is numerically equivalent to X|E = Cλ + (d − λ − 1)L (cf. Lemma 3.3)
on E ∼= P1 × P1. Note that the (set-theoretic) intersection Xα ∩ E is Cλ ∪ L
because of Bs Λ(f) = Cλ ∪ L. Hence we have Xα|E = Cλ + (d− λ− 1)L.

(2) Note that the affine three space A3 = Spec(C[x1, x2, x3]) is contained in
V as the complement ofH0 ∪E. Since Xα|H0

= L andXα|E = Cλ+(d−λ−1)L



�

�

�

�

�

�

�

�

Abhyankar-Sathaye embedding problem in dimension three 651

by (1), we have Xα − Sα = Xα ∩ (H0 ∪ E) = Cλ ∪ L. Moreover, by the same
argument as in Claim 2 of Lemma 3.3, Xα is smooth along the curve Cλ ∪ L.

(3) Note that since Xα is smooth along the curve Cλ ∪ L, it makes sense
to take the intersections of curves Cλ and L on Xα. Since Xα · H0 = L and
Xα · E = Cλ + (d− λ− 1)L (see the assertion (1)), we have:

(Cλ)
2

Xα
= (E|Xα

− (d− λ− 1)H0|Xα
)
2

Xα
= (E − (d− λ− 1)H0)

2 ·Xα.

On the other hand, we note that Xα ∼ dH0 + E and H0
2

= 0 in H4(V ;Z).
Hence the right hand side of the above equality is

(−d+ 2λ+ 2)H0 · E2
+ E

3
= (−d+ 2λ+ 2)(L)

2

H0
+ (−M0 + f0)

2
E = −d+ 2λ,

as desired (cf. Lemma 3.1). Similarly, we have:

(L)
2

Xα
= (H0|Xα

)
2

Xα
= H0

2 ·Xα = 0,

and

(Cλ · L)Xα
= (E|Xα

− (d− λ− 1)H0|Xα
·H0|Xα

)Xα

= (E − (d− λ− 1)H0 ·H0 ·Xα)

= (E − (d− λ− 1)H0 ·H0 · dH0 + E)

= (E ·H0 · E) = (L)
2

H0
= 1

as desired.

Although we have that Xα is smooth along the complement Xα − Sα =
Cλ ∪ L (cf. Lemma 3.5), we have, moreover, the following:

Lemma 3.6. With the notations as above, the affine surfaces Sα are
normal for all α ∈ C.

Proof. Suppose that Sα is non-normal for some α ∈ C, then Xα is a
non-normal projective surface. We denote by Γ := Sing(Xα) the singular locus
of Xα, which is a one-dimensional closed subscheme of Xα. Since Sα

∼= Xα −
(Cλ∪L) is affine, the curve Γ is not contained in Sα, i.e., Γ∩ (Cλ∪L) 
= ∅. But
since Xα is smooth along Cλ∪L (cf. Lemma 3.5 (2)), this is a contradiction.

By combining Lemmas 3.5 and 3.6 with Lemma 2.2, we have the following:

Lemma 3.7. With the notations as above, the affine surfaces Sα are
isomorphic to the affine plane; Sα

∼= A2 for all α ∈ C.

Proof. By Lemmas 3.5 and 3.6, for any α ∈ C, a normal affine surface Sα

has a compactification Sα ↪→ Xα such that Xα is smooth along the complement
Xα − Sα = Cλ ∪ L and that the weighted dual graph of Cλ ∪ L on Xα is the
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same as that of Cλ ∪ L on X. Hence, by Lemma 2.2, Sα is isomorphic to the
affine plane; Sα

∼= A2.

Now we have completed the preparation to prove Theorem 1.1. By Lemma
3.7, all the fibers Sα of the polynomial map f : A3 = Spec(C[x1, x2, x3]) →
A1 = Spec(C[f ]) associated to the canonical inclusion C[f ] ↪→ C[x1, x2, x3]
are isomorphic to the affine plane A2. Then Theorem 2.1 and the fact that
Pic(A1) = 0 implies that this polynomial map is a trivial A2-bundle structure
over the base curve A1 = Spec(C[f ]). Hence there are two indeterminants
over C[f ], say u, v ∈ C[x1, x2, x3], such that C[f ] ⊗ C[u, v] = C[f, u, v] ∼=
C[x1, x2, x3], i.e., f is a variable of C[x1, x2, x3]. This completes the proof of
Theorem 1.1.

Remark 3. Though we have seen that Sα are isomorphic to the affine
plane; Sα

∼= A2 for all α ∈ C in Lemma 3.7, we have only to show Sα
∼= A2 for

a general α ∈ C in order to prove f to be a variable of C[x1, x2, x3] (cf. [Ka02],
[Ka-Za01]).

4. The figures of the polynomials in C[x1, x2, x3] defining the hyper-
surfaces isomorphic to A2

Let f ∈ C[x1, x2, x3] be an irreducible polynomial of degree d := deg(f) ≥
2 defining the hypersurface S := (f = 0) ⊂ A3 := Spec(C[x1, x2, x3]), which
is isomorphic to the affine plane; S ∼= A2. We embed the affine three space
A3 into the projective three space P3 as the complement of the hyperplane
H0 := (x0 = 0) ⊂ P3, where (x0 : x1 : x2 : x3) is the homogeneous coordinate
of P3. Suppose that the closure X in P3 of the hypersurface S satisfies the
condition (†) (cf. Section 1), i.e., the set-theoretic intersection L := X ∩H0 is a
line in P3 andX has the multiplicity d−1 along the line L; mult LX = d−1. As
shown in Section 3, f is then a variable of C[x1, x2, x3] (cf. Theorem 1.1), but
we do not know the concrete figure of such a polynomial f . In this section, we
consider the problem (Poly;3), namely, we shall determine the concrete figure
of such a polynomial f satisfying (†) (cf. Theorem 4.1).

Let σ : V → P3 denote the blowing-up of P3 along the line L and let
E := σ−1(L) ∼= P1 × P1 denote the exceptional divisor of σ. We denote by
Hj ⊂ V the proper transforms by σ of the hyperplanes Hj := (xj = 0) ⊂ P3

for 0 ≤ j ≤ 3. We may and shall assume that the line L, which is the center
of σ : V → P3, is the intersection L = H0 ∩H1 of the hyperplanes H0 and H1.
We consider the proper transform X ⊂ V by σ of the hypersurface X ⊂ P3.
With the notations as in Section 3, X is isomorphic to a Hirzebruch surface of
a suitable degree, say X ∼= FN (N ∈ Z≥0), and the boundary X−S consists of
two smooth rational curves Cλ and L such that Cλ (resp. L) is a cross-section
(resp. a fiber) on X (cf. Lemma 3.4). Then the following lemma is easy to see,
so we shall omit its proof:

Lemma 4.1. With the notations as above, there exists a birational map
τ : X ∼= FN · · · → P2, which induces an isomorphism τ : X−(Cλ ∪L)→̃P2−L∗
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when restricted to X− (Cλ ∪L) ∼= S, where L
∗

is a line on P2. More precisely,
τ is written as a composite τ = τ1 ◦ · · · ◦ τN , where τj : Fj · · · → Fj−1 for
j ≥ 2 and τ0 : F0 · · · → F1 are elementary transformations, and τ1 : F1 → P2

is the contraction of the minimal section on F1, such that each τj is performed
outside S.

By Lemma 4.1, we have the following diagram (cf. Figure 1):

P3 ⊃ X

V

↓

⊃ X

↓
σ σ|X

→τ
P2

↙

��

····
····
φ

Figure 1

where we put φ := (σ|X) ◦ τ−1. Let |OP3(1)| be the complete linear system on
P3 of degree 1, which is of dimension dim |OP3(1)| = 3 and the hyperplanes Hj

(0 ≤ j ≤ 3) are the basis as elements of the C-vector space H0(P3,OP3(1)). We
denote by L := TrX |OP3(1)| the trace of |OP3(1)| on X. It is then not difficult
to see that L is the complete linear system on X of dimension dimL = 3 and
that the hyperplane sections Dj := Hj |X (0 ≤ j ≤ 3) are the basis as elements
of the C-vector space M := H0(X,OX(1)). Let L := (σ|X)∗(L) be the pull-
back by σ|X of the linear system L, and let L

∗
be the proper transform of L

via the birational map τ : X · · · → P2. Then the following lemma holds:

Lemma 4.2. With the notations as above, we have:
(1) dimL = 3 and the Dj := (σ|X)∗(Dj) (0 ≤ j ≤ 3) are the basis as

elements of the associated C-vector space M := H0(X, (σ|X)∗OX(1)),
(2) dimL

∗
= 3 and the projective plane curves Dj

∗
:= τ∗(Dj) ⊂ P2 (0 ≤

j ≤ 3) are the basis as elements of the associated C-vector space, say M
∗
.

Proof. The proof is obvious.

Let Fj(z0, z1, z2) be the homogeneous polynomial defining the projective
plane curve Dj

∗ ⊂ P2 (0 ≤ j ≤ 3), where (z0 : z1 : z2) is the homogeneous
coordinate on P2. Then we have:

Lemma 4.3. With the notations as above, the birational map φ :
P2 · · · → X ⊂ P3 (cf. Figure 1) is defined as follows :

x0 = F0(z0, z1, z2),
x1 = F1(z0, z1, z2),
x2 = F2(z0, z1, z2),
x3 = F3(z0, z1, z2).
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Proof. The proof is obvious.

Remark 4. By Lemma 4.3, we have to determine Fj(z0, z1, z2) defining
the projective plane curves Dj

∗ ⊂ P2 for 0 ≤ j ≤ 3 in order to determine the
defining polynomial of the hypersurface X ⊂ P3, say F (x0, x1, x2, x3). Since
we want to obtain the concrete form of F (x0, x1, x2, x3) up to the projective
transformations of P3, we may and shall replace, if necessary, the hyperplane
Hj by a suitable hyperplane (cf. the arguments in the proofs of Lemmas 4.5
and 4.6). Note that F (1, x1, x2, x3) coincides with the irreducible polynomial
f ∈ C[x1, x2, x3] defining the hypersurface A2 ∼= S ⊂ A3 = Spec(C[x1, x2, x3]).

In the subsequent, we shall determine the detailed forms of Fj(z0, z1, z2)
(0 ≤ j ≤ 3), and consequently the detailed form of the polynomial f of
TYPE(d, λ) with d−2λ ≥ 0 (cf. Lemma 3.3). First of all we have the following:

Lemma 4.4. With the notations as above, suppose that d−2λ ≥ 0 (see
Lemma 3.3 for the notations). Then we have:

(1) D0 = Cλ + (d− λ)L and D1 = Cλ + (d− λ− 1)L+L′, where L′ is the
fiber distinct from L on a Hirzebruch surface X (cf. Lemma 3.4),

(2) The degree N of a Hirzebruch surface X is d − 2λ, i.e., X ∼= Fd−2λ

and Cλ is the minimal section on X,
(3) Dj ∼ Md−2λ + (d − λ)fd−2λ (0 ≤ j ≤ 3), where Cλ = Md−2λ (resp.

fd−2λ) is the minimal section (resp. a fiber) on X ∼= Fd−2λ.

Proof. (1) Note that X ·H0 = L and X ·E = Cλ +(d−λ−1)L by Lemma
3.3. Hence we have D0 = σ∗(H0)|X = (H0 + E)|X = Cλ + (d − λ)L. Since
H1( 
= H0) is the hyperplane passing through the line L, its proper transform
H1 on V is linear equivalent to H0. Hence H0|X = L, which is a fiber on
a Hirzebruch surface X (cf. Lemma 3.4), is numerically equivalent to H1|X .
Thus H1|X is a fiber, say L′, on X. Since H0 ∩H1 = ∅, L is distinct from L′.
Therefore we have D1 = σ∗(H1)|X = (H1 + E)|X = Cλ + (d− λ− 1)L+ L′.

(2) By Lemmas 3.4 and 3.5, Cλ is a cross-section on a Hirzebruch surface
X with (Cλ

2
)X = −d + 2λ. Since d − 2λ ≥ 0 by the assumption, Cλ is the

minimal section on X and the degree of X is d− 2λ, i.e., X ∼= Fd−2λ.
(3) Since Dj ∼ D0 = Cλ +(d−λ)L and Cλ (resp. L) is the minimal section

(resp. a fiber) on X ∼= Fd−2λ, we have the assertion.

We next consider the concrete configurations of D2 and D3.

Lemma 4.5. With the notations and the assumptions as above, we may
write:

D2 = Cµ +
d−λ−µ∑

i=1

Li,

where Cµ is an irreducible curve such that Cµ ∼ Md−2λ + µfd−2λ on X ∼=
Fd−2λ with d − 2λ ≤ µ ≤ d − λ, and the Li are mutually distinct fibers on
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X. Furthermore, we may assume that Li 
= L,L′ and Li ∩ Cµ ∩ Cλ = ∅
for all i and that Cµ intersects the minimal section Cλ on X at the distinct
n := µ− (d− 2λ) points.

Proof. Since D2 = σ∗(H2)|X = H2|X ∼ Md−2λ + (d − λ)fd−2λ on X ∼=
Fd−2λ (cf. Lemma 4.4), one irreducible component of D2 is a cross-section,
whereH2 is the proper transform on V of the hyperplaneH2. Note thatH2 does
not contain the curve Cλ. Hence the cross-section contained in D2 is distinct
from the minimal section Md−2λ = Cλ and we can write D2 = Cµ+

∑d−λ−µ
i=1 Li,

where Cµ is a cross-section on X such that Cµ ∼Md−2λ+µfd−2λ with d−2λ ≤
µ ≤ d − λ and the Li are fibers on X. We put n := µ − (d − 2λ). In the
subsequent, we shall prove that we may assume that Cµ and Cλ meet each
other in the distinct n points and that Li 
= Lj (i 
= j), Li 
= L,L′ and,
furthermore, that Li ∩Cµ ∩Cλ = ∅. In order to do this, we consider the linear
pencil Λ := {H(s, t)|(s : t) ∈ P1} on P3, where H(s, t) := {sx2 + tx3 = 0}
for (s : t) ∈ P1. (Note that H(1, 0) = H2 and H(0, 1) = H3.) The proper
transform Λ by σ : V → P3 of Λ is composed of the proper transforms H(s, t)
on V of the hyperplanes H(s, t). The member H(s, t) meets the exceptional
divisor E ∼= P1 ×P1 of σ along the curve, say l(s, t), which is linear equivalent
to f0 on E (cf. Lemma 3.1), and l(s, t) ∩ l(s′, t′) = ∅ if (s, t) 
= (s′, t′). Since
Cλ is linear equivalent to λM0 + f0 on E (cf. Lemma 3.3), l(s, t) meets Cλ in
the distinct λ points, each of which is different from the points L ∩ Cλ and
L′ ∩ Cλ, for a general (s : t) ∈ P1. By replacing H2 = H(1, 0) by H(s, t)
for a general (s, t) ∈ P1, if necessary, we may assume that l(1, 0) = H2|E
meets Cλ at the distinct λ points, say Q1, . . . , Qλ, and that these points are
different from the points L∩Cλ and L′∩Cλ. Since D2(= H2|X) passes through
all the points Q1, . . . , Qλ, we can deduce that Cµ meets Cλ in the distinct n
points and that Li 
= L,L′ are mutually distinct, moreover, Li ∩ Cµ ∩ Cλ = ∅
(1 ≤ i ≤ d− λ− µ). This completes the proof.

Similarly, we have the following:

Lemma 4.6. With the notations and the assumptions as above, we may
write:

D3 = Cν +
d−λ−ν∑

j=1

L′
j ,

where Cν is an irreducible curve such that Cν ∼Md−2λ+νfd−2λ on X ∼= Fd−2λ

with d−2λ ≤ ν ≤ d−λ, and the L′
j are mutually distinct fibers on X. We may

assume that L′
j 
= L,L′ and L′

j ∩ Cν ∩ Cλ = ∅ for all j and that Cν intersects
the minimal section Cλ at the distinct m := ν − (d− 2λ) points. Furthermore,
D2 ∩D3 ∩ Cλ = ∅.

Proof. By the same argument as in the proof of Lemma 4.5, D3 may
be written as D3 = Cν +

∑d−λ−ν
j=1 L′

j , where Cν is an irreducible curve such
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that Cν ∼ Md−2λ + νfd−2λ on X ∼= Fd−2λ for some d − 2λ ≤ µ ≤ d − λ
and it intersects the minimal section Cλ = Md−2λ on X at the distinct m :=
ν − (d − 2λ) points, and the L′

j( 
= L,L′) are mutually distinct fibers on X

with L′
j ∩ Cν ∩ Cλ = ∅. Hence the remaining we have to do is to show

D2 ∩ D3 ∩ Cλ = ∅. But this is easy to see because H2|E and H3|E are
mutually disjoint.

Thus, by Lemmas 4.4, 4.5 and 4.6, the linear system L on X ∼= Fd−2λ is
determined. Next, we consider the proper transform L

∗
of L via τ : X · · · → P2

(cf. Figure 1 and Lemma 4.2).

Lemma 4.7. With the notations and the assumptions as above, we have
the following :

(1) L
∗ ⊆ |OP2(d − λ)| (resp. L

∗ ⊆ |OP2(λ + 1)|) if d − 2λ > 0 (resp. if
d− 2λ = 0),

(2) D0
∗

= (d − λ)L
∗

(resp. D0
∗

= (λ + 1)L
∗
) if d − 2λ > 0 (resp. if

d− 2λ = 0),
(3) D1

∗
= (d−λ−1)L

∗
+L′∗ (resp. D1

∗
= λL

∗
+L′∗) if d−2λ > 0 (resp.

if d − 2λ = 0), where L′∗ is the proper transform of the fiber L′ (cf. Lemma
4.4) via τ : X · · · → P2, which is a line on P2 distinct from L

∗
.

Proof. We first consider the case where d − 2λ = 0. Then X ∼= F0 and
τ : X · · · → P2 is factored as τ = τ1 ◦ τ0, where τ0 : X ∼= F0 · · · → F1 is the
composite β0 ◦ α−1

0 of the blowing-up α0 : Y0 → X0 at the point p0 := Cλ ∩ L
and the contraction β0 : Y0 → F1 of the proper transform on Y0 of L, and
τ1 : F1 → P1 is the contraction of the minimal section which is the proper
transform on F1 of Cλ. We denote byD0

(1)
:= τ0∗(D0) (resp.D1

(1)
:= τ0∗(D1))

the proper transform on F1 of D0 (resp. D1). Then it is easy to see that
D0

(1)
= Cλ

(1)
+ (λ + 1)L

(1)
and D1

(1)
= Cλ

(1)
+ λL

(1)
+ L′(1), where Cλ

(1)

(resp. L′(1)) is the proper transform of Cλ (resp. L′) and L
(1)

is the image on
F1 of the exceptional curve of α0. By contracting the minimal section Cλ

(1)
on

F1, we obtain D0
∗

= (λ+ 1)L
∗

and D1
∗

= λL
∗

+ L′∗ as desired.
Next we consider the case where N = d − 2λ > 0. Then the birational

map τ : X ∼= FN · · · → P2 is factored as τ = τ1 ◦ · · · ◦ τN , where τj : Fj · · · →
Fj−1 is the elementary transformation performed outside S (cf. Lemma 4.1).
More precisely, each τj (2 ≤ j ≤ N) is described as follows. First elementary
transformation τN : X ∼= FN · · · → FN−1 is the composite τN = βN ◦ α−1

N ,
where αN : YN → X ∼= FN is the blowing-up at the point, say pN ∈ L −
(L ∩ Cλ), and βN : YN → FN−1 is the contraction of the proper transform on
YN of L. Then the proper transform D0

(N−1)
:= τN∗(D0) (resp. D1

(N−1)
:=

τN ∗(D1)) of D0 (resp. D1) is written as D0
(N−1)

= Cλ
(N−1)

+ (d − λ)L
(N−1)

(resp. D1
(N−1)

= Cλ
(N−1)

+ (d − λ − 1)L
(N−1)

+ L′(N−1)
), where Cλ

(N−1)

and L′(N−1)
are the proper transforms on FN−1 of Cλ and L′, respectively,

and L
(N−1)

:= βN (α−1
N (pN )). We constructed elementary transformation τj :
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Fj · · · → Fj−1, inductively, as the composite τj = βj ◦ α−1
j , where αj : Yj →

Fj is the blowing-up at the point, say pj ∈ L
(j) − (L

(j) ∩ Cλ
(j)

), and βj :

Yj → Fj−1 is the contraction of the proper transform on Yj of L
(j)

and we

denote by Cλ
(j−1)

the proper transform on Fj−1 of Cλ
(j)

and we put L
(j−1)

:=

βj(α−1
j (pj)) for 2 ≤ j ≤ N (we put here Cλ

(N)
:= Cλ and L

(N)
:= L). Then we

can easily see that the proper transform D0
(j)

(resp. D1
(j)

) on Fj of D0 (resp.

D1) is written as D0
(j)

= Cλ
(j)

+ (d− λ)L
(j)

(resp. D1
(j)

= Cλ
(j)

+ (d− λ −
1)L

(j)
+L′(j)), where L′(j) is the proper transform on Fj of L′ for 1 ≤ j ≤ N , in

particular, D0
(1)

= Cλ
(1)

+(d−λ)L
(1)

andD1
(1)

= Cλ
(1)

+(d−λ−1)L
(1)

+L′(1).
Finally τ1 : F1 → P2 is the contraction of the minimal section Cλ

(1)
on F1.

The images D0
∗

and D1
∗

of D0
(1)

and D1
(1)

via τ1 are D0
∗

= (d − λ)L
∗

and
D1

∗
= (d− λ− 1)L

∗
+ L′∗. This completes the proof.

Since we know the configurations of D2 and D3 on X ∼= Fd−2λ (cf. Lemmas
4.5 and 4.6), the configurations of the projective plane curves D2

∗
and D3

∗
can

be determined. Namely, we have the following:

Lemma 4.8. With the notations and the assumptions as above, the pro-
jective plane curves D2

∗
and D3

∗
are written as follows :

D2
∗

= Cµ
∗

+
d−λ−µ∑

i=1

Li
∗
, and,

D3
∗

= Cν
∗

+
d−λ−ν∑

j=1

L′
j

∗
,

where Cµ
∗

(resp. Cν
∗
, Li

∗
and L′

j

∗
) is the proper transform via τ : X ∼=

Fd−2λ · · · → P2 of Cµ (resp. Cν , Li and L′
j) (cf. Lemmas 4.5 and 4.6) and

Li
∗
, L′

j

∗
( 
= L

∗
, L′∗) are mutually distinct lines on P2 passing through the com-

mon point p := L
∗ ∩ L′∗.

Proof. We may assume that the centers pj of the blowing-ups αj : Yj →
Fj (see the proof of Lemma 4.7) are different from the intersection points

Cµ
(j) ∩L(j)

and Cν
(j) ∩L(j)

, where Cµ
(j)

and Cν
(j)

are the proper transforms
on Fj of Cµ and Cν , respectively. Then the present lemma is easy to prove.

Now we shall determine the homogeneous polynomials Fj(z0, z1, z2) defin-
ing the projective plane curves Dj

∗ ⊂ P2 (0 ≤ j ≤ 3). We may assume that
the lines L

∗
and L′∗ are defined by z0 = 0 and z1 = 0, respectively. Then we

have:

Lemma 4.9. With the notations and the assumptions as above, the
defining polynomials F0(z0, z1, z2) and F1(z0, z1, z2) of the projective plane
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curves D0
∗

and D1
∗

are written as F0(z0, z1, z2) = zd−λ
0 (resp. zλ+1

0 ) and
F1(z0, z1, z2) = zd−λ−1

0 z1 (resp. zλ
0 z1) if d− 2λ > 0 (resp. if d− 2λ = 0).

Proof. The proof is obvious by Lemma 4.7.

The remainings we have to determine are the defining polynomials F2(z0,
z1, z2) and F3(z0, z1, z2) of the projective plane curves D2

∗
and D3

∗
.

Lemma 4.10. With the notations as above, the defining polynomials
F2(z0, z1, z2) and F3(z0, z1, z2) of the plane curves D2

∗
and D3

∗
are writ-

ten as F2(z0, z1, z2) = G(z0, z1, z2)(
∏d−λ−µ

i=1 (aiz0 + z1)) and F3(z0, z1, z2) =
H(z0, z1, z2)(

∏d−λ−µ
j=1 (b′jz0 +z1)), where G(z0, z1, z2) (resp. H(z0, z1, z2)) is the

homogeneous polynomial defining the projective plane curve Cµ
∗

(resp. Cν
∗
)

and ai, b
′
j ∈ C∗ are mutually distinct non-zero constants.

Proof. By Lemma 4.8, Li
∗

and L′
j

∗
are mutually distinct lines passing

through the common point p := L
∗ ∩ L′∗, furthermore, they are different from

L
∗

and L′∗. Since the lines L
∗

and L′∗ are defined by z0 = 0 and z1 = 0,
respectively, we may assume that Li

∗
and L′

j

∗
are defined by aiz0 + z1 = 0

and b′jz0 + z1 = 0, respectively, where ai and b′j are mutually distinct non-zero
constants. It is then easy to obtain the assertion.

We shall determine the defining polynomials G(z0, z1, z2) and H(z0, z1, z2)
of the plane curves Cµ

∗
and Cν

∗
. We put g(z1, z2) := G(1, z1, z2) and h(z1, z2)

:= H(1, z1, z2). It is clear that the affine plane curve Cµ := Cµ
∗ − (Cµ

∗ ∩ L∗
)

(resp. Cν := Cν
∗ − (Cν

∗ ∩ L∗
)) on A2 := Spec(C[z1, z2]) = P2 − L

∗
is defined

by g (resp. h).
We shall recall the definition of the generically rational polynomials (cf.

Miyanishi-Sugie [Mi-Su80]).

Definition 4.1. Let p ∈ C[z1, z2] be an irreducible polynomial of de-
gree d := deg(p) > 0 in the polynomial ring in two complex variables z1
and z2, and let Λ0(p) := {Cα|α ∈ C} be the irreducible linear pencil on
A2 := Spec(C[z1, z2]) defined by p, where Cα := (p − α = 0) ⊂ A2 is an
affine plane curve defined by p − α for α ∈ C. We embed the affine plane A2

into the projective plane P2 as the complement of the line l∞. The linear pencil
Λ0(p) can be extended to the linear pencil Λ(p) := {Fα|α ∈ C}∪ {F∞ := dl∞}
on P2, where Fα is the closure in P2 of Cα for α ∈ C. The base points set
BsΛ(p) is located on l∞. Let ϕ : W → P2 be the shortest succession of blowing-
ups with centers at the points Bs Λ(p) (including infinitely near points) such
that the proper transform Λ := ϕ−1

∗ (Λ(p)) by ϕ is base point free. We say p to
be a generically rational polynomial if the general members of Λ are isomorphic
to the smooth rational curve P1. Since the process ϕ is performed outside A2,
W contains the open subset U which is isomorphic to A2. Every component in
W −U is either contained in some member of Λ or a quasi-section of Λ. We de-
note by k ∈ Z≥0 a non-negative integer such that the general affine plane curve
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Cα has (k + 1)-places at infinity, namely, F ′
α − Cα consists of (k + 1)-points,

where F ′
α is the member of Λ corresponding to the member Fα of Λ(p). Then

the boundary divisor W −U contains at most (k+ 1) quasi-sections of Λ. The
generically rational polynomial p is called of simple type with (k + 1)-places at
infinity if the boundary divisor W − U contains exactly (k + 1) quasi-sections
of Λ. It is clear that the generically rational polynomial p is of simple type if
and only if all the quasi-sections of Λ contained in W −U are cross-sections of
Λ.

Now we prove the following:

Lemma 4.11. With the notations and the assumptions as above, g
(resp. h) is a generically rational polynomial of simple type with (n + 1)-
places (resp. (m+ 1)-places) at infinity, where we put n := µ− (d− 2λ) (resp.
m := ν − (d− 2λ)); see Definition 4.1.

Proof. We shall deal with only the polynomial g, because the argument
to see that h is a generically rational polynomial of simple type is similar.
Let Λ0(g) be the linear pencil on A2 = Spec(C[z1, z2]) defined by g and let
Λ(g) be the extension of Λ0(g) to P2 (cf. Definition 4.1). We denote by Λ
the proper transform by τ : X · · · → P2 of Λ(g). Then we can easily see that
Λ is the linear pencil spanned by Cµ and Cλ + µL with the base points set
Bs Λ = {Q0, Q1, . . . , Qn}, where Q0 := Cµ ∩ L and {Q1, . . . , Qn} = Cµ ∩ Cλ.
Note that Cµ and Cλ meet each other at the distinct n points Q1, . . . , Qn, and
that i(Cµ·Cλ;Qi) = 1 for 1 ≤ i ≤ n (cf. Lemma 4.5). Let ϕ : X̃ → X denote the
shortest succession of the blowing-ups with centers at BsΛ (including infinitely
near points) such that the proper transform Λ̃ by ϕ of Λ is base point free. In
fact, the process of ϕ is described as follows: Let b(1)0 : X(1) → X(0) := X be the
blowing-up at the point Q0 and let E(1)

1 be the exceptional curve. We denote by
C

(1)
µ (resp. C(1)

λ and L(1)) the proper transform on X(1) of Cµ (resp. Cλ and L).
Then the proper transform Λ(1) on X(1) of Λ has BsΛ(1) = {Q(1)

0 , Q1, . . . , Qn},
where we put Q(1)

0 := C
(1)
µ ∩E(1)

1 . We define b(l)0 : X(l) → X(l−1) for 1 ≤ l ≤ µ,
inductively, as the blowing-up at the point Q(l−1)

0 with the exceptional curve
E

(l)
l . We denote by C

(l)
µ (resp. C(l)

λ , L(l) and E
(l)
k for 1 ≤ k < l) the proper

transform on X(l) of C(l−1)
µ (resp. C(l−1)

λ , L(l−1) and E(l−1)
k for 1 ≤ k ≤ l) and

put Q(l)
0 := C

(l)
µ ∩E(l)

l . We put b0 := b
(µ)
0 ◦ · · · ◦ b(1)0 : X(µ) → X(0). The proper

transform Λ(µ) by b0 of Λ has the base points set Bs Λ(µ) = {Q1, . . . , Qn},
namely, the base points over Q0 are eliminated. Let bj be the blowing-up at
the point Qj for 1 ≤ j ≤ n. Then the composite bn ◦ · · ·◦b1 ◦b0 gives rise to the
desired elimination ϕ of Bs Λ. The proper tranform Λ̃ on X̃ is the base point
free linear pencil spanned by C̃µ and F̃∞ := C̃λ + µL̃+

∑µ−1
l=1 (µ− l)Ẽl, where

C̃µ (resp. C̃λ, L̃ and Ẽl for 1 ≤ l ≤ µ) is the proper transform on X̃ of Cµ (resp.
Cλ, L and E

(µ)
l for 1 ≤ l ≤ µ). Since C̃µ is isomorphic to the smooth rational

curve P1, Λ̃ defines the P1-fibration ρ̃ : X̃ → P1. Hence, g is a generically
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rational polynomial (cf. Definition 4.1). Let H̃j be the proper transform on
X̃ of the exceptional curve of bj for 1 ≤ j ≤ n. Then H̃1, . . . , H̃n and the
last exceptional curve Ẽµ over the point Q0 exhaust all the quasi-sections of Λ̃
contained in the boundary X̃− Ũ , where Ũ := ϕ−1(X− (Cλ∪L)) is the Zariski
open open subset of X̃ which is isomorphic to A2 = Spec(C[z1, z2]). Since all
Ẽµ, H̃1, . . . , H̃n are cross-sections of Λ̃, g is of simple type with (n+ 1)-places
at infinity (cf. Definition 4.1).

From now on, for the time being, we devote ourselves to determining the
concrete form of the generically rational polynomial g ∈ C[z1, z2]. As in the
proof of Lemma 4.11, we define the several notations as follows: Let Λ0(g) be
the linear pencil on A2 := Spec(C[z1, z2]) defined by g and let Λ(g) be the
extension of Λ0(g) to P2 (cf. Definition 4.1). The proper transform Λ of Λ(g)
via τ : X · · · → P2 is the linear pencil spanned by Cµ and F∞ := Cλ + µL
with the base points set Bs Λ = {Q0, Q1, . . . , Qn}, where Q0 := Cµ ∩ L and
{Q1, . . . , Qn} = Cµ ∩ Cλ, here we put n := µ − (d − 2λ). Let ϕ : X̃ → X be
the shortest succession of the blowing-ups with the centers at Bs Λ (including
infinitely near points) such that the proper transform Λ̃ by ϕ of Λ is base point
free. More precisely, the process of ϕ is factored as ϕ = bn ◦ · · · ◦ b1 ◦ b0,
where b0 = b

(µ)
0 ◦ · · · ◦ b(1)0 is the composite of the successive µ blowing-ups

over Q0, and bj is the blowing-up at Qj for 1 ≤ j ≤ n (cf. the proof of
Lemma 4.11). We denote by Ẽl (1 ≤ l ≤ µ), and by H̃j (1 ≤ j ≤ n) the
proper transforms on X̃ of the exceptional curve of b(l)0 , and the exceptional
curve of bj . The base point free linear pencil Λ̃ on X̃ is spanned by C̃µ and
F̃∞ := C̃λ + µL̃ +

∑µ−1
l=1 (µ− l)Ẽl and it defines the P1-fibration ρ̃ : X̃ → P1,

where C̃µ (resp. C̃λ and L̃) is the proper transform on X̃ of Cµ (resp. Cλ and
L). The open subset Ũ := ϕ−1(X − (Cλ ∪ L)) ⊂ X̃ is isomorphic to the affine
plane A2 = Spec(C[z1, z2]) and the complement X̃ − Ũ consists of C̃λ, L̃ , Ẽl

(1 ≤ l ≤ µ) and H̃j (1 ≤ j ≤ n). Among these boundary components, Ẽµ,
H̃1, . . . , H̃n are cross-sections of ρ̃ and the remaining boundary components
Ẽ1, . . . , Ẽµ−1 are contained in the reducible fiber F̃∞ of ρ̃.

We shall investigate the polynomial map g : A2 = Spec(C[z1, z2]) →
A1 := Spec(C[g]) associated to the canonical inclusion C[g] ↪→ C[z1, z2] and
the singular fibers of it (if there exist at all). As seen below (cf. Lemma 4.12,
(3)), if n(= µ − (d − 2λ)) is a positive integer, then this polynomial map g
has at least one singular fiber. Note that the restriction of the P1-fibration
ρ̃ : X̃ → P1 to Ũ coincides with the polynomial map g : A2 → A1, namely,
F̃ ∩ Ũ ∼= C, where we denote by F̃ the fiber of ρ̃ corresponding to the member
C of Λ0(g). We have the following:

Lemma 4.12. With the notations and the assumptions as above, we
have the following :

(1) The general members C of Λ0(g) are isomorphic to C(∗n), where we
denote by C(∗n) the affine line with n-point punctured,
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(2) Let F̃1, . . . , F̃r exhaust all the singular fibers of ρ̃ : X̃ → P1 distinct
from F̃∞ (if there exist at all) and let F̃i =

∑mi

j=1 ai,jF̃i,j be the decomposition
of F̃i into the irreducible components with ai,j ∈ N. Then ai,j = 1 for all
1 ≤ i ≤ r and 1 ≤ j ≤ mi,

(3) n+ r =
∑r

i=1mi. In particular, if n ≥ 1, then we have r ≥ 1, namely,
ρ̃ : X̃ → P1 has at least one singular fiber distinct from F̃∞.

Proof. (1) As remarked in the proof of Lemma 4.11, the boundary X̃− Ũ
contains exactly (n + 1) cross-sections Ẽµ, H̃1, . . . , H̃n. Hence we have C ∼=
F̃ ∩ Ũ ∼= P1−{(n+1)-points} = C(∗n) for a general member C ∈ Λ0(g), where
F̃ is a fiber of ρ̃ corresponding to C. Hence we obtain the assertion (1).

(2) Note that every fiber of ρ̃ distinct from F̃∞ does not contain any
component in X̃− Ũ . Hence each component F̃i,j of the singular fiber F̃i meets
Ũ . Since Ũ is affine, F̃i,j is not contained in Ũ , hence it meets at least one of
the cross-sections Ẽµ, H̃1, . . . , H̃n of ρ̃. Therefore the multiplicity ai,j of F̃i,j

in the fiber F̃i is 1.
(3) By [Mi-Su80, Lemma 1.6], we obtain the desired equation.

We shall determine the concrete figure of the polynomial g ∈ C[z1, z2] by
observing the singular fibers of ρ̃ : X̃ → P1 distinct from F̃∞. Namely, we have
the following proposition:

Proposition 4.1. Let g ∈ C[z1, z2] be the generically rational polyno-
mial defining the affine plane curve Cµ ⊂ A2 := Spec(C[z1, z2]) (see the argu-
ment before Definition 4.1). We put n := µ− (d− 2λ) ≥ 0. Then g is written
in the following fashion:

g = (z2 +A(z1))

 n∏
j=1

(z1 + dj)

+
n−1∑
j=1

cj

 n∏
k=j+1

(z1 + dk)

+ cn,

where dj ∈ C∗ (1 ≤ j ≤ n) are mutually distinct non-zero constants, cj ∈ C
(1 ≤ j ≤ n) and cn 
= 0, and A(z1) ∈ C[z1] is of degree degA(z1) = d− 2λ.

Remark 5. The mutually distinct non-zero constants dj (1 ≤ j ≤ n) in
the statement of Proposition 4.1 are, in fact, defined in the following way: Let
Q1, . . . , Qn be the intersection points of the curves Cµ and Cλ, and let lj be
the fibers on X ∼= Fd−2λ passing through Qj for 1 ≤ j ≤ n. Then the proper
transforms lj

∗ ⊂ P2 of lj via τ : X · · · → P2 are mutually distinct lines passing
through the common point p := L

∗ ∩ L′∗ = (z0 = 0) ∩ (z1 = 0) = (0 : 0 : 1),
hence lj

∗
are defined by djz0 + z1 = 0 for some mutually distinct non-zero

constants dj for 1 ≤ j ≤ n. It is not hard to see that the dj (1 ≤ j ≤ n) defined
so appear in the formula of the polynomial g (cf. Proposition 4.1) by observing
the argument in Lemmas 4.13 through 4.16 below carefully.
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Our proof of Proposition 4.1 consists of several steps. We shall prove
Proposition 4.1 by the induction on the non-negative integer n := µ−(d−2λ) ∈
Z≥0. First of all, we consider the case n = 0.

Lemma 4.13. Let the notations be as above. Suppose that n = 0. Then
the polynomial g ∈ C[z1, z2] is written as g = z2 + A(z1), where A(z1) ∈ C[z1]
is of degree degA(z1) = d− 2λ.

Proof. Suppose that n = 0, then Cµ
∼= A1. The curve Cµ does not meet

the minimal section Cλ = Md−2λ on X ∼= Fd−2λ and it meets the fiber L on
X at a point Q0. Since we can easily prove the present lemma for the case
where d− 2λ is either 0 or 1, we shall consider only the case d− 2λ ≥ 2 in the
subsequent. It is then not hard, by observing the process of τ : X · · · → P2, to
see that the projective plane curve Cµ

∗ ⊂ P2 meets the line L
∗

at a single point
p := L

∗∩ L′∗ = (0 : 0 : 1) with order d−2λ and that mult pCµ
∗

= d−2λ−1. On
the other hand, Cµ

∗
and the line L′∗ meet each other at two points, one of which

is the point p and we denote by p′ the another intersection point. It is not hard
to see that i(Cµ

∗ ·L′∗; p′) = 1. Hence the affine plane curves Cµ and L′ := L′∗−
{p}, both of which are isomorphic to the affine line A1, meet each other at a
single point p′ transversally. Hence we have C[z1, g1,1] = C[z1, z2] (cf. Miyanishi
[Miy78b]), in particular, the Jacobian determinant J((z1, g1,1)/(z1, z2)) of g1,1

and z1 is a non-zero constant, so we may assume that ∂g1,1/∂z2 = 1. Therefore
we can write g1,1 as g1,1 = z2 + A(z1), where A(z1) ∈ C[z1] is of degree
d− 2λ.

In the subsequent, we assume that n > 0. Then by the equality n + r =∑r
i=1mi (cf. Lemma 4.12) we have r ≥ 1, i.e., the P1-fibration ρ̃ : X̃ → P1

has at least one singular fiber distinct from F̃∞. Let F̃1 =
∑m1

j=1 F̃1,j be the

singular fiber of ρ̃ distinct from F̃∞, where F̃1,j is the irreducible component.
Note that F̃1,j is contained in the fiber F̃1 with multiplicity 1 by Lemma 4.12.
More precisely, we have the following:

Lemma 4.14. With the notations and the assumptions as above, we
have the following result concerning the configuration of the singular fiber F̃1 =∑m1

j=1 F̃1,j of ρ̃ : X̃ → P1:
(1) 2 ≤ m1 ≤ n+ 1,
(2) By reordering the indices, if necessary, we may assume that the compo-

nent F̃1,1 meets the cross-sections Ẽµ, H̃1, . . . , H̃s with s := n+1−m1, and the
remaining fiber component F̃1,j meets the cross-section ˜Hj+s−1 for 2 ≤ j ≤ m1,

(3) The fiber components F̃1,j (2 ≤ j ≤ m1) are mutually disjoint and each
of them meet F̃1,1 at one point transversally.

Proof. The assertion (1) is obvious from the equality n + r =
∑r

i=1mi

by noting that mi ≥ 2 for 1 ≤ i ≤ r. Note that no component in the boundary
X̃ − Ũ is contained in F̃1 (see the proof of Lemma 4.11). By reordering the
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indices, if necessary, we may assume that the fiber component F̃1,1 meets the
cross-section Ẽµ. Assume that a fiber component F̃1,j0 does not meet F̃1,1 for
some j0. Let H̃1, . . . , H̃t exhaust all the cross-sections in X̃ − Ũ intersecting
F̃1,j0 . Note that since F̃1,j0 ∩ Ũ 
= ∅ and Ũ is affine, there exists at least one
cross-section in X̃− Ũ intersecting F̃1,j0 . Let F1,j := ϕ(F̃1,j) denote the proper
transform on X of F̃1,j . It is easy to see that F1,1 meets the fiber L at a point
Q0 transversally, so F1,1 is a cross-section on X ∼= Fd−2λ. On the other hand,
since F̃1,1∩ F̃1,j0 = ∅, we have F1,1∩F1,j0 = ∅. Hence F1,j0 is a quasi-section on
X. But since F1,j0 does not meet the fiber L, this is a contradiction. Hence the
fiber components F̃1,j intersect F̃1,1 for all 2 ≤ j ≤ m1. Note that F̃1,j meets
F̃1,1 at only one point transversally by the general theory of the singular fibers
of P1-fibrations (cf. Miyanishi [Miy01]). Suppose that the number, say t, of the
cross-sections in X̃−Ũ meeting a fiber component F̃1,j0 is equal to or more than
2 for some 2 ≤ j0 ≤ m1. Then the proper transform F1,j0 meets the minimal
section Md−2λ = Cλ at the distinct t-points and it does not meet the fiber L
on X ∼= Fd−2λ. This is absurd. Thus every fiber component F̃1,j (2 ≤ j ≤ m1)
meets exactly one cross-section contained in X̃ − Ũ . Suppose that the fiber
components F̃1,j1 and F̃1,j2 meet each other for some 2 ≤ j1, j2 ≤ m1. Then
the fiber F̃1 contains a loop or F̃1,1 ∩ F̃1,j1 ∩ F̃1,j2 
= ∅, which is a contradiction
(cf. [Miy01]). This completes the proof of Lemma 4.14.

We shall keep the above notations. We consider the image F1 =
∑m1

j=1 F1,j

via ϕ : X̃ → X of the singular fiber F̃1 =
∑m1

j=1 F̃1,j , where F1,j := ϕ(F̃1,j) is

the image on X of F̃1,j . Then we have the following:

Lemma 4.15. With the notations as above, we have:
(1) F1,1 is a cross-section on X ∼= Fd−2λ passing through the point Q0, Q1,

. . . , Qs, here s := n+ 1−m1. Furthermore, F1,1 meets Cλ at Qj transversally
for 1 ≤ j ≤ s,

(2) F1,j is a fiber on X ∼= Fd−2λ passing through the point Qj+s−1 for
2 ≤ j ≤ m1.

Proof. (1) By Lemma 4.14, the component F̃1,1 of the singular fiber F̃1

meets the cross-sections Ẽµ, H̃1, . . . , H̃s of ρ̃. Note that the process ϕ : X̃ → X

is obtained as the successive contractions of Ẽµ, Ẽµ−1, . . . , Ẽ1 in this order and
the contractions of H̃j for 1 ≤ j ≤ n (see the proof of Lemma 4.11). Hence F1,1

intersects L, which is a fiber on X ∼= Fd−2λ, at Q0 transversally. This means
that F1,1 is a cross-section on X. Furthermore, since F̃1,1 meets H̃1, . . . , H̃s,
F1,1 meets Cλ at the points Q1, . . . , Qs and i(F1,1 · Cλ;Qj) = 1 for 1 ≤ j ≤ s.

(2) Note that each of the remaining fiber components F̃1,j (2 ≤ j ≤ m1)
meets F̃1,1 in one point, which is not the point F̃1,1 ∩ Ẽµ. Hence F1,j does
not meet the fiber L on X ∼= Fd−2λ, so F1,j is a fiber on X for 2 ≤ j ≤ m1.
Furthermore, since F̃1,j meets the cross-section ˜Hj+s−1, it follows that F1,j

passes through the point Qj+s−1 for 2 ≤ j ≤ m1.
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Next we consider the proper transform F1
∗

=
∑m1

j=1 F1,j
∗

via τ : X ∼=
Fd−2λ · · · → P2 of F1, where F1,j

∗
is the proper transform on P2 of the com-

ponent F1,j for 1 ≤ j ≤ m1. F1
∗

is a reducible member of Λ(g). We put
C1,j := F1,j

∗ − (F1,j
∗ ∩ L

∗
) ⊂ A2 = Spec(C[z1, z2]) = P2 − L

∗
and denote

by g1,j ∈ C[z1, z2] the defining polynomial of the affine plane curve C1,j for
1 ≤ j ≤ m1. Then we have:

Lemma 4.16. With the notations as above, we have:
(1) g1,1 is a generically rational polynomial of simple type with (s + 1)-

places at infinity (cf. Definition 4.1),
(2) g1,j = z1 + dj+s−1 for 2 ≤ j ≤ m1, where the dj+s−1 are mutually

distinct non-zero constants defined in Remark 5.

Proof. (1) Let Λ0(g1,1) be the linear pencil on A2 = Spec(C[z1, z2]) de-
fined by g1,1 and let Λ(g1,1) be the extension of Λ0(g1,1) to P2. The proper
transform Λ1,1 via τ : X ∼= Fd−2λ · · · → P2 of Λ(g1,1) is the linear pencil
spanned by F1,1 and Cλ + (d + s − 2λ)L with the base points set Bs Λ1,1 =
{Q0, Q1, . . . , Qs}. Let ψ : X ′ → X be the shortest succession of the blowing-
ups at the points in Bs Λ1,1 (including infinitely near points) such that the
proper transform Λ′

1,1 by ψ of Λ1,1 is base point free. The Zariski open
subset U ′ := ψ−1(X − (Cλ ∪ L)) of X ′ is isomorphic to the affine plane
A2 = Spec(C[z1, z2]). This process ψ to eliminate Bs Λ1,1 is similar to that to
eliminate Bs Λ (cf. the proof of Lemma 4.11), and we can see that Λ′

1,1 defines
the P1-fibration ρ′ : X ′ → P1 and that the boundary X ′ − U ′ contains the
(s + 1) cross sections of ρ′. Thus g1,1 is a generically rational polynomial of
simple type with (s+ 1)-points at infinity.

(2) By Lemma 4.15, the F1,j are mutually distinct fibers passing through
the points Qj+s−1 on X ∼= Fd−2λ for 2 ≤ j ≤ m1. After the process τ : X · · · →
P2, these fibers F1,j are brought to the mutually distinct lines F1,j

∗
passing

through the common point p = L
∗ ∩ L′∗ = (z0 = 0) ∩ (z1 = 0) = (0 : 0 : 1).

Hence we can write g1,j = z1 + dj+s−1 for 2 ≤ j ≤ m1, where the dj+s−1 are
mutually distinct non-zero constants defined in Remark 5.

By Lemmas 4.15 and 4.16, the curve F1,1 is a cross-section on X ∼= Fd−2λ

passing through the points Q0, Q1, . . . , Qs, and g1,1, which is a defining poly-
nomial of the affine plane curve C1,1, is a generically rational polynomial of
simple type with (s + 1)-places at infinity. Note that 0 ≤ s ≤ n − 1 because
2 ≤ m1 ≤ n + 1. Hence we can write g1,1 in the following fashion by the
inductive hypothesis:

g1,1 = (z2 +A(z1))

 s∏
j=1

(z1 + dj)

+
s−1∑
j=1

cj

 s∏
k=j+1

(z1 + dk)

+ cs,

where dj ∈ C∗ (1 ≤ j ≤ s) are mutually distinct non-zero constants defined
in Remark 5, cj ∈ C (1 ≤ j ≤ s) and cs 
= 0, and A(z1) ∈ C[z1] is of degree
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degA(z1) = d − 2λ. Note that the restriction F̃1 ∩ Ũ of the fiber F̃1 to Ũ
coincides with

∑m1
j=1C1,j , which is the member of Λ0(g). Hence the affine

plane curve
∑m1

j=1 C1,j is defined by g − cn for some cn ∈ C∗, so we have
g − cn =

∏m1
j=1 g1,j . Hence g is written as follows:

g = (z2 +A(z1))

 n∏
j=1

(z1 + dj)

+
s∑

j=1

cj

 n∏
k=j+1

(z1 + dk)

+ cn.

Therefore we complete the proof of Proposition 4.1.

We can determine the concrete form of another generically rational poly-
nomial h (see the argument before Definition 4.1) by the same argument as
that to determine the form of g. Namely, we have the following:

Proposition 4.2. Let h ∈ C[z1, z2] be the generically rational polyno-
mial defining the affine plane curve Cν ⊂ A2 := Spec(C[z1, z2]) (see the argu-
ment before Definition 4.1). We put m := ν − (d− 2λ) ≥ 0. Then h is written
in the following fashion:

h = (z2 + B(z1))

 m∏
j=1

(z1 + d′j)

+
m−1∑
j=1

c′j

 m∏
k=j+1

(z1 + d′k)

+ c′m,

where d′j ∈ C∗ (1 ≤ j ≤ m) are mutually distinct non-zero constants, c′j ∈ C
(1 ≤ j ≤ m) and c′m 
= 0, and B(z1) ∈ C[z1] is of degree degB(z1) = d − 2λ.
Furthermore, each of d′j is different from di for all 1 ≤ i ≤ n (see Proposition
4.1 and Remark 5).

Proof. By the same argument as that to prove Proposition 4.1, the poly-
nomial h can be written as in the statement except for the possibility that some
d′j coincides with di for some 1 ≤ i ≤ n, 1 ≤ j ≤ m. But this possibility is
excluded. Indeed, the mutually distinct non-zero constants d′j (1 ≤ j ≤ m)
are determined as follows (cf. Remark 5): Let Q′

1, . . . , Q
′
m be the intersection

points of Cν and Cλ and let l′j be the fiber on X ∼= Fd−2λ passing through Q′
j

for 1 ≤ j ≤ m. Then the proper transforms l′j
∗

of l′j via τ : X · · · → P2 are
mutually distinct lines passing through the common point p = L

∗∩L′∗ = (z0 =
0) ∩ (z1 = 0) = (0 : 0 : 1), hence they are defined by d′jz0 + z1 = 0 for some
mutually distinct non-zero constants for 1 ≤ j ≤ m. Note that each of these
intersection point Q′

j is different from the intersection points Q1, . . . , Qn of Cµ

and Cλ because of D2 ∩ D3 ∩ Cλ = ∅ (cf. Lemma 4.6). Hence d′j is different
from d1, . . . , dn.

We have completed the preparation to determine the detailed form of the
irreducible polynomial f ∈ C[x1, x2, x3]. Note thatD2∩D3∩Cλ = ∅ (cf. Lemma
4.6). We denote by Q1, . . . , Qλ (resp. Q′

1, . . . , Q
′
λ) the intersection points D2∩
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Cλ (resp. D3 ∩ Cλ) such that Cµ (resp. Cν) passes through Q1, . . . , Qn (resp.
Q′

1, . . . , Q
′
m) and Li for 1 ≤ i ≤ d − λ − µ (resp. L′

j for 1 ≤ j ≤ d − λ − ν)
passes through Qi+n (resp. Q′

j+m). Let li (resp. l′j) be the fiber on X ∼= Fd−2λ

passing through the point Qi (resp. Q′
j) and let li

∗
(resp. l′j

∗
) be the its proper

transform on P2 via τ : X · · · → P2 for 1 ≤ i, j ≤ λ. The li
∗

and l′j
∗

are
mutually distinct lines passing through the common point p = L

∗ ∩ L′∗ =
(z0 = 0) ∩ (z1 = 0) = (0 : 0 : 1), and li

∗
, l′j

∗
are defined by diz0 + z1 =

0, d′jz0 + z1 = 0, respectively, for the mutually distinct non-zero constants di

and d′j for 1 ≤ i, j ≤ λ. Note that Li = li+n for 1 ≤ i ≤ d−λ−µ and L′
j = l′j+m

for 1 ≤ j ≤ d− λ− ν, hence we have ai = di+n and b′j = d′j+m in the notations
of Lemma 4.10. We write A(z1) = α0z

d−2λ
1 + α1z

d−2λ−1
1 + · · · + αd−2λ and

B(z1) = β0z
d−2λ
1 + β1z

d−2λ−1
1 + · · · + βd−2λ, where αk, βk ∈ C and α0β0 
= 0

for 0 ≤ k ≤ d − 2λ (cf. Propositions 4.1 and 4.2). Then the birational map
φ : P2 · · · → X ⊂ P3 is defined as follows (cf. Lemmas 4.3, 4.9, 4.10 and
Propositions 4.1, 4.2): If d− 2λ > 0, then

x0 = zd−λ
0 ,

x1 = zd−λ−1
0 z1,

x2 =

(
λ∏

i=1

(diz0 + z1)

)(
zd−2λ−1
0 z2 +

d−2λ∑
k=0

αkz
k
0z

d−2λ−k
1

)

+
n∑

j=1

cj

 λ∏
l=j+1

(dlz0 + z1)

 zj+d−2λ
0 ,

x3 =

(
λ∏

i=1

(d′iz0 + z1)

)(
zd−2λ−1
0 z2 +

d−2λ∑
k=0

βkz
k
0 z

d−2λ−k
1

)

+
m∑

j=1

c′j

 λ∏
l=j+1

(d′lz0 + z1)

 zj+d−2λ
0 ,

on the other hand, if d− 2λ = 0, then

x0 = zλ+1
0 ,

x1 = zλ
0 z1,

x2 =

(
λ∏

i=1

(diz0 + z1)

)
(z2 + α0)

+
n∑

j=1

cj

 λ∏
l=j+1

(dlz0 + z1)

 zj+1
0 ,

x3 =

(
λ∏

i=1

(d′iz0 + z1)

)
(z2 + β0)

+
m∑

j=1

c′j

 λ∏
l=j+1

(d′lz0 + z1)

 zj+1
0 .
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Hence the defining equation F (x0, x1, x2, x3) of the hypersurface X ⊂ P3

is given as follows:

F (x0, x1, x2, x3) = xd−λ−1
0

{(
λ∏

i=1

(d′ix0 + x1)

)
x2 −

(
λ∏

i=1

(dix0 + x1)

)
x3

}

+

(
λ∏

i=1

(dix0 + x1)

)(
λ∏

i=1

(d′ix0 + x1)

)(
d−2λ∑
k=0

γkx
k
0x

d−2λ−k
1

)

−
(

λ∏
i=1

(d′jx0 + x1)

)
n∑

j=1

cjx
d−2λ+j
0

 λ∏
l=j+1

(dlx0 + x1)


+

(
λ∏

i=1

(djx0 + x1)

)
m∑

j=1

c′jx
d−2λ+j
0

 λ∏
l=j+1

(d′lx0 + x1)

 = 0,

where γk := βk −αk for 0 ≤ k ≤ d−2λ. Since f = F (1, x1, x2, x3), we have the
following theorem consequently. Note that γ0 
= 0 because the degree deg(f)
of f is d.

Theorem 4.1. Let f ∈ C[x1, x2, x3] be the irreducible polynomial of
degree d := deg(f) ≥ 2 in three complex variables x1, x2 and x3. Suppose
that the hypersurface S := (f = 0) ⊂ A3 := Spec(C[x1, x2, x3]) defined by f
is isomorphic to the affine plane; S ∼= A2, f satisfies the condition (†) (see
Section 1) and that f is of TYPE(d, λ) (cf. Lemma 3.3) with d − 2λ ≥ 0.
Then f is written in the following fashion:

f =

(
λ∏

i=1

(x1 + d′i)

)
x2 −

(
λ∏

i=1

(x1 + di)

)
x3

+

(
λ∏

i=1

(x1 + di)

)(
λ∏

i=1

(x1 + d′i)

)(
d−2λ∑
k=0

γkx
d−2λ−k
1

)

−
(

λ∏
i=1

(x1 + d′i)

)
n∑

j=1

cj

 λ∏
l=j+1

(x1 + dl)


+

(
λ∏

i=1

(x1 + di)

)
m∑

j=1

c′j

 λ∏
l=j+1

(x1 + d′l)

 ,

where di and d′j (1 ≤ i, j ≤ λ) are mutually distinct non-zero constants, 0 ≤
n,m ≤ λ, ci ∈ C for 1 ≤ i ≤ n and c′j ∈ C for 1 ≤ j ≤ m with cnc′m 
= 0 and
γk ∈ C for 0 ≤ k ≤ d− 2λ with γ0 
= 0.

Remark 6. We can see that the hypersurface S := (f = 0) ⊂ A3 =
Spec(C[x1, x2, x3]) defined by f in Theorem 4.1 is isomorphic to the affine
plane; S ∼= A2. First of all we note that S is smooth by Jacobian criterion
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of smoothness. In order to see that S ∼= A2, we consider the projection pr :
A3 → A1 = Spec(C[x1]) to the x1-axis and the restriction p := pr|S : S → A1.
The fiber p∗(α) over the point (x1 = α) ∈ A1 is isomorphic to the affine plane
curve p∗(α) ∼= (f(α, x2, x3) = 0) ⊂ A2 = Spec(C[x2, x3]). Since di and d′j
(1 ≤ i, j ≤ λ) are mutually distinct non-zero constants, p∗(α) is isomorphic to
the affine line; p∗(α) ∼= A1 for every α ∈ C. Hence all the fibers of p : S → A1

are isomorphic to the affine line. By [Kam-Miy78] and the fact Pic(A1) = 0,
it follows that p is a trivial A1-bundle structure over the base curve A1, so
we have S ∼= A1 × A1 ∼= A2. It is easy to see that the closure X of S in P3

satisfies the condition (†), i.e., L := X∩H0 is a line in P3 and multLX = d−1.
Therefore f is a variable of C[x1, x2, x3] by Theorem 1.1. In the former time,
we do not know how to construct an automorphism of C[x1, x2, x3] sending f
to a standard variable. But Professor Joost Berson told me simple method to
construct such an automorphism in the following fashion: By Theorem 4.1, a
polynomial f is of the form f = a(x1)x2 + b(x1)x3 + p(x1), where a(x1) and
b(x1) have no common roots. Then C[x1]a(x1) + C[x1]b(x1) = C[x1], so we
have c(x1)a(x1) + d(x1)b(x1) = 1 for some c(x1), d(x1) ∈ C[x1]. Then we can
easily see that C[f,−c(x1)x2 + d(x1)x3, x1] = C[x1, x2, x3], hence the auto-
morphsim x1 �→ x1, x2 �→ −c(x1)x2 + d(x1)x3, x3 �→ f is a desired one.

Remark 7. When d = deg(f) ≤ 4, we have d − 2λ ≥ 0 for all 0 ≤
λ ≤ d − 2. Hence, we can determine all the standard forms of the irreducible
polynomials f ∈ C[x1, x2, x3] defining the hypersurfaces which are isomorphic
to the affine plane A2 and satisfying (†). For instance, if f is of degree d = 3,
then f is either of TYPE(3,0) or of TYPE(3,1). If f is of TYPE(3,0) (resp.
TYPE(3,1)), then f coincides with the polynomial in [Oh99, Theorem 1] of
type (VII) (resp. (VIII)) up to an affine transformation.

Department of Mathematics
Graduate School of Science
Osaka University
Osaka 560-0043, Japan
e-mail: kisimoto@math.sci.osaka-u.ac.jp

References

[A-M75] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the
plane, J. Reine Angew. Math., 276 (1975), 148–166.

[Ha77] R. Hartshorne, Algebraic Geometry, GTM 52, Springer, 1977.
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