Global L^{∞} solutions of the compressible Euler equations with damping and spherical symmetry

By

Naoki TSUGE

Abstract

We study the Euler equations of compressible isentropic gas dynamics with damping and spherical symmetry. For spherically symmetric flow, the global existence of the weak entropy L^{∞} solutions with damping isn't still obtained. In this paper, we prove the existence of global solutions with small L^{∞} data. We construct the approximate solutions by using modified Godunov scheme. A L^{∞} bound for the approximate solutions can be obtained with the aid of the presence of the damping term.

1. Introduction

Let us consider the Euler equations in \mathbf{R}^3 with spherically initial data and damping,

(1.1)
$$\begin{cases} \rho_t + \nabla \cdot \vec{m} = 0, \\ \vec{m}_t + \nabla \cdot \left(\frac{\vec{m} \otimes \vec{m}}{\rho}\right) + \nabla p = -\alpha \vec{m}, \quad \vec{x} \in \mathbf{R}^3, \end{cases}$$

where ρ , \vec{m} and p are the density, the momentum and the pressure of the gas, respectively, while $\alpha > 0$ is the friction constant. On the non-vacuum state $\rho > 0$, $\vec{u} = \vec{m}/\rho$ is the velocity. For polytropic gas, $p(\rho) = \rho^{\gamma}/\gamma$, where $\gamma \in (1, 5/3]$ is the adiabatic exponent for usual gases.

The one-dimensional case of the Cauchy problem of (1.1) has studied in [D] and [HL]. For spherically symmetric flow, the global existence of the weak entropy solutions without damping was studied in [CG] by using compensated compactness framework. However the proofs of this result are incorrect (see Section 8 in [T]). Therefore the global existence theorem isn't still obtained except the special cases (for example [C1]). The global existence of BV solutions with damping has obtained when $\gamma = 1$ in [HLY]. In this paper, we prove the

Received August 5, 2003

Revised December 5, 2003

global existence of solutions with damping and small L^{∞} data in general case $1 < \gamma \leq 5/3$. In Section 4, the damping term enable one to get L^{∞} estimates with the difficulty caused by inhomogeneous terms.

Consider the initial value problem (1.1) and

(1.2)
$$(\rho, \vec{m})|_{t=0} = (\rho_0(\vec{x}), \vec{m}_0(\vec{x})),$$

with following geometric structure

(1.3)
$$(\rho_0(\vec{x}), \vec{m}_0(\vec{x})) = \left(\rho_0(|\vec{x}|), m_0(|\vec{x}|) \frac{\vec{x}}{|\vec{x}|}\right),$$

where $m_0(x)$ is a scalar function of $x = |\vec{x}| \ge 1$. We look for the solutions of the form

(1.4)
$$(\rho(\vec{x}), \vec{m}(\vec{x})) = \left(\rho(|\vec{x}|, t), m(|\vec{x}|, t) \frac{\vec{x}}{|\vec{x}|}\right).$$

We rewrite (1.1) as

(1.5)
$$\begin{cases} \rho_t + m_x = -\frac{2}{x}m, \\ m_t + \left(\frac{m^2}{\rho} + p(\rho)\right)_x = -\frac{2}{x}\frac{m^2}{\rho} - \alpha m, \quad p(\rho) = \rho^{\gamma}/\gamma, \end{cases}$$

where $\rho(x,t)$ and m(x,t), $x = |\vec{x}| \ge 1$ are the scalar functions. This equation can be written as

(1.6)
$$\begin{cases} v_t + f(v)_x = g(x, v), & x \ge 1, \\ v_{t=0} = v_0(x), & \end{cases}$$

where $v = (\rho, m)^{\top}$, $u = m/\rho$, $f(v) = (m, m^2/\rho + p(\rho))^{\top}$, $g(x, v) = (-\frac{2}{x}m, -\frac{2}{x}\frac{m^2}{\rho} - \alpha m)^{\top}$.

We consider the initial-boundary value problem

(1.7)
$$\begin{cases} v|_{t=0} = v_0(x), \\ m|_{x=1} = 0, \end{cases}$$

with the initial data $v_0 \in L^{\infty}(x \ge 1)$.

A pair of mapping $(\eta, q) : \mathbb{R}^2 \to \mathbb{R}^2$ is called an entropy-entropy flux pair, if it satisfies an identity

(1.8)
$$\nabla q = \nabla \eta \nabla f.$$

Furthermore, if, for any fixed $m/\rho \in (-\infty, \infty)$, η vanishes on the vacuum $\rho = 0$, then η is called a weak entropy. For example, the mechanical energy-energy flux pair

(1.9)
$$\eta_* = \frac{1}{2} \frac{m^2}{\rho} + \frac{1}{\gamma(\gamma - 1)} \rho^{\gamma}, \quad q_* = m \left(\frac{1}{2} \frac{m^2}{\rho^2} + \frac{\rho^{\gamma - 1}}{\gamma - 1} \right)$$

is a strictly convex weak entropy-entropy flux pair.

Our main result is as follows.

Theorem 1.1. We assume that initial velocity and nonnegative density data $(\rho_0, m_0) \in L^{\infty}(x \ge 1)$ satisfy

(1.10)
$$\alpha \ge 2\theta \max\left(\sup_{x} w(v_0(x)), -\inf_{x} z(v_0(x))\right),$$

where w, z are Riemann invariants defined as

$$w = \frac{m}{\rho} + \frac{\rho^{\theta}}{\theta} = u + \frac{\rho^{\theta}}{\theta}, \quad z = \frac{m}{\rho} - \frac{\rho^{\theta}}{\theta} = u - \frac{\rho^{\theta}}{\theta}$$

Then initial-boundary value problem (1.6)–(1.7) has a global weak entropy solution $(\rho(x,t), m(x,t))$.

2. Preliminary

In this section, we first review some results of Riemann solutions for the homogeneous system of gas dynamics. Consider the homogeneous system

(2.1)
$$\begin{cases} \rho_t + m_x = 0, \\ m_t + \left(\frac{m^2}{\rho} + p(\rho)\right)_x = 0, \quad p(\rho) = \rho^{\gamma} / \gamma. \end{cases}$$

The eigenvalues of the system are

$$\lambda_1 = \frac{m}{\rho} - c, \quad \lambda_2 = \frac{m}{\rho} + c.$$

Any discontinuity in the weak solutions to (2.1) must satisfy the Rankine-Hugoniot condition

$$\sigma(v-v_0) = f(v) - f(v_0),$$

where σ is the propagation speed of the discontinuity, $v_0 = (\rho_0, m_0)$ and $v = (\rho, m)$ are the corresponding left state and right state. This means that

$$\begin{cases} m - m_0 = \frac{m_0}{\rho_0}(\rho - \rho_0) \pm \sqrt{\frac{\rho}{\rho_0} \frac{p(\rho) - p(\rho_0)}{\rho - \rho_0}}(\rho - \rho_0), \\ \sigma = \frac{m - m_0}{\rho - \rho_0} = \frac{m_0}{\rho_0} \pm \sqrt{\frac{\rho}{\rho_0} \frac{p(\rho) - p(\rho_0)}{\rho - \rho_0}}. \end{cases}$$

A discontinuity is called a shock if it satisfies the entropy condition

$$\sigma(\eta(v) - \eta(v_0)) - (q(v) - q(v_0)) \ge 0$$

for any convex entropy pair (η, q) .

Consider the Riemann problem of (2.1) with initial data

(2.2)
$$v|_{t=0} = \begin{cases} v_{-}, & x < x_0, \\ v_{+}, & x > x_0, \end{cases}$$

and the Riemann initial boundary problem of (2.1) with data

(2.3)
$$v|_{t=0} = v_+, \quad m|_{x=1} = 0,$$

where $x_0 \in (-\infty, \infty)$, $\rho_{\pm} \geq 0$ and m_{\pm} are constants satisfying $|m_{\pm}/\rho_{\pm}| < \infty$. For the problem (2.1) and (2.3), we draw a diagram the inverse wave curve of the second family and the vacuum for given right state v_{\pm} and boundary condition m = 0 as follows.

1. If $\rho_+ > 0$ and $u_+ \leq 0$, there exists v_- with $u_- = 0$ from which v_+ is connected by a 2-shock curve.

2. If $u_+ \ge 0$ and $z(v_+) \le 0$, then there exists v_- with $u_- = 0$ from which v_+ is connected by a 2-rarefaction curve.

3. If $u_+ \ge 0$ and $z(v_+) \ge 0$, then there exists v_* with $\rho_* = 0$ from which v_+ is connected by a 2-rarefaction, and v_* and v_- with $\rho_- = u_- = 0$ are connected by the vacuum.

4. If $u_+ \leq 0$ and $\rho_+ = 0$, then v_- with $\rho_- = u_- = 0$ is connected from v_+ by the vacuum.

Then the following theorem and lemma hold.

Theorem 2.1. There exists a unique piecewise entropy solution $(\rho(x, t), m(x, t))$ containing the vacuum state $(\rho = 0)$ on the upper plane t > 0 for each problem of (2.2) and (2.3) satisfying

(1) For the Riemann problem (2.2),

$$\begin{cases} w(\rho(x,t), m(x,t)) \le \max(w(\rho_{-}, m_{-}), w(\rho_{+}, m_{+})), \\ z(\rho(x,t), m(x,t)) \ge \min(z(\rho_{-}, m_{-}), z(\rho_{+}, m_{+})), \\ w(\rho(x,t), m(x,t)) - z(\rho(x,t), m(x,t)) \ge 0. \end{cases}$$

(2) For the Riemann initial boundary problem (2.3),

$$\begin{cases} w(\rho(x,t), m(x,t)) \le \max(w(\rho_{-}, m_{-}), -z(\rho_{+}, m_{+})), \\ z(\rho(x,t), m(x,t)) \ge \min(z(\rho_{+}, m_{+}), 0), \\ w(\rho(x,t), m(x,t)) - z(\rho(x,t), m(x,t)) \ge 0. \end{cases}$$

Such solutions have the following properties.

Lemma 2.2. For $B_+ \ge B_-$, the region $\sum(B_+, B_-) = \{(\rho, \rho u) \in \mathbf{R}^2 : w = u + \rho^{\theta}/\theta, z = u - \rho^{\theta}/\theta, w \le B_+, z \ge B_-, w - z \ge 0\}$ is invariant with respect to both of the Riemann problem (2.2) and the average of the Riemann solutions in x. More preciously, if the Riemann date lie in $\sum(B_+, B_-)$, the corresponding Riemann solutions $(\rho(x, t), m(x, t)) = (\rho(x, t), \rho(x, t)u(x, t))$ lie in $\sum(B_+, B_-)$, and their corresponding averages in x also in $\sum(B_+, B_-)$, that is,

$$\left(\frac{1}{b-a}\int_{a}^{b}\rho(x,t)dx,\frac{1}{b-a}\int_{a}^{b}m(x,t)dx\right)\in\sum(\mathbf{B}_{+},\mathbf{B}_{-}).$$

Furthermore, for $B_{-} \leq 0 \leq (B_{+} + B_{-})/2$, the region $\sum(B_{+}, B_{-})$ is invariant with respect to both of the Riemann initial-boundary problem (2.3) and the average of the corresponding Riemann solution in x.

197

Figure 2.1. The invariant region in (w, z)-plane.

The proof of Lemma 2.2 can be found in [C3].

3. Approximate solutions

In this section we construct approximate solutions $v^h = (\rho^h, m^h) = (\rho^h, \rho^h u^h)$ in the strip $0 \le t \le T$ for any fixed $T \in (0, \infty)$, where h is the space mesh length, together with the time mesh length Δt , satisfying the following Courant-Friedrichs-Lewy condition

(3.1)
$$4\Lambda \equiv 4 \max_{i=1,2} \left(\sup_{0 \le t \le T} |\lambda_i(\rho^h, m^h)| \right) \le \frac{h}{\Delta t} \le 6\Lambda.$$

We will prove that the approximate solutions are bounded uniformly in the mesh length h > 0 and $\rho^h(x, t) \ge 0$ to guarantee the construction of (ρ^h, m^h) .

We construct the approximate solutions (ρ^h, m^h) . Let

$$x_j = jh, \quad t_n = n\Delta t, \quad (j,n) \in \mathbf{Z}_{\geq 0} \times \mathbf{Z}_+.$$

Assume that $v^h(x,t)$ is defined for $t < n\Delta t$. Then we define $v_j^n \equiv (\rho_j^n, m_j^n)$ as,

Naoki Tsuge

for $j \ge 1$,

$$\begin{cases} \rho_j^n \equiv \frac{1}{h} \int_{(j-1)h+1}^{jh+1} \rho^h(x, n\Delta t - 0) dx, & (j-1)h+1 \le x \le jh+1, \\ m_j^n \equiv \frac{1}{h} \int_{(j-1)h+1}^{jh+1} m^h(x, n\Delta t - 0) dx, & (j-1)h+1 \le x \le jh+1. \end{cases}$$

Then, in the strip $n\Delta t \leq t < (n+1)\Delta t$, $v_0^h(x,t)$ is defined as, for $1 \leq x \leq 1 + \frac{1}{2}h$, the solution of the Riemann initial-boundary problem at x = 1,

$$\begin{cases} v_t + f(v)_x = 0, & 1 \le x < 1 + \frac{1}{2}h, \\ v|_{t=n\Delta t} = v_1^n, & m_{x=1} = 0, \end{cases}$$

and for $(j - 1/2)h + 1 \le x < (j + 1/2)h + 1$ (j = 1, 2, ...), the solution of the Riemann problem at x = jh + 1

$$\begin{cases} v_t + f(v)_x = 0, \quad (j - \frac{1}{2})h + 1 \le x < (j + \frac{1}{2})h + 1, \\ v_{|t=n\Delta t} = \begin{cases} v_j^n, & x < jh + 1, \\ v_{j+1}^n, & x > jh + 1. \end{cases} \end{cases}$$

Finally we define $v^h(x,t)$ in the strip $n\Delta t \leq t < (n+1)\Delta t$ by the fractional step procedure:

(3.2)
$$v^{h}(x,t) = v^{h}_{0}(x,t) + g(x,v^{h}_{0}(x,t))(t - n\Delta t).$$

4. L^{∞} estimates

First, we notice the following properties of Riemann Invariants.

Remark 4.1.

$$|w| \ge |z|, w \ge 0$$
, when $u \ge 0$.
 $|w| \le |z|, z \le 0$, when $u \le 0$.

We now derive a L^{∞} bound for the approximate solutions $v^h(x,t)$ of the initial-boundary value problem (1.6) and (1.7).

Theorem 4.1. Assume that the initial velocity and nonnegative density data $(\rho_0, u_0) \in L^{\infty}(x \ge 1)$ satisfy (1.10). Then the difference approximate solutions of the initial-boundary value problem (1.6) and (1.7) are uniformly bounded. That is, there exists a constant C > 0 such that

(4.1)
$$|u^h(x,t)| \le C, \quad 0 \le \rho^h(x,t) \le C, \quad (x,t) \in \{x \ge 1\} \times \mathbf{R}_+.$$

Proof. We assume that, for $t < n\Delta t$,

(4.2)
$$\alpha - \varepsilon \ge 2\theta \max\left(\sup_{x} w(v^{h}(x,t)), -\inf_{x} z(v^{h}(x,t))\right)$$

198

for any fixed $\varepsilon > 0$. Then we apply Lemma 2.2 with $B_+ = -B_- = \frac{\alpha - \varepsilon}{2\theta}$ and the construction of v_0^h to get

(4.3)
$$\alpha - \varepsilon \ge 2\theta \max\left(\sup_{x} w(v_0^h(x,t)), -\inf_{x} z(v_0^h(x,t))\right)$$

for $n\Delta t \leq t < (n+1)\Delta t$.

Then, from (3.2), we have

$$\begin{split} \rho^{h} &= \rho_{0}^{h} \left\{ 1 - \frac{2}{x} u_{0}^{h} (t - n\Delta t) \right\}, \\ u^{h} &= u_{0}^{h} \frac{1 - \left(\alpha + \frac{2}{x} u_{0}^{h}\right) (t - n\Delta t)}{1 - \frac{2}{x} u_{0}^{h} (t - n\Delta t)} \\ (4.4) &= u_{0}^{h} \left[1 - \alpha (t - n\Delta t) + \frac{\frac{2\alpha}{x} u_{0}^{h}}{\left\{ 1 - \frac{2\tau_{1}}{x} u_{0}^{h} (t - n\Delta t) \right\}^{2}} (t - n\Delta t)^{2} \right], \\ (\phi^{h})^{\theta} &= (\rho_{0}^{h})^{\theta} \left[1 - \frac{2\theta}{x} u_{0}^{h} (t - n\Delta t) \\ &+ \theta (\theta - 1) \frac{2}{x^{2}} (u_{0}^{h})^{2} \left\{ 1 - \frac{2\tau_{2}}{x} u_{0}^{h} (t - n\Delta t) \right\}^{\theta - 2} (t - n\Delta t)^{2} \right], \end{split}$$

where τ_1 and τ_2 are constants satisfying $0 < \tau_1 < 1$ and $0 < \tau_2 < 1$ respectively. For $n\Delta t \leq t < (n+1)\Delta t$ and $u_0^h \geq 0$, we have

$$w(v^h) = u^h + \frac{(\rho^h)^\theta}{\theta} = w(v_0^h) - u_0^h \left\{ \alpha + \frac{2}{x} (\rho_0^h)^\theta + \mathcal{O}(\Delta t) \right\} (t - n\Delta t)$$

$$\leq w(v_0^h),$$

choosing Δt enough small, where Landau symbol $\mathcal{O}(\Delta t)$ is a constant depending only on the uniform bound of v_0^h . Observing (4.4), since $u^h = (1 + \mathcal{O}(\Delta t))u_0^h \ge 0$, we have

$$z(v^{h}) = -w(v^{h}) + 2u^{h} \ge -w(v^{h}) \ge -w(v^{h}_{0}).$$

Similarly, for $u_0^h \leq 0$, from (4.3), we have

$$z(v^{h}) = u^{h} - \frac{(\rho^{h})^{\theta}}{\theta} = z(v_{0}^{h}) - u_{0}^{h} \left\{ \alpha - \frac{2}{x} (\rho_{0}^{h})^{\theta} + \mathcal{O}(\Delta t) \right\} (t - n\Delta t)$$

$$\geq z(v_{0}^{h}).$$

Observing (4.4), since $u^h = (1 + \mathcal{O}(\Delta t))u_0^h \le 0$, we have

$$w(v^{h}) = -z(v^{h}) + 2u^{h} \le -z(v^{h}) \le -z(v^{h}_{0}).$$

199

Therefore, it follows that (4.2) for $n\Delta t \leq t < (n+1)\Delta t$, that is, there is a constant C > 0 such that

$$|u^h(x,t)| = \left|\frac{m^h(x,t)}{\rho^h(x,t)}\right| \le C, \quad 0 \le \rho^h(x,t) \le C,$$

by choosing Δt enough small. Since ε is arbitrary, by induction, we prove the theorem.

The following proposition and theorem can be proved in the same manner to [HM] and [MT].

Proposition 4.2. The measure sequence

 $\eta(v^h)_t + q(v^h)_x$

lies in a compact subset of $H^{-1}_{loc}(\Omega)$ for all weak entropy pair (η, q) , where $\Omega \subset \{x \ge 1\} \times \mathbf{R}_+$ is any bounded and open set.

Theorem 4.3. Assume that the approximate solution (ρ^h, m^h) satisfy Theorem 4.1 and Proposition 4.2. Then there is a convergent subsequence in the approximate solutions $(\rho^h(x,t), m^h(x,t))$ such that

(4.5)
$$(\rho^{h_n}(x,t), m^{h_n}(x,t)) \to (\rho(x,t), m(x,t)),$$
 a.e.

The pair of the functions $(\rho(x,t), m(x,t))$ is a global entropy solution of the initial-boundary value problem (1.6)–(1.7) satisfying

(4.6)
$$0 \le \rho(x,t) \le C, \quad \left|\frac{m(x,t)}{\rho(x,t)}\right| \le C,$$

for some C in the region $\{x \ge 1\} \times \mathbf{R}_+$.

Acknowledgements. The author would like to thank the referee for useful comments.

DEPARTMENT OF MATHEMATICS GRADUATE SCHOOL OF SCIENCE KYOTO UNIVERSITY KYOTO 606-8502, JAPAN e-mail: tuge@math.kyoto-u.ac.jp

References

- [B] A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford University Press, 2000.
- [C1] G.-Q. Chen, Remarks on spherically symmetric solutions to the compressible Euler equations, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 243–259.

200

- [C2] _____, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III), Acta Mathematica Scientia 8 (1988), 243–276 (in Chinese), 6 (1986), 75–120 (in English).
- [C3] _____, The compensated compactness method and the system of isentropic gas dynamics, MSRI preprint 00527-91, Berkele.
- [CG] G.-Q. Chen and J. Glimm, Global solutions to the compressible Euler equations with geometrical structure, Comm. Math. Phys. 180 (1996), 153–193.
- [D] C. Dafermos, A system of hyperbolic conservation laws with frictional damping, Z. Angew. Math. Phys. 46 Special Issue (1995), 294–307.
- [DC1] X. Ding, G.-Q. Chen and P. Luo, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (I)–(II), Acta Mathematica Scientia 7 (1987), 467–480, 8 (1988), 61–94 (in Chinese), 5, 415–432, 433–472 (in English).
- [DC2] _____, Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics, Comm. Math. Phys. 121 (1989), 63–84.
- [HL] L. Hsiao and T.-P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys. 143 (1992), 599–605.
- [HLY] L. Hsiao, T. Luo and T. Yang, Global BV solutions of compressible Euler equations with spherical symmetry and damping, J. Differential Equations 130 (1996), 162–178.
- [HM] C.-H. Hsu and T. Makino, Spherically symmetric solutions to the compressible Euler equation with an asymptotic γ-law, Japan J. Indust. Appl. Math. 20 (2003), 1–15 (to appear).
- [HP] F. Huang and R. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Rational Mech. Anal. 166-4 (2003), 359–376.
- T.-P. Liu, Compressible flow with damping and vacuum, Japan J. Indust. Appl. Math. 13 (1996), 25–32.
- [MT] T. Makino and S. Takeno, Initial-boundary value problem for the spherical symmetric motion of isentropic gas, Japan J. Indust. Appl. Math. 11 (1994), 171–183.
- [S] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.
- [T] N. Tsuge, Spherically symmetric flow of the compressible Euler equations, J. Math. Kyoto Univ. (to appear).