
�

�

�

�

�

�

�

�

J. Math. Kyoto Univ. (JMKYAZ)
44-1 (2004), 173–180

Some properties of subharmonic functions on
complete Riemannian manifolds and their

geometric applications

By

Zonglao Zhang and Zongben Xu

Abstract

This paper investigates the global behavior of subharmonic func-
tions on a complete noncompact simply-connected Riemannian mani-
fold. The authors obtain some Liouville-type theorems, a comparison
theorem for the strong parabolicity of a manifold and their applications
to geometry.

1. Introduction

Let M be a Riemannian manifold with dimension n ≥ 2 . For u ∈ C2(M),
let ∆u denote the Laplacian of u. A function u ∈ C2(M) is said to be subhar-
monic (resp. harmonic) if ∆u ≥ 0 (resp. ∆u = 0).

The classical Liouville theorem says that a subharmonic function defined
over R2 (or a harmonic function defined over Rn) and bounded above is con-
stant. Huber [1] proved that a complete two-dimensional Riemannian manifold
with non-negative curvature does not admit a nonconstant negative subhar-
monic function. Karp [2] found that a complete noncompact Riemannian man-
ifold admits no nonconstant negative subharmonic function if it has moderate
volume growth (see next section of this paper). Some further results about the
properties of subharmonic and harmonic functions on complete Riemannian
manifolds were obtained by many authors, such as Greene and Wu [3], Huber
[1], Karp [2] and Yau [4] (also see Hildebrandt [5] and Karp [6]).

In the present paper, we continue to study subharmonic functions on com-
plete noncompact Riemannian manifolds. Our attention is on the connections
between the geometry of a noncompact manifold and the global behavior of its
subharmonic functions. Our main results are Theorems 3.1, 3.2 (a Liouville-
type theorem), 3.3 (a comparison theorem for strong parabolicity) and their
applications such as Corollary 3.2.

This paper is organized as follows. In Section 2 we fix some notations and
definitions, and we recall some known results. In Section 3 we give our main
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results and their proofs.
Throughout this paper all manifolds are assumed to be complete noncom-

pact connected C∞ Riemannian manifolds without boundary with dim ≥ 2.

2. Preliminaries

Throughout this paper, if M is a manifold and q ∈ M , Mq will denote the
tangent space to M at q.

Definition 2.1 ([3]). Let M be an n-dimensional Riemannian mani-
fold. A point o ∈ M is a pole of M iff the exponential mapping expo: Mo → M
is a diffeomorphism.

Note that if M possesses a pole, it is complete. To be convenient, we
refer to an ordered pair (M, o) as a manifold with a pole if o is a pole of the
Riemannian manifold M . In this paper, for any x ∈ (M, o), r = r(x) will
always denote the geodesic distance from o to x.

Definition 2.2. A manifold with a pole (M, o) is strongly symmetric
around o iff every linear isometry φ : Mo → Mo is realized as the differential of
an isometry Φ : M → M , i.e., Φ(o) = o and Φ∗(o) = φ, where Φ∗(o) denotes
the differential of Φ at o.

The Euclidean space Rn is strongly symmetric. There are some discussions
about strongly symmetric manifold in [3] (where they use the term “model”
instead of “strongly symmetric manifold”).

From now on in this paper let M be strongly symmetric around o. We
assume that n = dimM ≥ 2. Let (M, ϕ, x) be a global normal coordi-
nate neighborhood around o. That is, there is an orthonormal basis {ej , j =
1, . . . , n} of Mo such that ϕ : M → Rn, q ∈ M �→ x = (x1, . . . , xn) ∈ Rn,
exp−1

o (q) =
∑

j xjej , where Rn denotes the n-dimensional Euclidean space. To
be convenient, we frequently write q = x and denote by x a point of M . Let
(r, θ)(θ = (θ1, . . . , θn−1)) be the (geodesic) polar coordinates of x.

In the polar coordinates, by means of the well-known Gauss Lemma, the
metric of M can be expressed by

(2.1) ds2 = dr2 +
∑
i,j

dijdθidθj = dr2 + h(r)2dΘ2

on M − {o} (see [3]). Here dij = g( ∂
∂θi ,

∂
∂θj ) and dΘ2 denotes the canonical

metric on the unit sphere of Mo. h depends only on r but not on θ since M is
strongly symmetric around o. Let Sr be the geodesic sphere of M with center
o and radius r. Then the Riemannian volume element of Sr can be written as

(2.2) dSr =
√

D(r, θ)dθ1 · · · dθn−1,

where D ≡ det(dij).



�

�

�

�

�

�

�

�

Subharmonic functions on complete Riemannian manifolds 175

A function u(x) on M is said to be radially symmetric around o iff u(x) =
u(x̃) provided that r(x) = r(x̃) for any x, x̃ ∈ M . If u(x) is radially symmetric,
we frequently write u(x) as u(r(x)). Since M is strongly symmetric around o,
it is easy to show that ∆r is radially symmetric on M − {o}. Furthermore, if
u ∈ C2(M −{o}) and u is radially symmetric around o, then ∆u is also radially
symmetric around o.

Let u be a C2 radially symmetric function, it is easy to verify

(2.3) ∆u =
1√
D

∂r(
√

D ∂r u ).

Thus we obtain

(2.4) ∆r =
1√
D

∂r(
√

D) = ∂r log
√

D,

and

(2.5) ∆u = u′′ + (∆r)u′,

where u′ ≡ du/dr, u′′ ≡ d2u/dr2.
We can define a scalar product operation η as following:

η : R × M → M ;
(t, (r, θ)) �→ (tr, θ).

(2.6)

We always write η(r, x) = rx.
In the statement of our main results we also need the following notation.

Definition 2.3 ([2]). A noncompact Riemannian manifold is strongly
parabolic if it admits no nonconstant negative subharmonic function.

It is well-known that Rn (with the Euclidean metric) is strongly parabolic
if n = 2, and is not if n ≥ 3. An important result about strong parabolicity is
the following Karp’s theorem.

Theorem A (Karp [2]). A complete noncompact Riemannian Manifold
is strongly parabolic if it has moderate volume growth.

In the above theorem, the term “to have moderate volume growth” is
defined as following.

Definition 2.4 ([2]). A complete noncompact Riemannian manifold N
has moderate volume growth if there is a positive nondecreasing function F (r)
such that lim supr→∞

1
r2F (r) vol B(x0, r) < ∞ for some (and hence all) x0 ∈ N

while
∫ ∞
1

dr
rF (r) = +∞. Here B(x0, r) denotes the geodesic ball in N with center

x0 and radius r.

The following known result will be needed in the proofs of our main results.
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Theorem B (Yau [4]). Let f be a harmonic function on a complete Rie-
mannian Manifold with nonnegative Ricci curvature. If f is bounded above, then
it has to be constant.

3. Results

Lemma 3.1. If M is strongly symmetric around o, then

(3.1) lim
r→0

r∆r = n − 1.

Proof. Here and below, let V (r) be the volume of Sr. By (2.2) and (2.4)
we get

V ′(r) =
∫ 2π

0

∫ π

0

· · ·
∫ π

0

∂r

√
D√

D

√
Ddθ1 · · · dθn−2dθn−1 = V (r)∆r,

so that

(3.2) ∆r =
V ′(r)
V (r)

.

On the other hand (see [7, p. 256])

V (r) =
∫

S(1)

rn−1J(r, θ)dθ0.

Here S(1) denotes the unit sphere of Mo (consider M0 as an inner product
space with the inner product defined by the restriction of the metric of M at
o ), dθ0 its volume element and J(r, θ) the Jacobian of expo at (r, θ). But J
depends only on r since M is radially symmetric around o, thus

V (r) = rn−1J(r)ωn,

where ωn denotes the volume of S(1). Hence

lim
r→0

r∆r = lim
r→0

rV ′(r)
V (r)

= n − 1.

Let (M, o) be a manifold with a pole. Here and below, let B(r) be the
geodesic ball of radius r and center o, and dµ be the volume element of M . To
formulate our main results it is convenient to introduce the following notation:

H ≡
{

h ∈ C0(M) | h ≥ 0,

∫ ∞

1

1
V (r)

∫
B(r)

h dµdr < +∞
}

.

Theorem 3.1. Let (M, o) be a manifold with a pole. Suppose that M
is strongly symmetric around o and strongly parabolic. Let u ∈ C2(M) be a
subharmonic function on M . If there is h ∈ H such that ∆u ≤ h, then u is
harmonic on M .
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Proof. Define

(3.3) ũ(r) ≡ 1
V (r)

∫
Sr

udSr =
1

V (1)

∫
S1

u(rξ)dS1, (ξ ∈ S1).

The second equality is by (2.1). (On Rn, Ni [8] has used ũ(r) to study the
conformal scalar curvature equation). It is obvious from the definition that
ũ(r(x)) ∈ C2(M − {o}). Moreover we will see in the following that ũ(r(x)) ∈
C2(M).

Step 1. We first prove that ũ(r) is nondecreasing.
According to (3.3), for any r > 0, we have

ũ′(r) =
1

V (1)

∫
S1

∂u

∂r
(rξ)dS1 =

1
V (r)

∫
Sr

∂rudSr.

Thus for r > 0,

(3.4) ũ′(r)V (r) =
∫

Sr

∂rudSr.

For r > 0, by use of the divergence theorem and (3.4), we obtain

(3.5)
∫

B(r)

∆udµ =
∫

Sr

∂rudSr = ũ′(r)V (r).

By the assumption of the theorem we have ∆u ≥ 0, thus ũ′(r) ≥ 0 and hence
ũ(r) is nondecreasing.

Step 2. We now prove that ũ(r) satisfies the following equality:

(3.6) ∆ũ(r) =
1

V (r)

∫
Sr

∆udSr.

In fact, for r > 0,

(3.7)
∫

B(r)

∆udµ =
∫ r

0

∫
St

∆udStdt.

By (2.5), (3.2), (3.5) and (3.7), we have∫
Sr

∆udSr = [ũ′(r)V (r)]′

= V (r)
{

ũ′′(r) +
V ′(r)
V (r)

ũ′(r)
}

= V (r){ũ′′(r) + (∆r)ũ′(r)}
= V (r)∆ũ(r).

(3.8)
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Then, for r > 0, we obtain

∆ũ(r) =
1

V (r)

∫
Sr

∆udSr.

As for r = 0, a simple computation with a use of Lemma 3.1 shows that

(3.9) ũ′(0) = 0, ũ′′(0) =
1
n

∆u(0), lim
r→0

∆ũ(r) = ∆u(0).

Now it is not hard to prove that ũ(r) ∈ C2(M) and that (3.6) still holds for
r = 0 (in the sense of limit).

Step 3. We complete the proof of the theorem.
Now 0 ≤ ∆u ≤ h on M , h ∈ H. From (3.6) we know ∆ũ ≥ 0, so that ũ is

also subharmonic on M . On the other hand, from (3.5) we get

ũ′(r)V (r) =
∫

B(r)

∆udµ ≤
∫

B(r)

hdµ.

So we have
ũ′(r) ≤ 1

V (r)

∫
B(r)

hdµ.

Integrating both sides from 0 to R we obtain

ũ(R) ≤
∫ R

0

1
V (r)

∫
B(r)

h dµdr + ũ(0) ≤
∫ ∞

0

1
V (r)

∫
B(r)

h dµdr + ũ(0) < ∞

for any R ≥ 0. Thus ũ ≡ constant on M since M is strongly parabolic. Then
by (3.5) we imply ∆u ≡ 0 on M .

Corollary 3.1. Let (M, o) be a manifold with a pole. Suppose that M
is strongly symmetric around o and strongly parabolic. Let f be a nonnegative
continuous function on M such that f(x0) 	= 0 for some x0 ∈ M . If there is
h ∈ H such that f ≤ h, then the following equation

(3.10) ∆u = f

has no C2 solutions on M .

Proof. This is an immediate consequence of Theorem 3.1.

Theorem 3.2 (A Liouville-type Theorem). Let (M, o) be a manifold
with a pole. Suppose that M is strongly symmetric around o and strongly
parabolic. Let u ∈ C2(M) be a positive subharmonic function on M . If there
are α > 1 and h ∈ H such that ∆uα ≤ h, then u is constant on M .
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Proof. From the definition of Laplacian we have

∆uα = αuα−1∆u + α(α − 1)uα−2|∇u|2 ≥ 0.(3.11)

Now applying theorem 3.1 to uα we get ∆uα ≡ 0, and from (3.11) we obtain
|∇u| ≡ 0 and hence u ≡ constant.

Given a manifold with a pole (M, o), the radial vector field ∂M is the unit
vector field defined on M − {o} such that for any x ∈ M − {o}, ∂M is the unit
vector tangent to the unique geodesic joining o to x and pointing away from o.

Theorem 3.3 (A Comparison Theorem for Strong Parabolicity). Let
(M, o) and (M, o) be manifolds with poles of the same dimension. Let M (resp.
M) be strongly symmetric around o (resp. around o). Let r (resp. r) be the
distance functions of M (resp. M) relative to o (resp. o). Suppose that the
Ricci curvature of M is nonnegative, and

(3.12) Ric(∂M , ∂M )(x) ≥ Ric(∂M , ∂M )(x)

for every x ∈ M − {o} and x ∈ M − {o} such that r(x) = r(x). Here Ric
denotes Ricci curvature. If M is strongly parabolic, then M is also strongly
parabolic.

Proof. Let u be a negative C2 subharmonic function on M . Define ũ(r) by
(3.3). Then ũ(r) is negative. We also know from the proof of Theorem 3.1 that
ũ(r) is nondecreasing and subharmonic on M . Let ∆ and ∆ be the Laplacians
of M and M respectively. By means of Laplacian Comparison Theorem (see
[3, p. 26]), for every x ∈ M − {o} and x ∈ M − {o} such that r(x) = r(x), we
have

(3.13) ∆ũ(r(x)) ≥ ∆ũ(r(x)) =
1

V (r)

∫
Sr

∆udSr ≥ 0.

So ũ(r) is a negative subharmonic function on M , and hence it is constant by
the strong parabolicity of M . This implies that ∆ũ ≡ 0 on M . It follows by
(3.13) that ∆u ≡ 0 on M . According to Theorem B we conclude that u is
constant and hence M is strongly parabolic.

Corollary 3.2. Let (M, o) be an n-dimensional manifold with a pole
such that n ≥ 3. Let M be strongly symmetric around o. If M is strongly
parabolic, then there is vp ∈ Mp for some point p ∈ M such that Ric(vp, vp) > 0.

Proof. We argue by contradiction. Assume that for all p ∈ M and all
vp ∈ Mp Ric(vp, vp) ≤ 0. From the assumption of the theorem we know that
M is strongly parabolic. By applying Theorem 3.3 to Rn and M we conclude
that Rn is strongly parabolic for n ≥ 3. This is a contradiction.

In the following we will give a different proof of Huber’s Theorem (A
complete two-dimensional Riemannian manifold with non-negative Gaussian
curvature does not admit a nonconstant negative subharmonic function, cf. [1]
and [2]) in the case of 2-dimensional strongly symmetric manifolds.
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Corollary 3.3 (Huber). Let (M2, o) be a 2-dimensional manifold with
a pole and M2 be strongly symmetric around o. If M2 has nonnegative Gaussian
curvature, then it is strongly parabolic.

Proof. We will make use of Theorem 3.3. We choose (M, o) = (M2, o)
and (M, o) = (R2, O) in Theorem 3.3, where O denotes the origin of R2. It
is easy to verify that all conditions of Theorem 3.3 are satisfied. Since R2 is
strongly parabolic, M2 is also strongly parabolic.
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