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Cohomology operations in the space of loops on
the exceptional Lie group FEj

By

Masaki NAKAGAWA

Let Eg be the compact 1-connected exceptional Lie group of rank 6. In
[9] we determined the Hopf algebra structure of H,(Q2Fg;Z) by the generating
variety approach of R. Bott [1]. In this case, as a generating variety we can take
FEIII, the irreducible Hermitian symmetric space of exceptional type. Then as
Bott pointed out in [1], §6, we can determine the action of the mod p Steenrod
algebra A, on H*(QEg; Zy) from that on H*(EIII;Z,) for all primes p.

In this paper, for ease of algebraic description, we compute the action
of A, the dual of A,, on H,(QFg;7Zy,) for p = 2,3 (For larger primes the
description is easy). In the course of computation we also determine the action
of A3 on H*(Eg/T;Z3), where T is a maximal torus of Eg.

The paper is constructed as follows: In Section 2 we recall some results
concerning the cohomology of some homogeneous spaces of Eg. In Section
3 by considering the action of the Weyl group on Fs/T, we determine the
cohomology operations in FII1. Using the results obtained, in Section 4 we
shall determine the cohomology operations in QFg.

Throughout this paper o;(z1, ..., z,) denotes the i-th elementary symmet-
ric function in the variables z1, ..., z,.

1. Preliminaries

Let T be a maximal torus of Fg and we use the root system {o; }1<;<¢ given
in [2]. We denote the corresponding fundamental weights by {w;}1<i<¢. As
usual we may regard roots and weights as elements of H*(T; Z) — H?*(BT;Z).
Then {w;}1<i<¢ forms a basis of H*(BT;Z) and H*(BT;Z) = Zw1,wa,.. .,
’LU(;].

Let C; (resp. C3) be the centralizer of the 1-dimensional torus determined
by a; =0 (j #1) (resp. o;j =0 (j # 2)). Then as is well known

Cy =T"- Spin(10), T'N Spin(10) = Z,,
Co=T'-SU6), T'NSU6)=7Z,.
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Let R; denote the reflection to the hyperplane «; = 0, then the Weyl groups
W(-) of Eg,C; (i = 1,2) are finite groups generated by these reflections:

W(Es) = (R; (1 <i<6)),
W(Cy) = (R; (i #1)),
W(Cs) = (R; (i # 2)).
Following [10], we introduce elements of H2(BT;Z) by
te = we, =Ry (tz+1{ (2<i<5), t1=Ri(t2),

Ci:Ui(tl,...,tG), t= 501 = W2

(1.1)

and denote by the same symbols for the images of ¢;’s and ¢ under the coho-
mology homomorphism induced by the natural map Fg/T — BT. Then we
have the following isomorphism and the table of the action of W (Es) on these
elememts:

H*(BT,Z) = Z[tl,tg,...,t(;,ﬂ/(81 — St)

Ry Ry Rs Ry, Rs Rg
tq to t—b1+t
to | t1 t—by 41ty t3
t3 t—bi+t3 to ta
t4 t3 ts
ts ty4 te
te ts
t —t+ a1

Table 1.

where by = t1 + 1ty +t3, a1 = t4 +t5 + tg and blanks indicate the trivial action.
Consider the two fibrations

SO(10)/T' = C, /T - E¢/T -2 Eg/Cy = EIII,
U(6)/T" = Cy)T —5 Eg)T % Eg/Co,

where 77, T" are standard maximal tori of SO(10), SU(6) respectively. By the
classical results of R. Bott, both the fibre and the base have no odd dimen-
sional cohomology in either case. Hence the Serre spectral sequences of these
fibrations collapse for any coefficient ring A and we have

Lemma 1.1.

p*: H*(EIII;A\) — H*(Eg/T; A),
q" : H (Eg/Ca; A) — H*(Eg/T; A)

are split monomorphisms for any coefficient ring A.
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The integral cohomology ring of Fg/T (resp. EIIT) is determined in [10],
Theorem B (resp. Corollary C). The results are as follows:
Theorem 1.1.
(i)
H*(EG/Tv Z) = Z[tlu e 7t67 t7'737 74]/(p17 P25 P35 P4, P55 P65 P85 P9, p12)7
where t1,. .., ts,t are as in (1.1), y3 € HS, v, € H® and
p1=c1—3t, p2 262—4t2, p3 =c3— 273, p4 =C4+2t4—374,
ps =cs — 3tys + 26773, ps = 3" + 2c6 — 374 + 15,
ps = 37a” — 6ty37s — 9tce + 15t4yy — 67y — 15,
P9 = tg — 3t011127 P12 = w? + 151?3102 — 9t§w
for
ci =0i(t1,...,ts), to =t —t1,
_ 4 3 2,2 3 44
w = y4 + (—2t1 — to)’)/3 + 2t7 4 6t7to + 7t1t0 + 3t1ty + to-
(ii)
H*(EIIT; Z) = Zlto, w]/(t) — 3tow?, w® + 15tgw? — Mtiw),

where tg € H?,w € H® and the generator w can be chosen so that it coin-
cides with the above w of (i) under the natural injection p* : HS(EIII;Z) —
H(Es/T;Z).

2. The cohomology operations in H*(EIII;Z,) for p=2,3

The Case p=2. The mod 2 cohomology of ET11 is easily obtained from
Theorem 1.1. Furthermore the squaring operations in H*(FII1I;Z,) are also
determined in [6], Theorem 2.4. The results are as follows:

Theorem 2.1.
H*(EIIT; Zs) = Zolto, w]/(ty + tow?, w® + tgw? + thw),

where deg(to) = 2, deg(w) = 8 and

SqQ(w) = tg + tow, Sq4(w) = tg, ng(w) = w?.

The Case p=3. The rest of this section and the next section are de-
voted to the determination of the reduced power operations in H*(EIII;Zs3).
From Lemma 1.1

p*: H*(EIII;Z3) — H*(Fs/T;Z3)
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is injective. Therefore the action of the reduced power operations P on EIIT
is deduced from that on Eg/T.
From Theorem 1.1 the mod 3 cohomology of Eg/T is given by
H*(EG/Tsz) = ZS[tlv .. ‘7t67t7’y4]

/(c1,c0 — t2,cq —th 5 + t203,c§ — ¢+ tG,ts,tg, ws),

to=1t—t1, w="4+ (—t1 +to)es — t] +tit2 +t; mod 3.
Note that in H*(Eg/T;Z3)

tg = c3¢g,
w? = . 3 t606,
so that the relations t), w? are replaced with czcg, v4® — t9cq respectively.
Therefore the problem is to determine the action of P* on ~4. For this
purpose we consider the action of the Weyl group W (Eg) on H*(Es/T; A), A =
Z or Zg (for this account see also [7, §3]). From Table 1 R; (i # 2) act trivially
on ¢ and {c¢,}1<n<e. Therefore they act trivially on 4 by the definition of
Ya,3V4 = C4 + 2t
Next consider the action of Ry on {¢, }1<n<6, Y4. From now on we use the

notation
R=Ry, and R=R-—id

We put
b; = Ui(tl,tg,t;g) and a; = Uj(t4,t5,t6) S H*(E(;/T, Z)

so that

(22) Cp = Z bia]-.

Substituting ¢; = 3t, co = 4t in H*(Es/T;7Z) into (2.2) we obtain

b1 =3t — ai,
(2.3) by = 4t* — 3ait + a} — aq,
by = c3 — dait? + (3a? — 3az)t — a3 + 2a1az — a3
From (2.2), (2.3) we can write ¢,,n = 4,5, 6 in terms of ¢, 3, a;’s. Applying
the mod 3 reduction we obtain
¢4 = czay — a3+ ajaz —ai mod (3,1),
(2.4) 5 = c3ap + agasz — a1a3 + alaz — aSay mod (3,1),

c¢ = c3az — a3 — ayagaz — asaz  mod (3,1).
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Since
3 3 3 3
> R(b;)=R (Z bi> =R <H(1 + u)) =[]+ Rt:))
(2.5) =0 , 1=0 =1 , =1
=[[a+t=bi+t)=> (1A+t—b)" b,
i=1 =0
we have
R(b1) = —6t + 3a,

(2.6) R(by) = —2a1t + a3,

bs) = —4t3 + 6a1t* + (—4a} + 2a2)t — araz + a;.

(
Since R(a;) = a; by Table 1

(2.7) R(cn) = Y R(b)a;.

i+j=n

47

From (2.6), (2.7) we can write R(c,),n = 3,4, 5,6 in terms of ¢, a;’s. In partic-

ular

R(cs + 2t*) = 3{~4a11® + 602> + (—4a® — 2a3)t + a* + ayas},
which implies
R(v1) = —4a1t® + 6a3t? + (—4a? — 2a3)t + af + aja3

=af +ajaz mod (t)

by the definition of 4. Applying the mod 3 reduction we obtain the following

results:
R(x) mod (t)
t aq
C3 —a1a2 — aif
Cq4 a‘ll
Cs —alag + a%ag + a?ag
cg | —aiasasz + a:fag
Y4 | aras + af

Table 2.

3. The action of P on v,

The purpose of this section is to determine P?(y4) for i = 1,3 (the other

cases follow from the axioms of the reduced power operations).
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From Lemma 1.1
q* . H*(EG/CQ,Zd) — H*(EG/T,Zd)

is injective and we can identify H*(FEg/Cs;Z3) with Im ¢* and regard it as a
subalgebra of H*(Es/T;Zs).

Notation. A:H*(E6/CQ,Zg) ‘—>B:H*(E6/T,Zg)

On the other hand the integral cohomology ring of Eg/Cs is determined
in [5], Theorem 3.2. From this the following is easily obtained:

(31) A= Z3[t7637’y4’ CG}/(Cg —Cc + t67t87 63667743 - t6c6)'

An additive basis of A as a Zs-vector space for degree < 20 is given by

deg |0 2 4 6 8 10 12 14 16 18 20
1t 2 B8 ¢ P 16 7
C3 th t263 t303 t4C3 t503 t603 t7C3
Yoo oty Py Byt 94 594
Cg tCG tQCG t366 t4(36
c3ya  tesya tPesya tPesma
2 2 2, 2
Y4 174 17y
Table 3.

Now we regard R as a homomorphism
R:B— B — B/(t)

and restrict it to the subalgebra A (also denoted by R) Then since the ideal
(t) C B generated by t is closed under the action of P*, we have the following
commutative diagram:

A 1 R B/
(3.2) Pll lpl lpi
A —— B —— B/()

Now let us determine the action of P? on ~4 for i = 1,3. Using Tables 2
and 3 R becomes a monomorphism on degree 12. On the other hand in the
expression R(P!(v4)) = PY(R(y4)), the right hand side is computed by Table
2 and the next lemma, which is easily obtained.

Lemma 3.1.  For aj = 0j(ts,ts,t6) € H*(Es/T;Z3) we have
Pl(ay) = a?,
Pl(as) = a% + a%ag — ayas,

Pl(as) = azas + ajas.
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Then by the injectivity of R we obtain
Pl(yy) = —cs +1°.

Since R(t"c3) = 0, R does not become a monomorphism on degree 20. But
similar computation yields

P3(y4) = —theg +m-t'es

for some m € Zs. Hence under the monomorphism p*

P3(w) = P3(ya + (—t1 +to)es — t1 + 313 + t5)
(3-3) — 7 46, 4443 43,4 6, 47

=m - (t] + tSto — t13 — £3t3 + 1145 + 17)cs.

On the other hand from Theorem 1.1 we can put
(3.4) Pi(w) =k - tiw + 1 - t2w?
' =182y + (k—1) - tSy 4 -

for some k,l € Zz. From (3.3), (3.4) we deduce k =1 = m = 0 by the linearly
independence of monomials in H?®(Es/T;Z3).

Remark 1. In the above computations note that the following relations
hold in B/(t) which are derived from (2.1), (2.4):

2 3 7
a; —ajaz, a; =0,

2 3 2 4 6
asaz + ajaz — a;0a2a3 — a1 A3.
Summarizing these we obtain the following results:

Proposition 3.1.
(i) The action of P* on vy is given by

Plva) = —co +1°  P*(na) (= —P'P(11)) = t3cs,
P3(va) = —tcs, P*(71) = 74® = t%.

(ii) The reduced power operations in H*(EIII;Z3) are given as follows:

P(to) = t5,
Pl(w) = —t5, P*(w)(=-P'P'(w)) =0, P*w)=0,
Plw) = u® =0

4. Cohomology operations in H,(QEg;Z,) for p=2,3

In this section, using the results obtained so far we determine the coho-
mology operations in QFg. Hereafter we use the notations and the results of
[9] without specific references.

First consider the case p = 2: From [9], Theorem 1.1, the mod 2 homology
of QFg is given by
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Theorem 4.1.
H*(QE67 ZQ) = Z2[0—17 02,04,05,07,08, 011}/(012)7

where deg(o;) = 2i. Moreover 01,55 = 0109° + 05,07 = 0205 + 07,011 =
01052 + 0907 + 011 are primitive and V¥(o3) = 01 @ 07.

From Theorem 4.1 the primitive elements of H,(Q2FEg; Z2) which appear in
degree < 22 are given by

deg 2 8 10 14 16 20 22
o1 02° G5 407 o9t G2 o1

Table 4.

Let Sqi € Ay, be the dual of the squaring operation Sq* € A,, that is

(a,5¢.(a)) = (5¢'(a), a),
where a € H*, o € H, and (, ) is the Kronecker pairing (For the properties of
Sqs, see [11, §3]).
Let us determine the squaring operations in H, (2Eg; Z2). By Theorem 4.1
we have only to determine the S¢’( ) on the elements o1, 02,04, 55,67, 08, 511
(1) Since S¢*(a1) = a? = az, Sq*(02) = 01.
(2) By Theorem 4.1 we can put

SqZ(o4) =k - 0102

for some k € Zy. On the other hand since Sq?(a3) = Sq¢?(a3) = a] = by we
have

k= (a3, Sq(04)) = (Sq*(as),04) = (bs,04) = 1.
Thus
Sqf(a4) = 0109.

Since Sq*(az) = a3 = by we obtain
SCIﬁ((M) = 02.

(3) Since Sqi( ) sends primitive elements to primitive elements, we make
use of a pattern of computation stated in [11], p. 476 for &5, 67,511. So details
are omitted.

(4) By Table 4 we can put

Sqf(og) =k-0109° + 1010904 +m - 0905 +n - 07

for some k,l, m,n € Z,. Dualizing this gives

(4.1) Sq?(a7) = bsg +cg +dg + k - eg,
(4.2) Sq*(br) =1 - es,

(43) Se(er) = m-ex,

(4.4) Sq*(d7) = n - es.
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Applying ¢g* on both sides of (4.4), then using Theorem 2.1
Lh.s. = g:Sq¢*(d7) = Sq*g} (d7) = Sq*(d) = S (tiw) = 15,
rhs. =n-e=n-ts.
Therefore n = 1. Similarly from (4.3), (4.2)
9:8¢%(cr) = Sq?gi(cr) = S (d') = S¢*(t5) = 15,
9:54°(br) = Sq’g;(er) = Sq*(—d') = Sq*(tg) = to.
Therefore m = 1,1 = 1. Finally applying g* on both sides of (4.1), then
Lh.s. = g;5q°(ar) = S¢*g:(a7) =0,
r.h.s. = g(bs) + g5 (cs) + g5 (ds) + k - g2 (es)
= (e +e")+ (2¢ +8e") + (—¢' —3€¢") + k- (—€ —3e")
=k-tyw.
Therefore k£ = 0. Thus
Sq2(0g) = 010904 + 0205 + 07 = 010204 + 57

Similar computations give the results for Sq?(og), Sq®(0s), Sq(0s).
Thus we obtain the following results:

Theorem 4.2. The squaring operations in
H.(QF¢; Zs) = Zs[o1,02,04,55,67,08,511)/(017)

are given as follows:

S¢i(02) = o1,

S¢(04) = o109,  Sqi(o4) = 03,

SqZ(65) = 02, Sqi(ds5) =0,

Sq2(67) =0, Sqi(67) =375, Sql(67) =0,
SqZ(0s) = 010204 + 67,  Sqi(0s) = 0204,
Sql(0s) = 05, Sq;(08) = 04,

Sq2(611) =62, Sqi(611) =0, Sqb(611) =0,

Sq¥(611) = &7, Sqi’(611) = 0.

The computations for p = 3 are similar and therefore we exhibit the data
and the results. From [9], Theorem 1.1, the mod 3 homology of QEs is given
by

Theorem 4.3.
H*(QE67 Zd) = Z3[017 03,04,05,07,08, 011}/(013)7

where deg(o;) = 2i. Moreover 01,64 = —0103 + 04,05 = 01203 — 05,67 =
—0103° + 01°05 + 07,08 = 01%03% — 0305 — 04° + 05,011 = —03%05 — 0105 —
0407 — o011 are primitive and Y(o3) = —01% ® 07.
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From Theorem 4.3 the primitive elements of H,(2Fs; Z3) which appear in
degree < 22 are given by

deg 2 8 10 14 16 18 22
oy 04 05 07 Os 030 on

Table 5.
Using Proposition 3.1 we obtain
Theorem 4.4. The reduced power operations in
H.(QFEs; Z3) = Zslo1, 03,654,655, 67,068,011/ (01°)

are givern as follows:

P.(os) = o1,

Pl(64) =0,

PL(55) =0,

P, (57) = s, P2(57) =0,

Pi(Gs) =0,  Pias) =0,

PL611) = 03, P(511) =0, P3(611) = 0.

Remark 2.  The Hopf algebra structure of H,(2Eg;Z,) over A, for
p = 2,3 is already determined in [8], [3] and [4] without using the generating
variety. Therefore our contribution is to make the description of H.(QEg; Zy)
for p = 2,3 explicit in terms of H,(QF¢;Z).
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