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On the modularity of a rigid Calabi-Yau
threefold

By

You-Chiang Y1

Abstract
In this paper, we introduce the powerful, new method of Wiles
into establishing that a Calabi-Yau threefold defined over the field Q of
rational numbers is modular, answering a question of Saito & Yui [SY].

1. Introduction

In [W], Andrew Wiles proved Fermat’s Last Theorem by verifying that
every semistable elliptic curve over the field Q of rational numbers is modular.
Elliptic curves are dimension one Calabi-Yau varieties, and the conjecture that
they are all modular (i.e. the Taniyama-Shimura Conjecture) has now been
established for all elliptic curves over Q by Wiles, Breuil, Conrad, Diamond,
and Taylor [BCDT]. The question arises as to which higher-dimensional Calabi-
Yau varieties are modular. Dimension two Calabi-Yau varieties are K3 surfaces
and the modularity conjecture which asserts that every singular K3 surface is
modular has been verified by Shioda and Inose in [SI]. For dimension three, it
has been conjectured that every rigid Calabi-Yau threefold over Q is modular
by Masa-Hiko Saito and Noriko Yui in [SY]. In [V], a certain rigid Calabi-Yau
threefold was proved modular by Verrill using the method of Faltings-Serre.
Two different geometric proofs were given in [SY] and in [HSGS]. It was asked
in [SY] whether one can prove that a Calabi-Yau threefold is modular by using
the new, powerful method of Wiles’. In this paper, we answer this question
by Saito & Yui and establish the modularity of Verrill’s threefold by using
Skinner-Wiles [SW].

2. Calabi-Yau threefolds

Definition 2.1. A Calabi-Yau threefold is a smooth projective variety
X of dimension 3 such that
(i) H(X,0x) =0 for i = 1,2, and
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(ii) the canonical bundle is trivial i.e. Kx := A3QL ~ Ox.

We denote X x gQ by X and define the Hodge number h*7(X) to be
dimH’ (X, Q% ). The Hodge diamond is:

h0,0
hl,O hO,l
h2’0 hl,l h0,2
h3’0 h2,1 h1’2 h0’3
h3’1 h2’2 h1’3
h3,2 h2,3
h3’3

The complex conjugation operation and Serre duality on the Hodge coho-
mology groups imply the symmetry among Hodge numbers:

RY(X) =k (X) and h"(X)=h"IH(X).

Moreover, condition (i) implies h1'?(X) = h%9(X) = 0 and condition (ii) im-
plies h39(X) = 1. By the conditions (1), (2) and the symmetry among Hodge
numbers the Hodge diamond of Calabi-Yau threefolds are as follows:

1
0 0
0 Rt 0
1 h2,1 h2,1 1
0 htt 0
0 0
1

The n-th Betti number, B,(X), of X is defined to be the dimension
of H"(X @ C,C) over C, which is also equal to the dimension of HZ(X,Q;)
over Q; for any [.

The Hodge decomposition asserts that

H'(X®C,C) = EB¢+j:nHj(X ®C, Qg{@({:)

It follows that .
Bu(X)= Y h(X)=> h"THX).
i+j=n i=0
By the Poincaré duality B, (X) = Bagim(x)—n, the Betti numbers of Calabi-
Yau threefolds are as follows:

By=DBg=1
Bi=B;=0
By = By =h"!

Bz = 2(1+ h*!)
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Define the Euler characteristic E(X) of a Calabi-Yau threefold X to be

6
B(X) =Y (~1)'B; = 20 — k>,
=0

where B; is the i-th Betti number of X.

Definition 2.2. A smooth projective Calabi-Yau variety over Q is rigid
if h21(X) = 0 and so B3(X) = 2.

Let X be a rigid Calabi-Yau threefold over Q with a suitable integral
model. The action of Gg on H2,(X,Q;) yields a two dimensional l-adic Galois
representation for any [. X is called modular if the L-series of this Galois
representation coincides with L-series of a modular (cusp) form f, necessary of
weight 4, on some T'g(V), where N is a positive integer divisible by the primes
of bad reduction. In other words, up to finitely many Euler factors,

L(H2,(X,Q)),s) = L(f,s) for some f € Sy(To(N)).

Conjecture 2.1 (The Modularity Conjecture).  Any rigid Calabi-Yau
threefold X defined over Q is modular in the sense that, up to a finite Fuler
factors,

L(H3.(X,Q),s) = L(f,s) for some f € Sy(To(N)).

Conjecture 2.1 is due to [SY] and also a more general form was given by
Serre [S].

Given a prime of good reduction p, p # [, for X, let X (F,) denote the set
of points of X which are rational over F,. The Lefschetz fixed point formula

tell us that .

#X(Fp) = Z(_l)jTr(FrObp§ Hgt(yv Q)),
=0

where Frob,, is induced frqm the geometry Frobenius morphism of X at p.
Define t;(p) = Tr(Frob,; HZ,(X,Q;)). In view of the Hodge diamond of X and

by using various dualities, we have
t1(p) = t5(p) = 0, to(p) = 1, ts(p) = p° and t4(p) = pta(p).
Thus
#X(Fp) =1+ p° + (1+p)t2(p) — ta(p),
whence
ts(p) = 1+p° + (L +p)ta(p) — #X(Fp).

Let a, = Tr(p(Froby)), where p is the Galois representation induced by the
action of Gg on H3,(X,Q;). Thus, we have a, = t3(p). It implies that

ap =1+p> + (1 +pta(p) — #X (Fp).
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We consider the perfect pairing
HE(X, Qi) x HE,(X, Qi) — HE,(X, Qi) = Q
induced by Poincaré duality. It follows that
/\QHSt(Ya Ql) = Hgt(77 @l) = Ql-

The action of Frob, on HE,(X, Q) is multiplication by p®.
The action of Frob, on H3,(X,Q;) therefore satisfies det(p(Frob,)) = p.
Therefore,

(2.1) det(p) = €3,

where € is the cyclotomic character. Thus, if p is modular, it is associated to
a form of weight 4. Henceforth, we focus on the Calabi-Yau variety studied by
Verrill [V]. Verrill’s Calabi-Yau variety Z4, is the smooth model of the variety
V given in inhomogeneous coordinates by

(t+1)2

Vi(l4+z+ay+ayz)(1+ 24 2y + zyx) = "

TYz,
where 2 and 3 are bad primes.

Theorem 2.1 ([V, Prop. 3.7]).  The Calabi- Yau variety Z 4, has Hodge
numbers h?1 = 0 except the following:

h0,0 — h3,0 _ h0,3 _ h3,3 =1 hl,l _ h2,2 = 50.
In particular, Z4, is rigid.

Theorem 2.2 ([V, Lemma 3.8]).  Let p > 5 be a prime. Fork =0,2,4,
6, the action of Frob, on H% (Z4,, Q) is multiplication by pg.

Consider the Barth-Nieto quintic given by the equations
5 5 4
N:{;xi:;m—i:O} C Ps.
It has a smooth Calabi-Yau model, denoted by Y.

Lemma 2.1. Let p > 5 be a prime. The reduction of Y modulo is
smooth over IFp,.

Proof. By an easy calculation(cf. [BN, (3.1), (9.1) and (9.3)]). O

Theorem 2.3 ([HSGS, Thm. 2.1)).  The Calabi-Yau wvariety Y has
Hodge numbers h?4 = 0 except the following:

h0,0 — h3,0 — hO,S — h3,3 — 17 hl’l — h2,2 = 50.

In particular, Y is rigid.
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Lemma 2.2 ([HSGS, Thm. 4.1 and Thm. 4.3]). Y and Z4, are bira-
tional equivalent over Q.

Theorem 2.4 ([HSGS, Prop. 2.4]). Let p > 5 be a prime. For k =
0,2,4,6, the action of Frob, on HY (Y, Q) is multiplication by pg.

For X =Y or Z,4,, the Lefschetz fixed point formula and the above theo-
rems imply that
ap =1+ 50p + 50p* + p* — #X(F,).

The following table gives the first few a, by computer calculation.

p #X(Fp) ap
5

1620 6
7 3160 | -16
11 7920 12

13 11260 38
17 20340 | -126
19 25840 20
23 39600 | 168

3. Techniques of Skinner-Wiles

Suppose that p : Gal(Q/Q) — GLy(FE) where E is a finite extension of
Q;. We denote by p the residual representation and write p°° for the semisim-
plification of p.

Theorem 3.1 (Skinner-Wiles [SW, p. 6]).  Suppose that p : Gal(Q/Q)
— GLo(F) is a continuous representation, irreducible and unramified outside
a finite set of primes, where E is a finite extension of Q;. Suppose also p*® ~
1® x and that

(1) x|p, # 1, where Dy is a decomposition group at .

. * %

(11) p|Il = 0o 1)

(iii) det; p = e*~1 for some k > 2 and is odd, where € is the cyclotomic
character and v is of finite order. Then p comes from a modular form.

Consider the continuous Galois representation p : Gal(Q/Q) — GL2(Qs)
induced by the action of Gal(Q/Q) on H3,(Z4,,Q5). To say Z4, is modular
is equivalent to p being modular. To apply the theorem of Skinner-Wiles to
verify that p is modular, we consider the following:

A :a,=1+p® (mod 5).

* ok
B:p|15:(0 )

C: p: Gal(Q/Q) — GLy(Qys) is irreducible.
Condition C is a hypothesis to Theorem 3.1. As for its other hypotheses,
first condition A says that the trace of Frobenius at p, Tr(p(Frob,)) = 1 +
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p3(mod 5) = 1+ €(Frob,)?(mod 5). By the Tchebotarev theorem, which says
the Frobenius elements are dense, A implies p°° ~ 1 @ 3. Moreover, x = €
satisfies hypothesis (i) of Theorem 3.1. Hypothesis (ii) is just condition B, and
(iii) was established on (2.1). Therefore, to verify p is modular by Theorem 3.1
it suffices to prove A, B and C.

First, we quote some lemmas to establish A.

Let Dy = {xo---25 =0}. Set U := N \ Dy.

Lemma 3.1 ([HSGS, Prop. 2.13]).  Let p > 5 be a prime. #Y (Fp) =
#U(Fp) + 50p% + 50p + 20.

Let p; : Gal(Q/Q) — GL2(Qs) be the representation induced by the
action of Gal(Q/Q) on H3,(Y,Qs). The birational equivalence between Y and
Z4, implies that Tr(p(Frob,))=Tr(p;(Frob,)). Hence, by the formula a, =
1+50p+50p% + p® — #Y (F,,), to prove A is equivalent to prove that #Y (F,) is
divisible by 5. Theorem 3.3 tell us that it suffice to prove that 5 divide #U (F,).

Theorem 3.2. #U(F,) =0 (mod 5).

Proof. U = {(xo, .., x5) € Pl Z?:o T = Z?:O xi = Qandzg - - - x5 # 0}
Consider the action of Sg on U. U is the union of orbits of the action. To prove
that each orbit is divisible by 5 is to prove that the order of the stabilizer of
certain element in the orbit is not divisible by 5. Suppose otherwise. Then the
stabilizer has a cyclic subgroup of order 5. Without loss of generality suppose
this subgroup is generated by (1 2 3 4 5). Other cases are proved similarly.
The defining equations of NV gives us the following system:

xo + dxr1 =0,
1 5
— 4+ — =0,
Xo X
whence
o+ dx1 = 0,
5xg + x1 = 0.
The only solution is trivial, which is a contradiction. O

To get the result of B, we quote the following theorem from [CSS, p. 388,
Thm. 1.8].

Theorem 3.3. Let R be a complete local noetherian ring with finite
residue field k of characteristic | # 2. Choose a flat representation

p:D;— GLQ(k)

with detpl, = w|r, and a continuous lift p : D; — GLa(R) which give rise to
an element of D/’;l(R).
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Let
¢y [ BFS — GLy(F)) — GLo(k)

be the map arising from a choice of an F-basis of Fz.
(i) If p is reducible, then there exist continuous unramified characters x; :

D; — k* such that
~ o (wxa o *
p= ( 0 X2> '

Otherwise p is absolutely irreducible and p|;, ~ ¢2 (and so pl;, @F; ~ 1y DYL).
(i1) If p is reducible, then there exist continuous unramified characters x; :

D; — R* such that
~ €X1 *
p_(o XJ'

In particular, det p|;, = €|1, and x;mod mp =;.
(iil) If p is irreducible, then det p|;, = €|y,.

Since the variety Z4, has good reduction at 5, the representation p is
flat. Therefore, p is a reducible flat representation with detp = w? where w is

the reduction of 5-adic cyclotomic character ¢ modulo 5. Hence detp™! = w.

0
D5 — R* are unramified characters. In particular, x;|z, are trivial. Hence p|,
* ok
0 1)
Finally, in order to apply Theorem 3.1, we have to show that p is irre-

Applying theorem 3.4 (ii) to p~! give us p~t|p, ~ <6X1 ;) , where y; :
2
has the form

ducible. Suppose that p were reducible, which means p ~ (%1 ;), where
2

the ¢;’s are characters. The fact that det(p) = € implies ¢; = €%¢; and
¢2 = €’1hy, where a +b = 3 and v; : Gal(Q/Q) — Qf are characters of fi-
nite order. Then, Trp = €% + €37 %)y where a = 0 or 1. Consider the
prime p = 7. ay = —16 = 7% (Frob;) + 73~ %y (Frob;). Thus a; = —16 =
7%y (Froby) + 73~%) 1 (Froby). Because the only finite subgroup of Q% is Cy,
1 (Froby) € {£1,£i}, which is a contradiction to the former equality. This
complete the proof of C.
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