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Cohomology operations in the space of loops on
the exceptional Lie group E6

By

Masaki Nakagawa

Let E6 be the compact 1-connected exceptional Lie group of rank 6. In
[9] we determined the Hopf algebra structure of H∗(ΩE6; Z) by the generating
variety approach of R. Bott [1]. In this case, as a generating variety we can take
EIII, the irreducible Hermitian symmetric space of exceptional type. Then as
Bott pointed out in [1], §6, we can determine the action of the mod p Steenrod
algebra Ap on H∗(ΩE6; Zp) from that on H∗(EIII; Zp) for all primes p.

In this paper, for ease of algebraic description, we compute the action
of Ap∗, the dual of Ap, on H∗(ΩE6; Zp) for p = 2, 3 (For larger primes the
description is easy). In the course of computation we also determine the action
of A3 on H∗(E6/T ; Z3), where T is a maximal torus of E6.

The paper is constructed as follows: In Section 2 we recall some results
concerning the cohomology of some homogeneous spaces of E6. In Section
3 by considering the action of the Weyl group on E6/T , we determine the
cohomology operations in EIII. Using the results obtained, in Section 4 we
shall determine the cohomology operations in ΩE6.

Throughout this paper σi(x1, . . . , xn) denotes the i-th elementary symmet-
ric function in the variables x1, . . . , xn.

1. Preliminaries

Let T be a maximal torus of E6 and we use the root system {αi}1≤i≤6 given
in [2]. We denote the corresponding fundamental weights by {wi}1≤i≤6. As
usual we may regard roots and weights as elements ofH1(T ; Z) ∼−→ H2(BT ; Z).
Then {wi}1≤i≤6 forms a basis of H2(BT ; Z) and H∗(BT ; Z) = Z[w1, w2, . . . ,
w6].

Let C1 (resp. C2) be the centralizer of the 1-dimensional torus determined
by αj = 0 (j �= 1) (resp. αj = 0 (j �= 2)). Then as is well known

C1 = T 1 · Spin(10), T 1 ∩ Spin(10) ∼= Z4,

C2 = T 1 · SU(6), T 1 ∩ SU(6) ∼= Z2.
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44 Masaki Nakagawa

Let Ri denote the reflection to the hyperplane αi = 0, then the Weyl groups
W (·) of E6, Ci (i = 1, 2) are finite groups generated by these reflections:

W (E6) = 〈Ri (1 ≤ i ≤ 6)〉,
W (C1) = 〈Ri (i �= 1)〉,
W (C2) = 〈Ri (i �= 2)〉.

Following [10], we introduce elements of H2(BT ; Z) by

(1.1)
t6 = w6, ti = Ri+1(ti+1) (2 ≤ i ≤ 5), t1 = R1(t2),

ci = σi(t1, . . . , t6), t =
1
3
c1 = w2

and denote by the same symbols for the images of ti’s and t under the coho-
mology homomorphism induced by the natural map E6/T −→ BT . Then we
have the following isomorphism and the table of the action of W (E6) on these
elememts:

H∗(BT ; Z) = Z[t1, t2, . . . , t6, t]/(c1 − 3t).

R1 R2 R3 R4 R5 R6

t1 t2 t− b1 + t1
t2 t1 t− b1 + t2 t3
t3 t− b1 + t3 t2 t4
t4 t3 t5
t5 t4 t6
t6 t5
t −t+ a1

Table 1.

where b1 = t1 + t2 + t3, a1 = t4 + t5 + t6 and blanks indicate the trivial action.
Consider the two fibrations

SO(10)/T ′ ∼= C1/T
i−→ E6/T

p−→ E6/C1 = EIII,

SU(6)/T ′′ ∼= C2/T
j−→ E6/T

q−→ E6/C2,

where T ′, T ′′ are standard maximal tori of SO(10), SU(6) respectively. By the
classical results of R. Bott, both the fibre and the base have no odd dimen-
sional cohomology in either case. Hence the Serre spectral sequences of these
fibrations collapse for any coefficient ring Λ and we have

Lemma 1.1.

p∗ : H∗(EIII; Λ) −→ H∗(E6/T ; Λ),
q∗ : H∗(E6/C2; Λ) −→ H∗(E6/T ; Λ)

are split monomorphisms for any coefficient ring Λ.
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The integral cohomology ring of E6/T (resp. EIII) is determined in [10],
Theorem B (resp. Corollary C). The results are as follows:

Theorem 1.1.
(i)

H∗(E6/T ; Z) = Z[t1, . . . , t6, t, γ3, γ4]/(ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ8, ρ9, ρ12),

where t1, . . . , t6, t are as in (1.1), γ3 ∈ H6, γ4 ∈ H8 and

ρ1 = c1 − 3t, ρ2 = c2 − 4t2, ρ3 = c3 − 2γ3, ρ4 = c4 + 2t4 − 3γ4,

ρ5 = c5 − 3tγ4 + 2t2γ3, ρ6 = γ3
2 + 2c6 − 3t2γ4 + t6,

ρ8 = 3γ4
2 − 6tγ3γ4 − 9t2c6 + 15t4γ4 − 6t5γ3 − t8,

ρ9 = t90 − 3t0w2, ρ12 = w3 + 15t40w
2 − 9t80w

for

ci = σi(t1, . . . , t6), t0 = t− t1,

w = γ4 + (−2t1 − t0)γ3 + 2t41 + 6t31t0 + 7t21t
2
0 + 3t1t30 + t40.

(ii)

H∗(EIII; Z) = Z[t0, w]/(t90 − 3t0w2, w3 + 15t40w
2 − 9t80w),

where t0 ∈ H2, w ∈ H8 and the generator w can be chosen so that it coin-
cides with the above w of (i) under the natural injection p∗ : H8(EIII; Z) −→
H8(E6/T ; Z).

2. The cohomology operations in H∗(EIII; Zp) for p = 2, 3

The Case p = 2. The mod 2 cohomology of EIII is easily obtained from
Theorem 1.1. Furthermore the squaring operations in H∗(EIII; Z2) are also
determined in [6], Theorem 2.4. The results are as follows:

Theorem 2.1.

H∗(EIII; Z2) = Z2[t0, w]/(t90 + t0w
2, w3 + t40w

2 + t80w),

where deg(t0) = 2, deg(w) = 8 and

Sq2(t0) = t20,

Sq2(w) = t50 + t0w, Sq4(w) = t60, Sq8(w) = w2.

The Case p = 3. The rest of this section and the next section are de-
voted to the determination of the reduced power operations in H∗(EIII; Z3).

From Lemma 1.1

p∗ : H∗(EIII; Z3) −→ H∗(E6/T ; Z3)
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is injective. Therefore the action of the reduced power operations Pi on EIII
is deduced from that on E6/T .

From Theorem 1.1 the mod 3 cohomology of E6/T is given by

H∗(E6/T ; Z3) = Z3[t1, . . . , t6, t, γ4]

/(c1, c2 − t2, c4 − t4, c5 + t2c3, c
2
3 − c6 + t6, t8, t90, w

3),
(2.1)

where

t0 = t− t1, w ≡ γ4 + (−t1 + t0)c3 − t41 + t21t
2
0 + t40 mod 3.

Note that in H∗(E6/T ; Z3)

t90 ≡ c3c6,

w3 ≡ γ4
3 − t6c6,

so that the relations t90, w
3 are replaced with c3c6, γ4

3 − t6c6 respectively.
Therefore the problem is to determine the action of Pi on γ4. For this

purpose we consider the action of the Weyl group W (E6) on H∗(E6/T ; Λ),Λ =
Z or Z3 (for this account see also [7, §3]). From Table 1 Ri (i �= 2) act trivially
on t and {cn}1≤n≤6. Therefore they act trivially on γ4 by the definition of
γ4, 3γ4 = c4 + 2t4.

Next consider the action of R2 on {cn}1≤n≤6, γ4. From now on we use the
notation

R = R2 and R̄ = R − id.

We put

bi = σi(t1, t2, t3) and aj = σj(t4, t5, t6) ∈ H∗(E6/T ; Z)

so that

(2.2) cn =
∑

i+j=n

biaj .

Substituting c1 = 3t, c2 = 4t2 in H∗(E6/T ; Z) into (2.2) we obtain

b1 = 3t− a1,

b2 = 4t2 − 3a1t+ a2
1 − a2,

b3 = c3 − 4a1t
2 + (3a2

1 − 3a2)t− a3 + 2a1a2 − a3
1.

(2.3)

From (2.2), (2.3) we can write cn, n = 4, 5, 6 in terms of t, c3, aj ’s. Applying
the mod 3 reduction we obtain

c4 ≡ c3a1 − a2
2 + a1a3 − a4

1 mod (3, t),

c5 ≡ c3a2 + a2a3 − a1a
2
2 + a2

1a3 − a3
1a2 mod (3, t),

c6 ≡ c3a3 − a2
3 − a1a2a3 − a3

1a3 mod (3, t).

(2.4)
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Since

3∑
i=0

R(bi) = R

(
3∑

i=0

bi

)
= R

(
3∏

i=1

(1 + ti)

)
=

3∏
i=1

(1 +R(ti))

=
3∏

i=1

(1 + t− b1 + ti) =
3∑

i=0

(1 + t− b1)3−ibi,

(2.5)

we have

R̄(b1) = −6t+ 3a1,

R̄(b2) = −2a1t+ a2
1,

R̄(b3) = −4t3 + 6a1t
2 + (−4a2

1 + 2a2)t− a1a2 + a3
1.

(2.6)

Since R(aj) = aj by Table 1

(2.7) R̄(cn) =
∑

i+j=n

R̄(bi)aj .

From (2.6), (2.7) we can write R̄(cn), n = 3, 4, 5, 6 in terms of t, aj ’s. In partic-
ular

R̄(c4 + 2t4) = 3{−4a1t
3 + 6a2

1t
2 + (−4a3

1 − 2a3)t+ a4
1 + a1a3},

which implies

R̄(γ4) = −4a1t
3 + 6a2

1t
2 + (−4a3

1 − 2a3)t+ a4
1 + a1a3

≡ a4
1 + a1a3 mod (t)

by the definition of γ4. Applying the mod 3 reduction we obtain the following
results:

R̄(x) mod (t)
t a1

c3 −a1a2 − a3
1

c4 a4
1

c5 −a1a
2
2 + a2

1a3 + a3
1a2

c6 −a1a2a3 + a3
1a3

γ4 a1a3 + a4
1

Table 2.

3. The action of Pi on γ4

The purpose of this section is to determine Pi(γ4) for i = 1, 3 (the other
cases follow from the axioms of the reduced power operations).
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From Lemma 1.1

q∗ : H∗(E6/C2; Z3) −→ H∗(E6/T ; Z3)

is injective and we can identify H∗(E6/C2; Z3) with Im q∗ and regard it as a
subalgebra of H∗(E6/T ; Z3).

Notation. A = H∗(E6/C2; Z3) ↪→ B = H∗(E6/T ; Z3)

On the other hand the integral cohomology ring of E6/C2 is determined
in [5], Theorem 3.2. From this the following is easily obtained:

(3.1) A = Z3[t, c3, γ4, c6]/(c23 − c6 + t6, t8, c3c6, γ4
3 − t6c6).

An additive basis of A as a Z3-vector space for degree ≤ 20 is given by

deg 0 2 4 6 8 10 12 14 16 18 20
1 t t2 t3 t4 t5 t6 t7

c3 tc3 t2c3 t3c3 t4c3 t5c3 t6c3 t7c3
γ4 tγ4 t2γ4 t3γ4 t4γ4 t5γ4 t6γ4

c6 tc6 t2c6 t3c6 t4c6
c3γ4 tc3γ4 t2c3γ4 t3c3γ4

γ4
2 tγ4

2 t2γ4
2

Table 3.

Now we regard R̄ as a homomorphism

R̄ : B −→ B −→ B/(t)

and restrict it to the subalgebra A (also denoted by R̄). Then since the ideal
(t) ⊂ B generated by t is closed under the action of Pi, we have the following
commutative diagram:

(3.2)

A
q∗

−−−−→ B
R̄−−−−→ B/(t)

Pi

� �Pi

�Pi

A −−−−→
q∗ B −−−−→

R̄
B/(t) .

Now let us determine the action of Pi on γ4 for i = 1, 3. Using Tables 2
and 3 R̄ becomes a monomorphism on degree 12. On the other hand in the
expression R̄(P1(γ4)) ≡ P1(R̄(γ4)), the right hand side is computed by Table
2 and the next lemma, which is easily obtained.

Lemma 3.1. For aj = σj(t4, t5, t6) ∈ H∗(E6/T ; Z3) we have

P1(a1) ≡ a3
1,

P1(a2) ≡ a2
2 + a2

1a2 − a1a3,

P1(a3) ≡ a2a3 + a2
1a3.
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Then by the injectivity of R̄ we obtain

P1(γ4) ≡ −c6 + t6.

Since R̄(t7c3) ≡ 0, R̄ does not become a monomorphism on degree 20. But
similar computation yields

P3(γ4) ≡ −t4c6 +m · t7c3
for some m ∈ Z3. Hence under the monomorphism p∗

P3(w) ≡ P3(γ4 + (−t1 + t0)c3 − t41 + t21t
2
0 + t40)

≡ m · (t71 + t61t0 − t41t
3
0 − t31t

4
0 + t1t

6
0 + t70)c3.

(3.3)

On the other hand from Theorem 1.1 we can put

P3(w) ≡ k · t60w + l · t20w2

≡ l · t20γ4
2 + (k − l) · t60γ4 + · · ·(3.4)

for some k, l ∈ Z3. From (3.3), (3.4) we deduce k = l = m = 0 by the linearly
independence of monomials in H20(E6/T ; Z3).

Remark 1. In the above computations note that the following relations
hold in B/(t) which are derived from (2.1), (2.4):

a3
2 ≡ a2

1a
2
2 − a3

1a3, a7
1 ≡ 0,

a3
3 ≡ a2

1a
2
2a3 + a3

1a
2
3 − a4

1a2a3 − a6
1a3.

Summarizing these we obtain the following results:

Proposition 3.1.
(i) The action of Pi on γ4 is given by

P1(γ4) = −c6 + t6, P2(γ4) (= −P1P1(γ4)) = t2c6,

P3(γ4) = −t4c6, P4(γ4) = γ4
3 = t6c6.

(ii) The reduced power operations in H∗(EIII; Z3) are given as follows:

P1(t0) = t30,

P1(w) = −t60, P2(w)(= −P1P1(w)) = 0, P3(w) = 0,

P4(w) = w3 = 0.

4. Cohomology operations in H∗(ΩE6; Zp) for p = 2, 3

In this section, using the results obtained so far we determine the coho-
mology operations in ΩE6. Hereafter we use the notations and the results of
[9] without specific references.

First consider the case p = 2: From [9], Theorem 1.1, the mod 2 homology
of ΩE6 is given by
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Theorem 4.1.

H∗(ΩE6; Z2) = Z2[σ1, σ2, σ4, σ5, σ7, σ8, σ11]/(σ1
2),

where deg(σi) = 2i. Moreover σ1, σ̃5 = σ1σ2
2 + σ5, σ̃7 = σ2σ5 + σ7, σ̃11 =

σ1σ5
2 + σ2σ7 + σ11 are primitive and ψ̃(σ2) = σ1 ⊗ σ1.

From Theorem 4.1 the primitive elements of H∗(ΩE6; Z2) which appear in
degree ≤ 22 are given by

deg 2 8 10 14 16 20 22
σ1 σ2

2 σ̃5 σ̃7 σ2
4 σ̃2

5 σ̃11

Table 4.

Let Sqi
∗ ∈ A2∗ be the dual of the squaring operation Sqi ∈ A2, that is

〈a, Sqi
∗(α)〉 = 〈Sqi(a), α〉,

where a ∈ H∗, α ∈ H∗ and 〈 , 〉 is the Kronecker pairing (For the properties of
Sqi

∗, see [11, §3]).
Let us determine the squaring operations in H∗(ΩE6; Z2). By Theorem 4.1

we have only to determine the Sqi
∗( ) on the elements σ1, σ2, σ4, σ̃5, σ̃7, σ8, σ̃11.

(1) Since Sq2(a1) = a2
1 = a2, Sq2∗(σ2) = σ1.

(2) By Theorem 4.1 we can put

Sq2∗(σ4) = k · σ1σ2

for some k ∈ Z2. On the other hand since Sq2(a3) = Sq2(a3
1) = a4

1 ≡ b4 we
have

k = 〈a3, Sq
2
∗(σ4)〉 = 〈Sq2(a3), σ4〉 = 〈b4, σ4〉 = 1.

Thus
Sq2∗(σ4) = σ1σ2.

Since Sq4(a2) = a2
2 ≡ b4 we obtain

Sq4∗(σ4) = σ2.

(3) Since Sqi
∗( ) sends primitive elements to primitive elements, we make

use of a pattern of computation stated in [11], p. 476 for σ̃5, σ̃7, σ̃11. So details
are omitted.

(4) By Table 4 we can put

Sq2∗(σ8) = k · σ1σ2
3 + l · σ1σ2σ4 +m · σ2σ5 + n · σ7

for some k, l,m, n ∈ Z2. Dualizing this gives

Sq2(a7) = b8 + c8 + d8 + k · e8,(4.1)

Sq2(b7) = l · e8,(4.2)

Sq2(c7) = m · e8,(4.3)

Sq2(d7) = n · e8.(4.4)
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Applying g∗s on both sides of (4.4), then using Theorem 2.1

l.h.s. = g∗sSq
2(d7) = Sq2g∗s (d7) = Sq2(d) ≡ Sq2(t30w) = t80,

r.h.s. = n · e ≡ n · t80.
Therefore n = 1. Similarly from (4.3), (4.2)

g∗sSq
2(c7) = Sq2g∗s(c7) = Sq2(d′) ≡ Sq2(t70) = t80,

g∗sSq
2(b7) = Sq2g∗s(c7) = Sq2(−d′) ≡ Sq2(t70) = t80.

Therefore m = 1, l = 1. Finally applying g∗s on both sides of (4.1), then

l.h.s. = g∗sSq
2(a7) = Sq2g∗s(a7) = 0,

r.h.s. = g∗s(b8) + g∗s(c8) + g∗s(d8) + k · g∗s(e8)
= (e′ + e′′) + (2e′ + 8e′′) + (−e′ − 3e′′) + k · (−e′ − 3e′′)

≡ k · t40w.
Therefore k = 0. Thus

Sq2∗(σ8) = σ1σ2σ4 + σ2σ5 + σ7 = σ1σ2σ4 + σ̃7.

Similar computations give the results for Sq4∗(σ8), Sq6∗(σ8), Sq8∗(σ8).
Thus we obtain the following results:

Theorem 4.2. The squaring operations in

H∗(ΩE6; Z2) = Z2[σ1, σ2, σ4, σ̃5, σ̃7, σ8, σ̃11]/(σ1
2)

are given as follows:

Sq2∗(σ2) = σ1,

Sq2∗(σ4) = σ1σ2, Sq4∗(σ4) = σ2,

Sq2∗(σ̃5) = σ2
2, Sq4∗(σ̃5) = 0,

Sq2∗(σ̃7) = 0, Sq4∗(σ̃7) = σ̃5, Sq6∗(σ̃7) = 0,

Sq2∗(σ8) = σ1σ2σ4 + σ̃7, Sq4∗(σ8) = σ2σ4,

Sq6∗(σ8) = σ5, Sq8∗(σ8) = σ4,

Sq2∗(σ̃11) = σ̃2
5 , Sq4∗(σ̃11) = 0, Sq6∗(σ̃11) = 0,

Sq8∗(σ̃11) = σ̃7, Sq10∗ (σ̃11) = 0.

The computations for p = 3 are similar and therefore we exhibit the data
and the results. From [9], Theorem 1.1, the mod 3 homology of ΩE6 is given
by

Theorem 4.3.

H∗(ΩE6; Z3) = Z3[σ1, σ3, σ4, σ5, σ7, σ8, σ11]/(σ1
3),

where deg(σi) = 2i. Moreover σ1, σ̃4 = −σ1σ3 + σ4, σ̃5 = σ1
2σ3 − σ5, σ̃7 =

−σ1σ3
2 + σ1

2σ5 + σ7, σ̃8 = σ1
2σ3

2 − σ3σ5 − σ4
2 + σ8, σ̃11 = −σ3

2σ5 − σ1σ5
2 −

σ4σ7 − σ11 are primitive and ψ̃(σ3) = −σ1
2 ⊗ σ1.
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From Theorem 4.3 the primitive elements of H∗(ΩE6; Z3) which appear in
degree ≤ 22 are given by

deg 2 8 10 14 16 18 22
σ1 σ̃4 σ̃5 σ̃7 σ̃8 σ3

3 σ̃11

Table 5.

Using Proposition 3.1 we obtain

Theorem 4.4. The reduced power operations in

H∗(ΩE6; Z3) = Z3[σ1, σ3, σ̃4, σ̃5, σ̃7, σ̃8, σ̃11]/(σ1
3)

are givern as follows:

P1
∗ (σ3) = σ1,

P1
∗ (σ̃4) = 0,

P1
∗ (σ̃5) = 0,

P1
∗ (σ̃7) = σ̃5, P2

∗ (σ̃7) = 0,

P1
∗ (σ̃8) = 0, P2

∗ (σ̃8) = 0,

P1
∗ (σ̃11) = σ3

3, P2
∗ (σ̃11) = 0, P3

∗ (σ̃11) = 0.

Remark 2. The Hopf algebra structure of H∗(ΩE6; Zp) over Ap∗ for
p = 2, 3 is already determined in [8], [3] and [4] without using the generating
variety. Therefore our contribution is to make the description of H∗(ΩE6; Zp)
for p = 2, 3 explicit in terms of H∗(ΩE6; Z).
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