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Analyticity of solutions of the Korteweg-de
Vries equation

By

Shigeo Tarama

Abstract

We consider the analytic smoothing effect for the KdV equation.
That is to say, if the initial data given at t = 0 decays very rapidly, the
solution to the Cauchy problem becomes analytic with respect to the
space variable for t > 0. In this paper we show this effect by using the
inverse scattering method which transforms the KdV equation to a linear
dispersive equation whose analytic smoothing effect is shown through the
properties of the Airy function.

1. Introduction

The smoothing effect is one of the important properties of the dispersive
equations such as the Schrödinger equation and the KdV equation. This ef-
fect says that solutions gain smoothness if the initial data decays rapidity. In
this paper we treat only the analytic smoothing effect, that is to say, the phe-
nomenon that solutions become analytic with respect to the space variables.

There are already many works on this analytic smoothing effect for linear
dispersive equations and also for nonlinear dispersive equations (see for example
de Bouard, Hayashi and Kato [1], Hayashi and Kato [5], [6], Kato-Ogawa [7] for
nonlinear case). But concerning the KdV equation, comparing to the results
on its linearlized equation, we have still problems to be studied. (See also
Craig, Kappeler and Strauss [3] for smoothing effect for the general KdV-type
equation.)

First consider the linear dispersive equation

(1.1)
∂

∂t
v(t, x) + A

∂3

∂x3 v(t, x) = 0

with a positive constant A.
The fundamental solution EA(t, x) to the Cauchy problem for (1.1) is given
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2 Shigeo Tarama

by

EA(t, x) =


1

(3At)
1
3
Ai

(
x

(3At)
1
3

)
, t > 0,

δ(x), t = 0,

where the function Ai(w) is the Airy function defined by

Ai(w) =
1
2π

∫ ∞

−∞
ei(wz+ 1

3 z3)d z.

Then we see that any solution v(t, x) of the equation (1.1) belonging to
C([0, +∞), L2(R)) has the following expression: for t ≥ 0

(1.2) v(t, x) =
∫ ∞

−∞
EA(t, x − w)v(0, w)d w.

The Airy function defined above has a holomorphic extension on the whole
complex plane and the following estimates (see Ch. 4 §4 of Olver [14]): for any
C0 > 0 and γ > 0,

(1.3) |Ai(z)| ≤ Ce−
2
3�(z

3
2 ) and |Ai′(z)| ≤ C|z| 12 e−

2
3�(z

3
2 )

when | arg z| < π − γ and |z| ≥ C0, while

(1.4) |Ai(−z)| ≤ Ce
2
3 |�(z

3
2 )| and |Ai′(−z)| ≤ C|z| 12 e

2
3 |�(z

3
2 )|

when | arg z| < 1
3π − γ and |z| ≥ C0.

Since
�(x + iy)

3
2 ≥ 1

2
x

3
2 for x > |y|

and
|�(x + iy)

3
2 | ≤ 2|x| 12 |y| for x > |y|,

then it follows from (1.3) and (1.4) that when t belongs a compact interval in
(0,∞) and |y| ≤ 1 we get

(1.5)
∣∣∣∣Ai(

x + iy

(3At)
1
3
)
∣∣∣∣ ≤

{
Ce−C1t−

1
2 x

3
2 , x ≥ 1,

CeC2t−
1
2 |y||x| 12 , x ≤ −1

and

(1.6)
∣∣∣∣Ai′(

x + iy

(3At)
1
3
)
∣∣∣∣ ≤

{
C|x| 12 e−C1t−

1
2 x

3
2 , x ≥ 1,

C|x| 12 eC2t−
1
2 |y||x| 12 , x ≤ −1.

Therefore we see from (1.2) that if v(0, x) has the estimate, with δ > 0,

|v(0, x)| ≤
{

Ce−δx
1
2 for x > 0,

C for x < 0,
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then the solution v(t, x) is real analytic with respect to x. For by choosing

δ0 ≤ t
1
2

2C2
δ we see that for any x0 ∈ R, on {x + iy ∈ C ; |(x + iy) − x0| ≤ δ0}

EA(t, x−w + iy)v(0, w) is uniformly integrable with respect to the variable w.
More generally

Proposition 1.1. If v(x) is given by

v(x) =
(

d

dx
− 1
)

R(x),

where a continuous function R(x) has the estimate, with δ > 0,

|R(x)| ≤
{

Ce−δx
1
2 for x > 0,

CeC1|x| for x ≤ 0,

then the function v(t, x) defined by

v(t, x) =
∫ ∞

−∞
EA(t, x − w)v(w)d w

is real analytic with respect to x when t > 0.
More precisely, if t > 0, v(t, x) has the analytic extension on {(x + iy) :

x ∈ R and |y| ≤ δ0 } with some δ0 > 0 and satisfies, if x + iy belongs to the
set above, x ≥ 1 and t belongs to a compact interval in (0,∞),

(1.7) |v(t, x + iy)| ≤ C0e
−C1|x|

1
2 .

Proof. First note that from (1.5) and (1.6) we see

v(t, x) = −
∫ ∞

−∞
EA(t, x − w)R(w)d w +

∫ ∞

−∞
∂xEA(t, x − w)R(w)d w.

Then we see the analyticity of v(t, x + iy) in {(x + iy) : x ∈ R and |y| ≤ δ0 }
when δ0 satisfies

0 < δ0 ≤ t
1
2

4C2
δ.

In order to show (1.7) we consider the estimate of∫ ∞

−∞
∂xEA(t, x − w)R(w)d w.

The estimate of the other term follows similarly. Let be t1 > t2 > 0 and assume
t1 ≥ t ≥ t2, |y| < 1 and x ≥ 1. We see that for w > x + 1

|∂xEA(t, x + iy − w)v(w)| ≤ C|x − w| 12 eC2|x−w| 12 t−
1
2 |y|e−δ|w| 12

and for 0 ≤ w ≤ x − 1

|∂xEA(t, x + iy − w)v(w)| ≤ C|x − w| 12 e−C1|x−w| 32 t−
1
2 e−δ|w| 12
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and for w ≤ 0

|∂xEA(t, x + iy − w)v(w)| ≤ C|x − w| 12 e−C1|x−w| 32 t−
1
2 eC|w|

When x ≥ 1, we obtain

2|w| 12 ≥ |w − x| 12 + |x| 12 for w > x + 1,

|x| 12 ≤ |w − x| 12 + |w| 12 for x + 1 ≥ w ≥ 0,

|x| + |w| = |w − x| for w < 0.

Then we see that if x > 1, |x − w| > 1 and |y| ≤ ( t
1
2

4C2
)δ,

|∂xEA(t, x + iy − w)v(w)| ≤ C|x − w| 12 e−C3(|x−w| 12 +|x| 12 ),

while for |x − w| ≤ 1, we obtain form x > 1

|∂xEA(t, x + iy − w)v(w)| ≤ Ce−δ|x| 12 .

Then when |y| ≤ ( t
1
2

4C2
)δ we obtain∣∣∣∣∫ ∞

−∞
∂xEA(t, x + iy − w)v(w)d w

∣∣∣∣ ≤ C0e
−C1|x|

1
2 .

Now we consider the nonlinear case. According to Bourgain [2] (see also
Kenig, Ponce and Vega [10], [11] ) the Cauchy problem for the KdV equation

(1.8)


∂

∂t
u(x, t) − 6u(x, t)

∂

∂x
u(x, t) +

∂3

∂x3
u(x, t) = 0,

u(x, 0) = u0(x)

is L2-well posed, that is to say, for any u0(x) ∈ L2(R) there exists one and
only one solution belonging to { u(t, x) ∈ L2(R2) ; (1 + |τ − ξ3|)bφ̂u(τ, ξ) ∈
L2(R2) for any φ(t) ∈ C∞

0 (R)} with b > 1
2 , which implies u(t, x) ∈ C([0,∞),

L2(R)). Furthermore when the initial data u0,n(x) ∈ L2(R) converges to
u0,∞(x) in L2(R), its solution converges to the solution with the initial data
u0,∞(x) in C([0,∞), L2(R)).

In this paper we show that the analytic smoothing effect, that is similar
to the one discussed above for the linear equation, holds for the KdV equation.

Theorem 1.1. If the real-valued initial data u0(x) ∈ L2(R) satisfies∫ ∞

−∞
(1 + |x|)|u0(x)|d x < ∞
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and with some positive constant δ

(D)
∫ ∞

0

eδ|x| 12 |u0(x)|2d x < ∞,

then the solution to the Cauchy problem (1.8) becomes analytic with respect to
the variable x for t > 0.

Since through the inverse scattering method we can transform the KdV
equation to the linear dispersive equation for which the analytic smoothing
effect can be seen by the argument above, we use this method to prove Theorem.
In the next two sections we review the inverse scattering method following
Marchenko [12]. Then we study the properties of scattering data for the Strum-
Liouville operator with a potential satisfying the decay condition (D). After one
section is devoted to the proof of two lemmas, we complete the proof of Theorem
in Section 6.

In the following we use the following notations; we denote by S the set of all
rapidly decreasing smooth functions on R, by C∞

0 (R) the set of all compactly
supported smooth functions on R and by L2(D) [resp. L∞(D) ] the space
of square integrable functions on D [ resp. the space of essentially bounded
measurable functions on D ] whose norm is denoted by ‖ · ‖L2(D) [resp. ‖ ·
‖L∞(D)]. But in the case where D = R it is denoted by ‖ · ‖2 [resp. ‖ · ‖∞].
We denote by C+ the upper half plane {λ ∈ C : �λ > 0}. In order to denote
several constants we use the same notation. Then they may be different line
by line.

2. Review of Scattering theory 1. Transformation operator.

In this and next section we review the scattering theory for the Strum-
Liouville operator on the full line and its relation with the KdV equation fol-
lowing Marchenko [12] (see also Melin [13]).

We denote by P(1) the space of real valued measurable functions q(x) on
R satisfying ∫ ∞

−∞
(1 + |x|)|q(x)| dx < +∞

whose value is the norm of q(x) in P(1).
Let Lq(x) be the Strum-Liouville operator with a potential q(x) ∈ P(1)

defined by

(2.1) Lq(x) = − d2

dx2
+ q(x).

We denote by e+(x, λ) and e−(x, λ) with λ ∈ R \ {0} the soluitons of

(2.2) Lq(x)f = λ2f

satisfying the following asymptotic behavior respectively;

(2.3) e+(x, λ) → eiλx and e+′(x, λ) → iλeiλx
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as x → ∞ and

e−(x, λ) → eiλx and e−′(x, λ) → iλeiλx

as x → −∞.
These Jost solutions e+(x, λ) and e−(x, λ) can be represented by the fol-

lowing way;

e+(x, λ) = eiλx +
∫ ∞

x

K+(x, y)eiλy dy,(2.4)

e−(x, λ) = eiλx +
∫ x

−∞
K−(x, y)eiλy dy,(2.5)

where K+(x, y) [resp. K−(x, y) ] is a solution of the integral equation;

(2.6) K+(x, y) =
1
2

∫ ∞

x+y
2

q(s) ds+
∫ ∞

x+y
2

dα

∫ y−x
2

0

q(α−β)K+(α−β, α+β) dβ

[resp.
(2.7)

K−(x, y) =
1
2

∫ x+y
2

−∞
q(s) ds +

∫ x+y
2

−∞
dα

∫ x−y
2

0

q(α + β)K−(α + β, α − β) dβ].

Remark 1. We remark that K−(−x,−y) satisfies the equation (2.6)
with q(−x) in the place of q(x).

Remark 2. We remark also that K+(x, y) and K−(x, y) satisfy the
wave equation

−∂2
xw(x, y) + ∂2

yw(x, y) + q(x)w(x, y) = 0,

2 d
dxK+(x, x) = −q(x) and 2 d

dxK−(x, x) = q(x).

In the following we show the existence of solutions of (2.6) and (2.7) and
their properties. First we note that for a q(x) ∈ P(1), the non-increasing
function σ(x) defined by

(2.8) σ(x) =
∫ ∞

x

|q(w)| dw

satisfies that for any xo ∈ R ∫ ∞

xo

σ(x)d x < +∞.

For q(x) ∈ P(1) we consider the operator Op+(q) defined by

Op+(q)[k(·, ·)](s, v) =
∫ ∞

s

dα

∫ v

0

q(α − β)k(α, β) dβ.
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Lemma 2.1. For v ≥ 0

(2.9) e−2(σ1(s−v)−σ1(s))|Op+(q)[k(·, ·)](s, v)|
≤ 1

2
sup

α≥s, v≥β≥0
e−2(σ1(α−β)−σ1(α))|k(α, β)|,

where

(2.10) σ1(x) =
∫ ∞

x

σ(w)d w.

Proof. By definition, the function σ1(x) is non-increasing. Then for v ≥
β ≥ 0 ,

|k(α, β)| ≤ e2(σ1(α−v)−σ1(α)) sup
v≥γ≥0

e−2(σ1(α−γ)−σ1(α))|k(α, γ)|.

Since ∫ v

0

|q(α − β)|d β = σ(α − v) − σ(α)

= − d

dα
(σ1(α − v) − σ1(α)) ,∫ ∞

s

d α

∫ v

0

|q(α − β)|e2(σ1(α−v)−σ1(α))d β =
1
2
e2(σ1(s−v)−σ1(s)).

Then we obtain the estimate (2.9).

Remark 3. The proof of Lemma 2.1 implies that the estimate (2.9) is
still valid even if σ1(s) is replced by∫ ∞

s

d x

∫ ∞

x

r(w)d w,

where r(x) ∈ P(1) satifies r(x) ≥ |q(x)|.
For the later use, we note that for s1 > s2∣∣∣∣∫ s1

s2

q(s)d s

∣∣∣∣ ≤ σ(s2) − σ(s1)

and that, since

σ1(s − v) − σ1(s) =
∫ v

0

σ(s − α)d α

and σ(s) is non-increasing, we have for v ≥ 0 and s1 > s2

σ1(s2 − v) − σ1(s2) ≥ σ1(s1 − v) − σ1(s1).

We denote by Dso,vo
, where so ∈ R and vo ≥ 0, the closed domain

Dso,vo
= {(α, β) ∈ R × R : α ≥ so, vo ≥ β ≥ 0 }.
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For a function l ∈ L∞(Dso,vo
), since (σ1(α− β)− σ1(α)) ≥ 0 on Dso,vo

, we see
from (2.9) that for any integer n > 0 and any (s, v) ∈ Dso,vo

(Op+(q))n[l(·, ·)](s, v) ≤ 1
2n

e2(σ1(s−v)−σ1(s))‖l(·, ·)‖L∞(Ds,v).

Then we obtain

Proposition 2.1. For any function l(s, v) ∈ L∞(Dso,vo
), there exists

one and only one solution k+(s, v) of the equation

(2.11) k+(s, v) = l(s, v) + Op(q)[k+(·, ·)](s, v) on Dso,vo

which satisties, for any (s, v) ∈ Dso,vo
,

(2.12) |k+(s, v)| ≤ 2e2(σ1(s−v)−σ1(s))‖l(·, ·)‖L∞(Ds,v).

Remark 4. Since Op+(q)[k(·, ·)](s, v) is continuous for any k(s, v) ∈
L∞(Dso,vo

), k+(s, v) is continuous in Dso,vo
if l(s, v) is continuous. In this

case Op+(q)[k(·, ·)](s, v) becomes continuously differentiable. Then k+(s, v) −
l(s, v) is continuously differentiable if l(s, v) is continuous. Furthermore if l(s, v)
admits bounded continuous derivatives and q(s) is continuous, k+(s, v)− l(s, v)
admits second order continuous derivatives.

Next we show that the solution above k+(s, v) depends continuously on
q(x). First we note that for q1(x) and q2(x) in P(1),

e−2(σ̃1(s−v)−σ̃1(s))|{Op+(q1) − Op+(q2)}[k(·, ·)](s, v)|

≤
∫ ∞

s−v

d x

∫ ∞

x

|q1(w) − q2(w)|d w

× sup
α≥s, v≥β≥0

e−2(σ̃1(α−β)−σ̃1(α))|k(α, β)|,

where

(2.13) σ̃1(x) =
∫ ∞

x

d s

∫ ∞

s

(|q1(w)| + |q2(w)|)d w.

Hence it follows from Remark 2.3 that

e−2(σ̃1(s−v)−σ̃1(s))|{Op+(q1)n − Op+(q2)n}[l(·, ·)](s, v)|

≤ n

2n−1

∫ ∞

s−v

d x

∫ ∞

x

|q1(w) − q2(w)|d w

× sup
α≥s, v≥β≥0

e−2(σ̃1(α−β)−σ̃1(α))|l(α, β)|.

Hence we obtain
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Lemma 2.2. For a function l(s, v) ∈ L∞(Dso,vo
), let k+

1 (s, v) and k+
2

(s, v) be solutions of the equations

k+
1 (s, v) = l(s, v) + Op(q1)[k+

1 (·, ·)](s, v) on Dso,vo

and
k+
2 (s, v) = l(s, v) + Op(q2)[k+

2 (·, ·)](s, v) on Dso,vo
.

Then we see that for any (s, v) ∈ Dso,vo

|k+
1 (s, v) − k+

2 (s, v)|

≤ 4
∫ ∞

s−v

d x

∫ ∞

x

|q1(w) − q2(w)|d w

× e2(σ̃1(s−v)−σ̃1(s))‖l(·, ·)‖L∞(Ds,v),

where σ̃1(x) is defined by (2.13).

Therefore we see that the following proposition is valid.

Proposition 2.2. When the kernel q in the equation (2.11) depends
continuously on a parameter t ∈ [0, T ] with some T > 0, that is to say q(x, t) ∈
C([0, T ],P(1)), its solution k+(s, v, t) is a L∞(Dso,vo

)-valued continuous func-
tion on [0, T ]. Furthermore in the case that q(x, t) ∈ C1([0, T ],P(1)), k+(s, v, t)
is a L∞(Dso,vo

)-valued C1 function on [0, T ].

For a given q(x) ∈ P(1) we denote by k+
q (s, v) the solution of the equation

(2.14) k+
q (s, v) =

1
2

∫ ∞

s

q(x)d x + Op(q)[k+
q (·, ·)](s, v).

Then we see from Remark 4 that k+
q (s, v) is continuous and k+

q (s, v)− 1
2

∫∞
s

q(x)
d x is continuously differentiable and it follows from (2.12) that for (s, v) ∈
Dso,vo

(2.15) |k+
q (s, v)| ≤ Cso−vo

σ(s),

where σ(s) is defined by (2.8) and a positive constant Cso−vo
depends only on

σ1(so − vo) which is given by (2.10). Since∣∣∣∣∫ ∞

s

q(α − v)k(α, v)d α

∣∣∣∣ ≤ σ(s − v) sup
α≥s

|k(α, v)|

and ∣∣∣∣∫ v

0

q(s − β)k(s, β)d β

∣∣∣∣ ≤ σ(s − v) sup
0≤β≤v

|k(s, β)|,

we see that for (s, v) ∈ Dso,vo

(2.16)
∣∣∣∣ ∂

∂s
Op(q)[k+

q (·, ·)](s, v)
∣∣∣∣+ ∣∣∣∣ ∂

∂v
Op(q)[k+

q (·, ·)](s, v)
∣∣∣∣ ≤ Cso−vo

σ(s),
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where a positive constant Cso−vo
depends only on σ1(so − vo) and σ(so − vo).

We see from (2.14) that k+
q (x+y

2 , y−x
2 ) satisfies (2.6), while it follows from

Remark 1.1 that K−(x, y) is given by k+
q̌ (−x+y

2 , x−y
2 ) where q̌(x) = q(−x).

That is to say, we see

K+(x, y) = k+
q

(
x + y

2
,
y − x

2

)
,(2.17)

K−(x, y) = k+
q̌

(
−x + y

2
,
x − y

2

)
.(2.18)

We denote by ∆+ [resp. ∆−] the subset of R2 given by {(x, y) ∈ R2 ; y ≥
x} [resp. {(x, y) ∈ R

2 ; y ≤ x }] and by ∆+
xo

[resp. ∆−
xo

] {(x, y) ∈ R
2 ; y ≥

x ≥ xo } [resp. {(x, y) ∈ R2 ; y ≤ x ≤ xo }].
Then Propositions 2.1 and 2.2, the estimates (2.15) and (2.16) and the

relations (2.17) and (2.18) imply the following;

Proposition 2.3. For a q(x) ∈ P(1), the equation (2.6) [resp. (2.7)]
has one and only one continuous solution K+(x, y) on ∆+ [resp. K−(x, y)
on ∆− ] that is bounded on ∆+

xo
[resp. ∆−

xo
] for any xo ∈ R. Furthermore

K+(x, y) − Q+(x+y
2 ) and K−(x, y) − Q−(x+y

2 ) have first order continuous
derivatives where

Q+(s) =
1
2

∫ ∞

s

q(x)d x,

Q−(s) =
1
2

∫ s

−∞
q(x)d x

and we have for (x, y) ∈ ∆+
xo

(2.19)
(
|K+(x, y)| +

∣∣∣∣∂x

(
K+(x, y) − Q+

(
x + y

2

))∣∣∣∣
+
∣∣∣∣∂y

(
K+(x, y) − Q+

(
x + y

2

))∣∣∣∣) ≤ C+
xo

∫ ∞

x+y
2

|q(s)|d s

and for (x, y) ∈ ∆−
xo

(2.20)
(
|K−(x, y)| +

∣∣∣∣∂x

(
K−(x, y) − Q−

(
x + y

2

))∣∣∣∣
+
∣∣∣∣∂y

(
K−(x, y) − Q−

(
x + y

2

))∣∣∣∣) ≤ C−
xo

∫ x+y
2

−∞
|q(s)|d s,

where the constant C+
xo

[resp. C−
xo

] depends only on
∫∞

xo
|q(s)|d s and

∫∞
xo

d s
∫∞

s

|q(w)|d w [resp.
∫ xo

−∞ |q(s)|d s and
∫ xo

−∞ d s
∫ s

−∞ |q(w)|d w].
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When qn(x) → q(x) in P(1), we see that, letting be K+
n (x, y) [resp. K−

n (x,
y)] the solution of (2.6) [resp. (2.7)] with qn(x) for q(x),

(2.21)
∫ ∞

x

(|K+
n (x, y) − K+(x, y)| + |∂xK+

n (x, y) − ∂xK+(x, y)|
+ |∂yK+

n (x, y) − ∂yK+(x, y)|)d y → 0,

(2.22)
∫ x

−∞
(|K−

n (x, y) − K−(x, y)| + |∂xK−
n (x, y) − ∂xK−(x, y)|

+ |∂yK−
n (x, y) − ∂yK−(x, y)|)d y → 0.

Finally when q(x, t) ∈ C1([0, T ],P(1)), K+(x, y, t) and K−(x, y, t), the solu-
tion of (2.6) and that of (2.7) respectively with q(x, t) for q(x), are continuously
differentiable with respect to the variable t and K+(0, y, t), ∂xK+(0, y, t) and
∂yK+(0, y, t) belong to C1([0, T ], L1((0, +∞)) and K−(0, y, t), ∂xK−(0, y, t)
and ∂yK−(0, y, t) belong to C1([0, T ], L1((−∞, 0)).

Remark 5. We see from (2.19) and (2.20) that∫ ∞

0

(|K+(0, y)| + |∂xK+(0, y)| + |∂yK+(0, y)|)d y ≤ C,∫ 0

−∞
(|K−(0, y)| + |∂xK−(0, y)| + |∂yK−(0, y)|)d y ≤ C(2.23)

with the constant C depending only on
∫∞
−∞ (1 + |x|)|q(x)|d x.

3. Review of Scattering theory 2. Gelfand-Levitan-Marchenko
equation.

We continue the review of the scattering theory for the Strum-Liouville
operator. Since we see from (2.3) that for λ ∈ R \ {0} the solutions e+(x, λ)
and e+(x,−λ) of the equation (2.2) are linearly independent, there exist a(λ)
and c(λ) such that

(3.1) e−(x,−λ) = c(λ)e+(x, λ) + a(λ)e+(x,−λ).

Since q(x) is real-valued, e±(x, λ) = e±(x,−λ). Then we have

(3.2) a(λ) = a(−λ) and c(λ) = c(−λ).

Let W (f(·), g(·)) be the wronskian of f(x) and g(x) given by

W (f, g) = f ′(x)g(x) − g′(x)f(x).

Since we see from (2.3) that W (e+(·, λ), e+(·,−λ)) = 2iλ, it follows from (3.1)
that

a(λ) =
1

2iλ
W (e+(·, λ), e−(·,−λ)),(3.3)

c(λ) =
1

−2iλ
W (e+(·,−λ), e−(·,−λ)).(3.4)
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By the integration by parts we see from (2.4) and (2.5) that

a(λ) = 1 +
1

2iλ

(
−
∫ ∞

−∞
q(w)d w

+
∫ ∞

0

G+(y)eiλyd y −
∫ 0

−∞
G−(y)e−iλyd y

+
∫ ∞

0

K+
x (0, y)eiλyd y

∫ 0

−∞
K−(0, y)e−iλyd y

−
∫ ∞

0

K+(0, y)eiλyd y

∫ 0

−∞
K−

x (0, y)e−iλyd y

)
,

(3.5)

where

G+(y) = K+
x (0, y) − K+

y (0, y) − K−(0, 0)K+(0, y),

G−(y) = K−
x (0, y) − K−

y (0, y) + K+(0, 0)K−(0, y).

On the other hand

c(λ) = − 1
2iλ

(∫ ∞

0

H+(y)e−iλyd y −
∫ 0

−∞
H−(y)e−iλyd y

+
∫ ∞

0

K+
x (0, y)e−iλyd y

∫ 0

−∞
K−(0, y)e−iλyd y

−
∫ ∞

0

K+(0, y)e−iλyd y

∫ 0

−∞
K−

x (0, y)e−iλyd y

)
,

(3.6)

where

H+(y) = K+
x (0, y) + K+

y (0, y) − K−(0, 0)K+(0, y),

H−(y) = K−
x (0, y) + K−

y (0, y) + K+(0, 0)K−(0, y).

Taking into account (2.19), (2.20) and (3.5) we see that e+(x, λ) and e−(x,−λ)
are well-defined on the upper half plane C+ = {λ ∈ C : �λ > 0} and that
a(λ) has the analytic extension on C+ and satisfies on C+

(3.7) |a(λ) − 1| ≤ C

|λ| .

If q(x) belongs to C∞
0 (R), then we see from (2.19) and (2.20) that K+(0, y),

K+
x (0, y) and K+

y (0, y) [resp. K−(0, y), K−
x (0, y) and K−

y (0, y) ] vanish for large
y [resp. large negative y ]. Furthermore K±(0, y) and K±

x (0, y) are smooth.
Then λa(λ) and λc(λ) are entire analytic and we obtain

(3.8) |λ2c(λ)| ≤ C1e
C2|�λ|.

Remark 6. In (3.6), the terms
∫ 0

−∞ H−(y)e−iλyd y,
∫ 0

−∞ K−(0, y)e−iλy

d y and
∫ 0

−∞ K−
x (0, y)e−iλyd y have the analytic extensions on the upper half

plane C
+ for any q(x) ∈ P(1).
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The relations (3.3) and (3.4) imply that

e+(x, λ) = a(λ)e−(x, λ) − c(−λ)e−(x,−λ),(3.9)

e+(x,−λ) = a(−λ)e−(x,−λ) − c(λ)e−(x, λ).(3.10)

Then we obtain from (3.1), (3.2), (3.9) and (3.10) that

(3.11) 1 + |c(λ)|2 = |a(λ)|2.
Since the square of a zero of a(λ) in C+ is an eigenvalue of the operator

Lq(x) of (2.1), the zeros of a(λ) in C+ lie on on the upper half line {z = ix ; x >
0}. Furthermore their number is finite (see LEMMA 3.5.2 of [12]). Let iµ with
µ > 0 be a zero of a(λ). Then e+(x, iµ) and e−(x,−iµ) are linearly dependent.
Then there exists a constant cµ such that

(3.12) e−(x,−iµ) = cµe+(x, iµ).

We see from (3.3) that

−2µa′(λ) = W (ė+(x, iµ), e−(x,−iµ)) − W (e+(x, iµ), ė−(x,−iµ)),

where
ė±(x, λ) = ∂λe±(x, λ).

Since

− d2

dx2
ė+(x, iµ) + q(x)ė+(x, iµ) = −µ2ė+(x, iµ) + 2iµe+(x, iµ),

we obtain

d

dx
(ė+′

(x, iµ)e−(x,−iµ) − ė+(x, iµ)e−
′
(x,−iµ))

= −2iµe+(x, iµ)e−(x,−iµ).

Since ė+(x, iµ) and ė+′
(x, iµ) tend to zero as x → ∞, we get

W (ė+(x, iµ), e−(x,−iµ)) = 2iµ

∫ ∞

x

e+(x, iµ)e−(x,−iµ)d x.

Similarly we get

−W (e+(x, iµ), ė−(x,−iµ)) = 2iµ

∫ x

−∞
e+(x, iµ)e−(x,−iµ)d x.

Hence

−2µa′(iµ) = 2iµ

∫ ∞

−∞
e+(x, iµ)e−(x,−iµ)d x

= 2iµcµ

∫ ∞

−∞
e+(x, iµ)2d x.

(3.13)



�

�

�

�

�

�

�

�

14 Shigeo Tarama

If the potential q(x) belongs to C∞
0 (R), we see that

2µc(iµ) = W (e+(·,−iµ), e−(·,−iµ))
= 2µcµ,

from which we see that the residue of c(λ)
a(λ) at λ = iµ is equal to

(3.14)
c(iµ)
a′(iµ)

= i
1∫∞

−∞ e+(x, iµ)2d x
.

In general, when we denote by {iµ1, . . . , iµM} (µ1 > · · · > µM > 0) all the
zeros of a(λ) in C+, we define R+(x) and F+(x) by

(3.15) R+(x) =
1
2π

∫ ∞

−∞
r+(λ)eiλxd λ,

where

(3.16) r+(λ) =
c(λ)
a(λ)

,

and

(3.17) F+(x) =
M∑

j=1

(m+
j )2e−µjx + R+(x),

where

(3.18) (m+
j )2 =

1∫∞
−∞ e+(x, iµj)2d x

.

Remark 7. We see from (3.2), (3.5), (3.6) and (3.11), that r+(λ) =
r+(−λ) and

|r+(λ)| ≤ C
1

1 + |λ| .

Hence R+(x) is real valued and R+(x) ∈ L2(R).
It follows from (3.11) that for any λ ∈ R \ {0}

(3.19) |r+(λ)| < 1.

On the other hand, (3.13) implies

(3.20) (m+
j )2 =

−icµ

a′(iµ)
.

Now that K+(x, y) and F+(x) are defined, we derive the Gelfand-Levitan-
Marchenko equation. We see from (3.1) that(

1
a(λ)

− 1
)

e−(x,−λ) = e+(x,−λ) − e−(x,−λ) + r+(λ)e+(x, λ).
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Since ( 1
a(λ) − 1)e−(x,−λ)eiyλ is a meromorphic function on C+ whose poles

are iµj (j = 1, . . . , M) and |( 1
a(λ) − 1)e−(x,−λ)eiyλ| ≤ C 1

|λ| for λ ∈ C+ with
|λ| ≥ 2µ1 and y ≥ x, then we obtain for y > x

1
2π

∫ ∞

−∞
(

1
a(λ)

− 1)e−(x,−λ)eiyλdλ =
M∑

j=1

i

a′(iµj)
e−(x,−iµj)e−µjy

=
M∑

j=1

icµj

a′(iµj)
e+(x, iµj)e−µjy

=
M∑

j=1

−(m+
j )2e+(x, iµj)e−µjy,

where we used the boundedness of 1
|a(λ)| on {λ ∈ C+ ; |λ| ≤ |µM |

2 } (see
Marchenko [12, LEMMA 3.5.2 in Ch. 3, Sec. 5]). On the other hand since

e+(x,−λ) − e−(x,−λ) =
∫ ∞

−∞
K(x, w)e−iwλd w,

where

K(x, w) =

{
K+(x, w), w ≥ x,

K−(x, w), w < x

and
r+(λ)e+(x, λ) = r+(λ)eixλ + r+(λ)

∫ ∞

x

K+(x, w)eiwλd w,

we see that

1
2π

∫ ∞

−∞
(e+(x,−λ) − e−(x,−λ))eiyλd λ = K(x, y)

and

1
2π

∫ ∞

−∞
r+(λ)e+(x,−λ)eiyλd λ = R+(x + y) +

∫ ∞

x

R+(y + w)K+(x, w)d w.

Therefore we obtain the Gelfand-Levitan-Marchenko equation; for y > x

K+(x, y) + F+(x + y) +
∫ ∞

x

K+(x, w)F+(w + y)d w = 0.

Next let be u(t, x) ∈ C1([0,∞),S) a solution to Cauchy problem (1.8)
with a real initial data u0(x) ∈ S. We can apply the argument above for the
potential u(t, x). Hence we denote by K±(x, y, t), a(λ, t), c(λ, t), r+(λ, t) and
F+(x, t) the corresponding quantities.

Let M be operator given by

M =
∂

∂t
− 2(u(t, x) + 2λ2)

∂

∂x
+ ux(t, x).
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Then since u(t, x) satisfies KdV equation,

(3.21) [M, Lu(t,x) − λ2] = 4ux(t, x)(Lu(t,x) − λ2),

where [M, Lu(t,x) − λ2] is the commuator of M and Lu(t,x) − λ2 = − ∂2

∂x2 +
u(t, x) − λ2.

The solution e+(x, λ, t) [resp. e−(x, λ, t) ] of

(3.22) (Lu(t,x) − λ2)y = 0

satisfying y − eiλx and y′ − iλeiλx tend to zero when x → ∞ [resp. y − eiλx

and y′ − iλeiλx tend to zero when x → −∞], is given by

e+(x, λ, t) = eixλ +
∫ ∞

x

K+(x, y, t)eiyλd y

[ resp.

e−(x, λ, t) = eixλ +
∫ x

∞
K−(x, y, t), eiyλd y].

We see from (3.21) that Me+(x, λ, t) and Me−(x, λ, t) are solutions of the
equation (3.22). Proposition 2.3 implies

Me+(x, λ, t) =
(
(−2u(t, x) − 4λ2)(iλ − K+(x, x, t))

+ ux(t, x)
)
eixλ +

∫ ∞

x

MK+(x, y, t)eiyλd y,

Me−(x, λ, t) =
(
(−2u(t, x) − 4λ2)(iλ + K−(x, x, t))

+ ux(t, x)
)
eixλ +

∫ x

−∞
MK−(x, y, t)eiyλd y,

from which we obtain, by considering the asymptotic behavior, for any non-zero
λ ∈ R

Me+(x, λ, t) = −4iλ3e+(x, λ, t),(3.23)

Me−(x, λ, t) = −4iλ3e−(x, λ, t).(3.24)

Hence for any non-zero λ ∈ R

∂

∂t
a(λ, t) = 0,(3.25)

∂

∂t
c(λ, t) = 8iλ3c(λ, t)(3.26)

follow from (3.1) (see Marchenko [12, Ch. 4, Sec. 2]). Then we see that a(λ, t)
is independent of t, hence its zeros in C+ are also. Let iµ ∈ C+ be a zero of
a(λ, t), then there exists a cµ(t) such that

e−(x,−iµ, t) = cµ(t)e+(x, iµ, t).
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By applying M to both sides above, it follows from (3.23) and (3.24) that

(3.27)
d

dt
cµ(t) = 8µ3cµ(t).

Therefore we obtain from (3.25),(3.26), (3.27) and (3.20)

r+(λ, t) = e8iλ3tr+(λ, 0),

(m+
j )2(t)e−µj(t)x = (m+

j )2(0)e8µ3
j t−µjx.

Hence we see that

(3.28) ∂tR
+(x, t) + 8∂3

xR+(x, t) = 0

and

(3.29) F+(x, t) =
M∑

j=1

(m+
j )2(0)e8µ3

j t−µjx +
1
2π

∫ ∞

−∞
ei(xλ+8λ3t)r+(λ, 0) dλ.

4. Strum-Liouville operator with a potential satisfying (D).

In this section we study that the behavior of functions F+(x) and R+(x),
defined by (3.17) and (3.15), associated to a potential q(x) ∈ P(1) ∩ L2(R)
satisfying (D), i.e

∫∞
0

|q(x)|2eδ
√

xd x < ∞.
First we consider the case where a real potential q(x) belongs to C∞

0 (R). In
this case, as mentioned in Section 3, we see that r+(λ) = c(λ)

a(λ) is meromorphic
and has no poles on R. Let {iµ1, iµ2, . . . , iµν} (µ1 > µ2 > · · · > µν > 0) be
all the zeros of a(λ) in C

+. We see from (3.14) and (3.18) that the residue of
r+(λ)eiλx at λ = iµj is equal to

i(m+
j )2e−µjx,

from which, taking into account (3.7) and (3.8), we obtain for any 1 ≤ k ≤ ν
and any σ ∈ (µk, µk−1)

(4.1)
ν∑

j=k

(m+
j )2e−µjx + R+(x) =

1
2π

∫ ∞+iσ

−∞+iσ

r+(λ)eiλxd λ.

Now consider the case where a potential q(x) ∈ P(1)∩L2(R) satisfies (D).
We denote still by {iµ1, iµ2, . . . , iµM} (µ1 > µ2 > · · · > µM > 0) all the zeros
of a(λ) in C+.

Proposition 4.1. The function R+(x) defined by (3.15) can be written
in the following way ;

R+(x) =
(
−i

d

dx
+ i

)
R̃+(x),
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where R̃+(x) is continuous and bounded on R and satisfies, with some δ > 0,

(4.2) |R̃+(x)| ≤ Ce−δ
√

x for x > 0.

Furthermore there exists a sequence {qn(x)}n=1,2,... of real potentials belonging
to C∞

0 (R) and converging to q(x) in L2(R) such that letting be F+
n (x) the

function (3.17) derived from the potential qn(x), F+
n (x) can be written in the

following way ;

F+
n (x) =

M∑
j=1

(m(n)+
j )2e−µ

(n)
j x +

(
−i

d

dx
+ i

)
R̃+

n (x),

where R̃+
n (x) is continuous on R and satisfies the estimate uniformly with re-

spect to n; with C, C1, C2 > 0,

(4.3) |R̃+
n (x)| ≤

{
Ce−C1

√
x, x ≥ 0,

CeC2|x|, x < 0.

Furthermore as n → ∞,

R̃+
n (x) → R̃+(x),(4.4)

µ
(n)
j → µj(4.5)

and

(4.6) (m(n)+
j )2 → (m+

j )2.

Proof. We define q(n)(x), q(n,m)(x) and q(n,m,ε)(x) with n, m > 0 and
0 < ε < 1 by the followings;

q(n)(x) =

{
0, x > 2n,

q(x), x ≤ 2n,

q(n,m)(x) =

{
q(n)(x), x > −m,

0, x ≤ −m,

q(n,m,ε)(x) =
∫ ∞

−∞
ρ(y)q(n,m)(x − εy)d y,

where ρ(y) is a function in C∞
0 ((−1, 1)) satisfying ρ(y) ≥ 0 and∫ ∞

−∞
ρ(y)d y = 1.

Then the condition (D) implies that∫ ∞

0

|q(n)(x)|2eδ|x| 12 d x ≤ C
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and ∫ ∞

−∞
|q(x) − q(n)(x)|2d x ≤ C exp(−δ2

n
2 ).

On the other hand for any integer n > 0 there are m(n) and ε(n) such that∫ ∞

−∞
|q(n)(y) − q(n,m(n),ε(n))(y)|2d y ≤ exp(−δ2

n
2 )

and ∫ ∞

−∞
(1 + |x|)|q(n)(y) − q(n,m(n),ε(n))(y)|d y ≤ 1

n
.

Hence, letting be

(4.7) qn(x) = q(n,m(n),ε(n))(x),

we see that ∫ ∞

0

|qn(x)|2eδ|x| 12 d x ≤ C,(4.8) ∫ ∞

−∞
|q(x) − qn(x)|2d x ≤ C exp(−δ2

n
2 ),(4.9) ∫ ∞

−∞
(1 + |x|)|q(y) − qn(y)|d y → 0 as n → ∞(4.10)

and

(4.11) qn(x) = 0 for x ≥ 2n + 1.

We show that the sequence {qn(x)}n=1,2,... of potentials given by (4.7) satisfies
the desired properties. We denote by an(λ) and cn(λ) the coefficients of (3.1)
associated with the operator Lqn(x) and by r+

n (λ), R+
n (x) and F+

n (x) (3.15),
(3.16) and (3.17) derived from an(λ) and cn(λ).

From now on until the end of proof of Proposition 4.1, we use constants
without the suffix n in order to express constants independent of n. Let
{iµ(n)

1 , . . . , iµ
(n)
Mn

} (µ(n)
1 > · · · > µ

(n)
Mn

) be the set of an(λ)’s zeros in C+. Since
we see that

(4.12) ‖Lqn(x)u − Lq(x)u‖2 ≤ ‖qn − q‖2‖u‖∞
and from Sobolev’s imbedding theorem that for any ε > 0

(4.13) ‖u‖∞ ≤ ε‖Lq(x)u‖2 + Cε,q‖u‖2,

we get from (4.9) the following estimates of µ
(n)
k .
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Lemma 4.1. For large n we have

Mn ≥ M,(4.14)

|µ(n)
k − µk| < C0 exp(−δ2

n
2 −2) (1 ≤ k ≤ M)(4.15)

and

|µ(n)
k | < C0 exp(−δ2

n
2 −2) (k > M).(4.16)

The proof of Lemma 4.1 is given in the next section. Now we assume
that n is large enough and that the estimates above (4.14), (4.15), (4.16)
and C0 exp(−δ2

n
2 −2) < 1

3µM hold. We remark that 1
an(λ) is analytic in {λ ∈

C ; C0 exp(−δ2
n
2 −2) < �λ < 2

3µM}.
Since qn(x) ∈ C∞

0 (R), we see from (4.1) that

F+
n (x) =

M∑
j=1

(m(n)+
j )2e−µ

(n)
j x +

1
2π

∫ ∞+iσ

−∞+iσ

r+
n (λ)eixλd λ,

where

σ ∈
[
C0 exp(−δ2

n
2 −2),

1
2
µM

]
.

We define R̃+
n (x) by

(4.17) R̃+
n (x) =

1
2π

∫ ∞+iσ

−∞+iσ

r+
n (λ)
λ + i

eixλd λ.

We have

F+
n (x) =

M∑
j=1

(m(n)+
j )2e−µ

(n)
j x +

(
−i

d

dx
+ i

)
R̃+

n (x).

It follows from (2.21), (2.22) and (4.10) that, for λ ∈ C+, e+
n (x, λ),

d
dxe+

n (x, λ), e−n (x,−λ) and d
dxe−n (x,−λ) converge to e+(x, λ), d

dxe+(x, λ), e−(x,−λ)
and d

dxe−(x,−λ) respectively. Hence we obtain that on C+

(4.18) λan(λ) → λa(λ) compact uniformly as n → ∞
and

(4.19) |an(λ) − 1| ≤ C

|λ| .

Similarly we see from (4.10) that on R

(4.20) λcn(λ) → λc(λ) (n → ∞).

Furthermore noting that (4.8) and Schwarz’s inequality imply∫ ∞

0

(|qn(x)| +
∫ ∞

x

|qn(y)|d y)e
1
3 δ|x| 12 d x ≤ C,
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we obtain from (2.19)

(4.21)
∫ ∞

0

(|K+
qn

(0, y)| + |∂xK+
qn

(0, y)| + |∂yK+
qn

(0, y)|)e 1
6 δ|y| 12 d y ≤ C

and from (4.10) and (2.23)

(4.22)
∫ 0

−∞
(|K−

qn
(0, y)| + |∂xK−

qn
(0, y)| + |∂yK−

qn
(0, y)|)d y ≤ C.

Then we have the “almost analytic extension” of cn(λ) in the following way;

Lemma 4.2. There exists a smooth function c̃n(λ) on C+ \ {0} satis-
fying the followings ;

c̃n(λ) = cn(λ) (0 ≤ �λ < C12−
n
2 ),(4.23)

|λc̃n(λ)| ≤ C (0 ≤ �λ),(4.24)

|λ∂̄λc̃n(λ)| ≤ Ce−δ1
1

|�λ| (0 < �λ).(4.25)

The proof of Lemma 4.2 is given in the next section.
Let be

r̃+
n (λ) =

c̃+
n (λ)

an(λ)
.

Noting that (4.23) implies that

r̃+
n (λ) = r+

n (λ)
(

C0 exp(−δ2
n
2 −2) ≤ �λ ≤ C12−

n
2

)
,

∂̄λr̃+
n (λ) =

∂̄λc̃n(λ)
an(λ)

(
C0 exp(−δ2

n
2 −2) ≤ �λ ≤ 1

2
µM

)
,

we obtain by Cauchy’s integral theorem

(4.26)∫ ∞+iσ

−∞+iσ

r̃+
n (λ)
λ + i

eixλd λ =
∫

Dσ

∂̄λr̃+
n (λ)

λ + i
eixλd λ̄ ∧ d λ +

∫ ∞+i 1
2 µM

−∞+i 1
2 µM

r̃+
n (λ)
λ + i

eixλd λ,

where

Dσ =
{

λ ∈ C ; σ ≤ �λ ≤ 1
2
µM

}
and σ ∈ [C0 exp(−δ2

n
2 −2), C12−

n
2 ].

In order to obtain the uniform estimate of the right hand side of (4.26),
we remark the followings. Since the number of zeros Mn is that of eigenvalues
of Lqn(x), we obtain

Mn ≤ 2 +
∫ ∞

−∞
|xqn(x)|d x
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(see for example Theorem 4.3.II of [4] or Prob. 22 in Ch. XIII of [15]). Then
(4.10) implies that {Mn} is bounded, say

(4.27) Mn ≤ M+.

Let be

Γn(λ) =
∏

k>M

λ − iµ
(n)
k

λ + iµ
(n)
k

.

Then Γn(λ)
an(λ) is analytic for 0 < �λ < 2µM

3 . Since

|Γn(λ)| ≤ 1 (�λ ≥ 0),

we see from (3.11), (4.18) and (4.19) that∣∣∣∣Γn(λ)
an(λ)

∣∣∣∣ ≤ 1 on R,∣∣∣∣Γn(λ)
an(λ)

∣∣∣∣ ≤ C if �λ =
µM

2

and
Γn(λ)
an(λ)

→ 1 as λ ∈ C+ → ∞.

Then the maximum principle implies that∣∣∣∣Γn(λ)
an(λ)

∣∣∣∣ ≤ C on D0.

Since it follows from (4.16) and (4.27) that

|Γn(λ)| ≥ C if C12−
n
2 ≤ �λ,

we obtain ∣∣∣∣ 1
an(λ)

∣∣∣∣ ≤ C if C12−
n
2 ≤ �λ ≤ µM

2

from which, noting (4.24) and (4.25), we draw

(4.28) |r̃+
n (λ)| ≤ C

1
|λ| + 1

if �λ =
µM

2

and

(4.29) |∂̄λr̃+
n (λ)| ≤ C

1
|λ| + 1

e−δ2
1

|�λ| if C12−
n
2 ≤ �λ ≤ µM

2

where we used the estimate; for δ1 > δ2 > 0

1
|λ|e

−δ1
1

|�λ| ≤ C
1

|λ| + 1
e−δ2

1
|�λ| .
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Since ∂̄λr̃+
n (λ) = 0 if C12−

n
2 ≥ �λ > C0 exp(−δ

n
2 −2), we see that on Dσ

|∂̄λr̃+
n (λ)eixλ| ≤ C

1 + |λ| exp
(
− δ2

|�λ| − x�λ

)

≤


C

1 + |λ| exp(−2
√

δ2x) if x ≥ 0,

C

1 + |λ| exp
(µM

2
|x|
)

if x ≤ 0.

(4.30)

It follows from (4.17), (4.26), (4.28) and (4.30) that

(4.31) |R̃+
n (x)| ≤

C exp(−2
√

δ2x) if x ≥ 0,

C exp
(µM

2
|x|
)

if x ≤ 0,

which is just (4.3).
Next we show the convergence (4.4). Noting that, as n → ∞,

Γn(λ) → 1 for λ ∈ R \ {0},

we see from (4.18), (4.19) and (4.20) that

(4.32)
1
2π

∫ ∞

−∞
Γn(λ)

r+
n (λ)
λ + i

eixλd λ → R̃+(x) as n → ∞.

Since in the strip 0 < �λ < C12−
n
2 we have

Γn(λ)r̃+
n (λ) = Γn(λ)r+

n (λ)

that is analytic there, we see

(4.33)
∫ ∞

−∞
Γn(λ)

r+
n (λ)
λ + i

eixλd λ

=
∫

D
C12

− n
2

Γn(λ)
∂̄λr̃+

n (λ)
λ + i

eixλd λ̄ ∧ d λ +
∫ ∞+i 1

2 µM

−∞+i 1
2 µM

Γn(λ)
r̃+
n (λ)
λ + i

eixλd λ.

Since |∏1≤k≤l(1+ bk)− 1| ≤ e
P

1≤k≤l |bk|(
∑

1≤k≤l |bk|), we get from (4.16)
and (4.27),

|Γn(λ) − 1| ≤ exp(CM+e−δ2
n
2 −2

2
n
2 )CM+e−δ2

n
2 −2

2
n
2 on D

C12
− n

2
.

Thus we see that the difference between the right hand side of (4.33) and∫
D

C12
− n

2

∂̄λr̃+
n (λ)

λ + i
eixλd λ̄ ∧ d λ +

∫ ∞+i 1
2 µM

−∞+i 1
2 µM

r̃+
n (λ)
λ + i

eixλd λ
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converges to zero. Therefore from (4.26) and (4.32) we obtain (4.4). This and
(4.31) imply (4.2). Taking into account (3.20), we see from (4.15) that (4.5) and
(4.6) hold. Indeed, since e+

n (x, iµ
(n)
j ) and e−n (x,−iµ

(n)
j ) are linearly dependent,

we have (
e+
n (0, iµ

(n)
j )

e+′
n (0, iµ

(n)
j )

)
= c

µ
(n)
j

(
e−n (0,−iµ

(n)
j )

e−
′

n (0,−iµ
(n)
j )

)
from which we obtain for 1 ≤ j ≤ M

c
µ

(n)
j

→ cµj
as n → ∞.

While (4.18) and (4.15) imply that for 1 ≤ j ≤ M

a′
n(iµ(n)

j ) → a′(iµj).

Then we get (4.6). Thus the proof of Proposition 4.1 is completed except the
proof of two lemmas.

5. Proof of Lemmas

In this section we give the proof of Lemmas 4.1 and 4.2.
First we prove Lemma 4.1, following T. Kato [8, Ch. V §4.3].

Lemma 5.1. Let A1 and A2 be self-adjoint operators on a Hilbert space
X with the common domain X1. We assume that we have on X1

‖A2u − A1u‖ ≤ ν‖A1u‖ + C1‖u‖
with 0 < ν < 1. If (λ − d, λ + d) belongs to the resolvent set of A1, where we
assume ν|λ| + C1 < d(1 − ν), then λ belongs to the resolvent set of A2.

Proof. Indeed we see from the assumption that

‖(λ − A1)−1‖ ≤ 1
d

and
‖A1(λ − A1)−1‖ ≤ 1 +

|λ|
d

.

Then

‖(A2 − A1)(λ − A1)−1‖ ≤ ν

(
1 +

|λ|
d

)
+ C1

1
d

< 1.

Hence
(λ − A2)(λ − A1)−1 = I − (A2 − A1)(λ − A1)−1



�

�

�

�

�

�

�

�

Analyticity 25

is an automorphism in X, which implies the assertion of Lemma 5.1.

We see from Ch. V, Thm. 4.3 in Kato [8] that the operator Lq(x) with
a potential q(x) ∈ P(1) ∩ L2(R) is a self-adjoint operator on L2(R) with its
domain

H2(R) = {u(x) ∈ L2(R) ; u′(x), u′′(x) ∈ L2(R)}.
Since we obtain from Sobolev’s imbedding theorem

(Lq(x)u, u) + Cq‖u‖2
2 ≥ 0

with a constant Cq depending only on the norm ‖q(·)‖2, we see that all the
eigenvalues of Lqn(x) have a common lower bound, say, −Λ. Since only −µj

2

(j = 1, . . . , M) are eigenvalues of Lq(x), (4.9), (4.12), (4.13) with ε = 1
2 and

Lemma 5.1 imply that for large n the following set

(−Λ − 1,−d) \ ∪1≤j≤M (−d − µj
2, d − µj

2)

with d = C exp(−δ2
n
2 −1) belongs to the resolvent set of Lqn(x). On the other

hand by (4.18) and Hurwitz theorem, on any neighborhood of iµj we can find
a zero of an(λ) for large n. Hence we see the assertion of Lemma 4.1 is valid.
q.e.d.

Next we prove Lemma 4.2. Taking into account the relation (3.6), Remark
6, (4.11), (4.21) and (4.22), we have only to prove the following lemma in order
to prove Lemma 4.2.

Lemma 5.2. We assume that a function g(y) ∈ L1([0, +∞)) satisfies
the following estimate:

(5.1)
∫ +∞

0

|g(y)|eδ|y| 12 d y < +∞

with a positive constant δ. Then there exists a function g̃(λ + iµ) ∈ C∞(R2)
that satisfies

g̃(λ) = ĝ(λ) on R,(5.2)

|(∂λ + i∂µ))g̃(λ + iµ)| ≤ Ce−δ1|µ|−1
∫ +∞

0

|g(y)|eδ|y| 12 d y(5.3)

and

|∂k
λ∂l

µg̃(λ + iµ)| ≤ Ck,l

∫ ∞

0

|g(y)|eδ|y| 12 d y,(5.4)

where
ĝ(λ) =

∫ ∞

0

g(y)e−iyλd y

and the positive constants above C, δ1 and Ckl depend on the constant δ of
(5.1). Furthermore if g(y) = 0 for y ≥ 2no , then ĝ(λ + iµ) = g̃(λ + iµ) for
|µ| ≤ 2

−no−5
2 δ.
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Proof. Let χ(y) be a function in C∞
0 (R) satisfying 0 ≤ χ(y) ≤ 1 and

χ(y) =

{
1, |y| ≤ 1,

0, |y| ≥ 2.

We define g̃(λ + iµ) by

g̃(λ + iµ) =
∞∑

n=0

χ(2
n+5

2 µδ−1)g̃n(λ + iµ),

where

g̃0(λ + iµ) =
∫ 1

0

g(y)e−iy(λ+iµ)d y,

g̃n(λ + iµ) =
∫ 2n

2n−1
g(y)e−iy(λ+iµ)d y for n ≥ 1.

First we remark that g̃n(λ + iµ) is an entier function.
Since for n ≥ 1

(5.5) |∂k
λ∂l

µg̃n(λ + iµ)| ≤ 2n(k+l) exp (|µ|2n − δ2
n−1

2 )
∫ 2n

2n−1
|g(y)|eδ|y| 12 d y

and

(5.6) χ(2
n+5

2 µδ−1) = 0 when |µ|2n ≥ 1
2
δ2

n−1
2 ,

then we see that g̃(λ + iµ) is in C∞(R2) and that the estimate (5.4) is valid.
Furthermore we obtain

(∂λ + i∂µ)g̃(λ + iµ) =
∞∑

n=0

i2
n+5

2 δ−1χ ′(2
n+5

2 µδ−1)g̃n(λ + iµ).

Since χ ′(2
n+5

2 µδ−1) 
= 0 implies δ2
n−5

2 ≤ |µ|2n ≤ 1
2δ2

n−1
2 from which we obtain

1
4
δ2

n−1
2 ≥ δ2

25|µ| ,

it follows from (5.5) and (5.6) that for n ≥ 1

|2n+5
2 δ−1χ ′(2

n+5
2 µδ−1)g̃n(λ + iµ)|

≤ 2
n+5

2 δ−1e−δ2
n−5

2 e
− δ2

25|µ| ‖χ ′(·)‖L∞

∫ 2n

2n−1
|g(y)|eδ|y| 12 d y.

Hence we obtain (5.3).
If g(y) = 0 for y ≥ 2no , then

g̃(λ + iµ) =
no∑

n=0

χ(2
n+5

2 µδ−1)g̃n(λ + iµ).

Since χ(2
n+5

2 µδ−1) = 1 for |µ| ≤ 2
−no−5

2 δ and 0 ≤ n ≤ n0, we see ĝ(λ + iµ) =
g̃(λ + iµ) for |µ| ≤ 2

−no−5
2 δ.
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6. Proof of Theorem 1.2.

In this section we complete the proof of the main theorem. For any initial
data u0(x) ∈ P(1) ∩ L2(R) that satisfies the decay condition (D), according to
Proposition 4.1 we can find a sequence {u0,n(x)} in C∞

0 (R) so that

u0,n(x) → u0(x) in L2(R)

and letting be F+(x) and F+
n (x) functions given by (3.17) derived from the

potential u0(x) and u0,n(x) respectively we have

F+(x) =
M∑

j=1

(m+
j )2e−µjx +

(
−i

d

dx
+ i

)
R̃+(x),

F+
n (x) =

M∑
j=1

(m(n)+
j )2e−µ

(n)
j x +

(
−i

d

dx
+ i

)
R̃+

n (x),

where R̃+(x) and R̃+
n (x) satisfy (4.2) and (4.3) respectively and the convergence

(4.4), (4.5) and (4.6) are valid. Since the Cauchy problem (1.8) is well-posed
in the space S, the solution un(t, x) to the problem (1.8) with the initial data
u0,n(x) belongs to C1([0, +∞),S) (see Kato [9]). Then for t > 0 the solution
un(t, x) can be expressed by the following way;

(6.1) un(t, x) = −2
d

dx
K+

n (x, x, t),

where K+
n (x, y, t) satisfies the following Gelfand-Levitan-Marchenko equation

(6.2) F+
n (x + y, t) + K+

n (x, y, t) +
∫ ∞

x

K+
n (x, w, t)F+

n (w + y, t)d w = 0

with the function F+
n (x, t) that is given by

(6.3) F+
n (x, t) =

M∑
j=1

(m(n)+
j )2e−µ

(n)
j x+8(µ

(n)
j )3t + R+

n (x, t),

where R+
n (x, t) is given by

(6.4) R+
n (x, t) = E8(t, x) ∗

(
−i

d

dx
+ i

)
R̃+

n (x).

Indeed, from (3.28) and (3.29), we obtain

F+
n (x, t) =

Mn∑
j=1

(m(n)+
j )2e−µ

(n)
j x+8(µ

(n)
j )3t + E8(t, x) ∗ R+

n (x)

with
R+

n (x) =
1
2π

∫ ∞

−∞

cn(λ)
an(λ)

eiλx dλ.



�

�

�

�

�

�

�

�

28 Shigeo Tarama

Noting E8(t, x) = 1
2π

∫∞
−∞ ei(xω+8tω3) dω, we see

E8(t, x) ∗ R+
n (x) =

1
2π

∫ ∞

−∞
eixω+8tω3 cn(ω)

an(ω)
dω.

Just as the derivation of (4.1), we see the right hand side is equal to

∑
j>M

icn(iµ(n)
j )

a′
n(iµ(n)

j )
e−µ

(n)
j x+8t(µ

(n)
j )3 +

1
2π

∫ ∞+iσ

−∞+iσ

eixω+8tω3 cn(ω)
an(ω)

dω

with σ ∈ [C0 exp(−δ2
n
2 −2), 1

2µM ]. Then it follows from (3.20) that E8(t, x) ∗
R+

n (x) is equal to

−
∑
j>M

(m(n)+
j )2e−µ

(n)
j x+8t(µ

(n)
j )3 + E8(t, x) ∗ 1

2π

∫ ∞+iσ

−∞+iσ

cn(λ)
an(λ)

eiλx dλ.

Hence we obtain (6.3).
It follows from (4.3), (4.4), (4.5) and (4.6) that F+

n (x, t) converges to

M∑
j=1

(m+
j )2e−µjx+8µj

3t + R+(x, t),

which we denote by F+(x, t), where

R+(x, t) = E8(t, x) ∗
(
−i

d

dx
+ i

)
R̃+(x).

We remark that the Fourier transformation of R+(x, t) with respect to the
variable x is r+(λ)ei8λ3t. It follows from Proposition 1.1 and the estimates
(4.2) and (4.3) that for t > 0 F+(x, t) and F+

n (x, t) are real analytic on R

and that for any t1 > t0 > 0 and xo ∈ R there exist positive constants δ1, δ2

and C such that for t1 ≥ t ≥ t0, F+(x, t) and F+
n (x, t) are holomorphic on

Bx0,δ1 = {z ∈ C ; �z > x0 − δ1 and |�z| < δ1 } and they satisfy the following
decay estimate on Bx0,δ1 ;

(6.5) |F+
n (z, t)| ≤ C exp(−δ2|z| 12 ) (z ∈ Bx0,δ1)

and

(6.6) |F+(z, t)| ≤ C exp(−δ2|z| 12 ) (z ∈ Bx0,δ1).

Furthermore we see from (4.4), (4.5) and (4.6) that

(6.7) F+
n (z, t) → F+(z, t) on Bx0,δ1 .

Now we consider the Gelfand-Levitan-Marchenko equation.
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Lemma 6.1. For t > 0, the Gelfand-Levitan-Marchenko equation

(6.8) F+(x + y, t) + K+(x, y, t) +
∫ ∞

x

K+(x, w, t)F+(w + y, t)d w = 0

has a solution K+(x, y, t). For any t > 0 and x0 ∈ R there exist a complex
neighborhood U of x0 such that K+

n (x, x, t) and K+(x, x, t) have analytic con-
tinuations in U and K+

n (z, z, t) → K+(z, z, t) uniformly on any compact in
U .

Proof. Let be

K̃+
n (x, y, t) = K+

n (x, x + y, t),

K̃+(x, y, t) = K+(x, x + y, t).

Then (6.2) and (6.8) are equivalent to

(6.9) K̃+
n (x, y, t) +

∫ ∞

0

F+
n (2x + w + y, t)K̃+

n (x, w, t)d w + F+
n (2x + y, t) = 0

and

(6.10) K̃+(x, y, t) +
∫ ∞

0

F+(2x + w + y, t)K̃+(x, w, t)d w + F+(2x + y, t) = 0

respectively.
For any x ∈ R and t > 0 we define the operator Fx,t on L2([0,∞)) by

Fx,t(k(·))(y) =
∫ ∞

0

F+(2x + w + y, t)k(w)d w.

Hence (6.10) is

K̃+(x, y, t) + Fx,t(K̃+(x, ·, t))(y) + F+(2x + y, t) = 0.

Since (6.6) implies that F+(2x+w + y, t) ∈ L2([0, +∞)× [0, +∞)) for any real
x and t > 0, Fx,t is a compact operator on L2([0, +∞)). Furthermore I + Fx,t

is injective. Indeed if a real-valued k(y) ∈ L2([0, +∞)) satisfies

k(y) + Fx,t(k(·))(y) = 0,

then

(6.11)
∫ ∞

0

|k(y)|2d y +
∫ ∞

0

k(y)
∫ ∞

0

F+(2x + y + w, t)k(w)d wd y = 0.
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Since (m+
j )2 > 0, we obtain∫ ∞

0

k(y)
∫ ∞

0

F+(2x + y + w, t)k(w)d wd y

≥
∫ ∞

0

k(y)
∫ ∞

0

R+(2x + y + w, t)k(w)d wd y

=
1
2π

∫ ∞

−∞
ei(2xλ+8λ3t)r+(λ)k̂2(−λ)d λ

≥ − 1
2π

∫ ∞

−∞
|r+(λ)||k̂2(−λ)|2d λ,

(6.12)

where
k̂(λ) =

∫ ∞

0

e−iλyk(y)d y.

Since ∫ ∞

0

|k(y)|2d y =
1
2π

∫ ∞

−∞
|k̂2(−λ)|2d λ,

we see from (6.11) and (6.12) that

1
2π

∫ ∞

−∞
(1 − |r+(λ)|)|k̂2(−λ)|2d λ ≤ 0.

From (3.19) we see k(y) = 0, which implies that I +Fx,t is injective. Therefore
I +Fx,t is invertible (see Marchenko [12, Lemma 3.5.3 in Ch. 3, Sec. 5]). Then
K̃+(x, y, t) given by

K̃+(x, y, t) = (I + Fx,t)−1(−F+(2x + ·, t))(y)

is a solution of (6.10). Since K̃+
n (x, y, t) ∈ L1([0, +∞)) ∩ L∞([0, +∞)) for any

x ∈ R and t > 0, we see K̃+
n (x, y, t) ∈ L2([0, +∞)). Therefore the argument

above implies that

K̃+
n (x, y, t) = (I + Fn,x,t)−1(−F+

n (2x + ·, t))(y),

where

Fn,x,t(k(·))(y) =
∫ ∞

0

F+
n (2x + w + y, t)k(w)d w.

Since for any t > 0 and any x0 ∈ R there exists a complex neighborhood V
of x0 such that F+(2z + w + y, t) is well-defined on V × [0, +∞) × [0, +∞)
and holomorphic with respect to the variable z, taking into account (6.6)
we see that the operator Fz,t is L(L2([0, +∞)), L2([0, +∞)))-valued holomor-
phic function on V . Similarly we see that {Fn,z,t} is a bounded family of
L(L2([0, +∞)), L2([0, +∞)))-valued holomorphic functions on V . We obtain
from (6.5) and (6.7)

‖F+
n (2z + w + y, t) − F+(2z + w + y, t)‖L2

w,y([0,+∞)×[0,+∞)) → 0
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uniformly on any compact in V . Then we see that there exist a complex neigh-
borhood U of x0 and a large positive integer N such that, if n ≥ N and z ∈ U ,
I + Fz,t and I + Fn,z,t are invertible and their inverses form a bounded family
of L(L2([0, +∞)), L2([0, +∞)))-valued holomorphic functions on U . Therefore
(I+Fz,t)−1(F+(2z+·, t))(y) and (I+Fn,z,t)−1(F+

n (2z+·, t))(y) are L2([0, +∞))-
valued holomorphic function of z. Hence K̃+

n (x, y, t) and K̃+(x, y, t) have ana-
lytic continuations in U as L2([0, +∞))-valued functions and for z ∈ U

‖K̃+
n (z, ·, t) − K̃+(z, ·, t)‖2 → 0

uniformly on any compact in U .
Then Fz,t(K̃+(z, ·, t))(0) + F+(2z, t) and Fn,z,t(K̃+

n (z, ·, t))(0) + F+
n (2z, t)

are holomorphic functions and

Fn,z,t(K̃+
n (z, ·, t))(0) + F+

n (2z, t) → Fz,t(K̃+(z, ·, t))(0) + F+(2z, t)

uniformly on any compact in U . Hence K̃+
n (z, 0, t) and K̃+(z, 0, t) are holo-

morphic and K̃+
n (z, 0, t) → K̃+(z, 0, t) uniformly on any compact in U .

Lemma above and (6.1) imply that for t > 0 solutions un(t, x) are real
analytic on R and converge to −1

2
d
dxK+(x, x, t), which is also real analytic on

R, uniformly on any compact in R. On the other hand, the Cauchy problem
(1.8) is L2-wellposed. Then un(t, x) converges to the solution u(t, x) to the
problem (1.8) with the initial data u0(x) in L2. Therefore we obtain

u(t, x) = −1
2

d

dx
K+(x, x, t).

Hence we see that for t > 0 u(t, x) is real analytic with respect to the variable
x. The proof of Theorem 1.1 is completed.
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