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GEOMETRIC RSK AND THE TODA LATTICE

NEIL O’CONNELL

Abstract. We relate a continuous-time version of the geometric
RSK correspondence to the Toda lattice, in a way which can be

viewed as a semi-classical limit of a recent result by the author

which relates the continuous-time geometric RSK mapping, with
Brownian motion as input, to the quantum Toda lattice.

1. Introduction

The geometric RSK correspondence is a geometric lifting of the classical
RSK correspondence. It was introduced by Kirillov [25] and further studied
by Noumi and Yamada [33]. There is also a continuous-time version of the
geometric RSK mapping, which was introduced in [34] and substantially de-
veloped in [5], [6] in the context of Littelmann’s path model. In this setting,
an important role is a played by a mapping Πn (defined in the next section)
which takes as input a continuous path η(t), t ≥ 0 in R

n with η(0) = 0 and
returns a path Πnη(t), t > 0, also in R

n. In the paper [37] it was shown that,
if η(t) =

√
εB(t) + tλ, where λ ∈R

n and B is a standard Brownian motion in
R

n, then Πnη(t), t > 0 is a diffusion process in Rn with infinitesimal generator
given in terms of the Hamiltonian of the open quantum Toda chain with n
particles. The aim of the present paper is to understand this result from the
point of view of the classical Toda lattice.

By considering the semiclassical limit (ε→ 0) of this result, it can be seen
(heuristically) from a result of Givental [20] (at least in the case λ= 0) that,
if η(t) = tλ, then Πnη(t), t > 0 should define a solution to the classical Toda
flow (with opposite sign), and indeed this is the case. We will show it directly
in the classical (ε= 0) setting by considering the continuous-time geometric
RSK mapping with deterministic input. The approach is very elementary
and mostly self-contained. Starting with the definition of the geometric RSK
mapping, we soon arrive at familiar objects in the general theory of the Toda
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lattice, thus providing further insight into the results of [37] from an integrable
systems point of view.

The main conclusion is that there is a precise sense in which

(1.1) classical Toda + noise = quantum Toda.

This statement requires some qualification, however. First, we consider both
the classical and quantum system in imaginary time. For the classical system
this means that the potential has a minus sign, that is, the Hamiltonian is
given by

1

2

n∑
i=1

p2i −
n−1∑
i=1

exi+1−xi .

For the quantum system, it means we consider normalised Hamiltonian

Lλ =−1

2
ψλ(x)

−1

(
H + ε

∑
i

λ2
i

)
ψλ(x) =

ε

2
Δ+ ε∇ logψλ · ∇,

where

H =−εΔ+
2

ε

n−1∑
i=1

exi+1−xi

is the Hamiltonian of the quantum Toda lattice and ψλ is a particular eigen-
function of H known as a (class one) GL(n,R)-Whittaker function. Moreover,
in the ‘equation’ (1.1), the noise must be added in a very particular way. It is
not simply a random perturbation of the classical Toda flow, but rather a ran-
dom perturbation of a particular construction of the Toda flow which is closely
related to the geometric RSK correspondence. Within this construction, the
perturbation is simply:

Add noise to the constants of motion.

It will be interesting to investigate to what extent this relation extends to
other integrable systems.

Along the way we observe the following curious fact. Consideration of
the geometric RSK mapping with Brownian motion as input gives rise to a
particular stochastic dynamics on triangles (the analogue of Gelfand–Tsetlin
patterns in this setting), as discussed in [37]. In that paper, another quite
different stochastic dynamics on triangles was also considered and shown to
have the same fixed-time distributions, and to bear the same relation to the
quantum Toda lattice. This latter dynamics can be interpreted as a geometric
lifting of Warren’s process [46], which in turn can be interpreted as a continu-
ous version of a shuffling algorithm which has played an important role in the
random tilings literature [32]. Similar dynamics on Gelfand–Tsetlin patterns,
constructed using a general prescription of Diaconis and Fill [14], have been
studied by Borodin and co-workers, see, for example, [7], [8]. It turns out that,
in the semi-classical limit we consider in this paper, both the ‘RSK type’ and
‘shuffling type’ of dynamics are equivalent.
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The outline of the paper is as follows. In the next section, we recall some
relevant background material on factorisations of matrices. In Section 3, we
define and recall some basic properties of the continuous-time geometric RSK
mapping. In Section 4, we recall some facts about Whittaker functions and the
quantum Toda lattice, which continue to play a role in the classical setting. In
Section 5, we recall some of the main results of [37] and in Section 6 we briefly
outline, at a heuristic level, what happens to these results in the semiclassical
limit. In Section 7, we recall some basic definitions and properties of the
opposite sign Toda lattice and, in Section 8, we formulate and prove the main
results of the paper.

2. Preliminaries

Let G = GL(n,C) and denote by B,N (resp. B−,N−) the subgroups of
upper (resp. lower) triangular and uni-triangular matrices in G. Throughout
this paper, an important role will be played by the totally positive part, which
we will denote by P , of the double Bruhat cell B ∩B−w̄0B−, where w̄0 is a
representative in G of the longest element w0 ∈ Sn, as in [17], [4]. Concretely,

(2.1) P =
{
b ∈B : Δm

k (b)> 0,1≤ k ≤m≤ n
}
,

where

(2.2) Δm
k (b) = det[bij ]1≤i≤k,m−k+1≤j≤m.

In the following, we adopt the convention that Δm
0 (b) = 1. The quantities

Δm
k (b),1≤ k ≤m≤ n uniquely determine b ∈ P , as follows. (See, for example,

[4] or [33, Proposition 1.5].) For a ∈C
k, define

εk(a) =

⎛⎜⎜⎜⎜⎜⎝
a1 1 0 . . . 0
0 a2 1 . . . 0
...

. . .
...

ak−1 1
0 . . . ak

⎞⎟⎟⎟⎟⎟⎠ ,

and denote by Ik the identity matrix of dimension k. For 1 ≤ m ≤ n and
w ∈C

n−m+1, define

Em(w) =

(
Im−1 0
0 εn−m+1(w)

)
.

Proposition 2.1. Each element b ∈ P can be represented uniquely as a
product of the form

b=E1

(
w1

)
· · ·En

(
wn

)
,

where wm ∈ (R>0)
n−m+1 for each m. The wm are given by

wm
1 =Δm

1 (b); wm
i =

Δm+i−1
i (b)Δm+i−2

i−2 (b)

Δm+i−1
i−1 (b)Δm+i−2

i−1 (b)
, 1< i≤ n−m+ 1.
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This provides a natural (Gelfand–Tsetlin) parameterization of P by the set
of triangles

(2.3) T =
{
X =

(
xm
i

)
∈R

n(n+1)/2 : 1≤ i≤m≤ n
}
,

obtained by setting

(2.4) xm
1 + · · ·+ xm

k = logΔm
k (b).

We will denote the corresponding bijective mapping by f : P →T . Note that
if we write X = (xm

i ) = f(b), the wm of Proposition 2.1 are given, in terms of
the xm

i , by

wm
1 = ex

m
1 ; wm

i = ex
m+i−1
i −xm+i−2

i−1 , 1< i≤ n−m+ 1.

The Weyl group associated with G is the symmetric group Sn. Each el-
ement w ∈ Sn has a representative w̄ ∈ G defined as follows. Denote the
standard generators for gln by hi, ei and fi. For example, for n= 3,

h1 =

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ , h2 =

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠ , h3 =

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠ ,

e1 =

⎛⎝0 1 0
0 0 0
0 0 0

⎞⎠ , e2 =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠ ,

f1 =

⎛⎝0 0 0
1 0 0
0 0 0

⎞⎠ , f2 =

⎛⎝0 0 0
0 0 0
0 1 0

⎞⎠ .

For adjacent transpositions si = (i, i+ 1), define

s̄i = exp(−ei) exp(fi) exp(−ei) = (I − ei)(I + fi)(I − ei).

In other words, s̄i = ϕi

(
0
1

−1
0

)
where ϕi is the natural embedding of SL(2)

into GL(n) given by hi, ei and fi. For example, when n= 3,

s̄1 =

⎛⎝0 −1 0
1 0 0
0 0 1

⎞⎠ , s̄2 =

⎛⎝1 0 0
0 0 −1
0 1 0

⎞⎠ .

Now let w = si1 · · ·sir be a reduced decomposition and define w̄ = s̄i1 · · · s̄ir .
Note that uv = ūv̄ whenever l(uv) = l(u) + l(v). Denote the longest element
of Sn by

w0 =

(
1 2 · · · n
n n− 1 · · · 1

)
.

For n= 2, w0 = s1 and

w̄0 = s̄1 =

(
0 −1
1 0

)
.
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For n= 3, w0 = s1s2s1 = s2s1s2 is represented by

w̄0 = s̄1s̄2s̄1 = s̄2s̄1s̄2 =

⎛⎝0 0 1
0 −1 0
1 0 0

⎞⎠ .

Denote the elementary lower uni-triangular Jacobi matrices by

li(a) = In + afi, 1≤ i≤ n− 1.

These matrices play a central role in parameterising of the set (N−)>0 of
totally positive lower triangular matrices, see, for example, [4]. For u ∈ C

m,
1≤m<n, define

Lm(u) = lm(um)lm−1(um−1) · · · l1(u1).

Proposition 2.2. Each L ∈ (N−)>0 can be written uniquely as a product

L= L1

(
u1
)
L2

(
u2
)
· · ·Ln−1

(
un−1

)
,

where um ∈ (R>0)
m for each m.

The next proposition is due to Berenstein, Fomin and Zelevinsky [4].

Proposition 2.3. Let b ∈ P . Then bw̄0 has a Gauss decomposition bw̄0 =
LDU where

Dii =
Δn

i (b)

Δn
i−1(b)

, 1≤ i≤ n,

and L ∈ (N−)>0 is given by

L = L1

(
u1
)
L2

(
u2
)
· · ·Ln−1

(
un−1

)
,

um
i =

Δm
i−1(b)Δ

m+1
i+1 (b)

Δm
i (b)Δm+1

i (b)
, 1≤ i≤m<n.

Note that, if X = (xm
i ) = f(b), then the Dii and um

i of Proposition 2.3 are
given by

Dii = ex
n
i , 1≤ i≤ n

and
um
i = ex

m+1
i+1 −xm

i , 1≤ i≤m<n.

3. Geometric RSK in continuous time

In this section, we recall the definition and some basic properties of the
continuous-time geometric RSK mapping. Many of the results of this section
are essentially contained in the papers [5], [6], see also [37], [38]. For complete-
ness, we include direct proofs of all the main statements, which are adapted
to the present setting.

Let η : [0,∞)→R
n be a continuous path with η(0) = 0. Denote the coor-

dinates of η by η1, . . . , ηn, so that

η(t) =
(
η1(t), . . . , ηn(t)

)
, t > 0.
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0 tsj−1sj−2 si+1 si

j

i

Figure 1. A down-right path φ= (sj−1, . . . , si) ∈Ωij(t).

For 1≤ i < j ≤ n, set

Ωij(t) = {0< sj−1 < · · ·< si < t}.
In the following, it will be helpful to think of elements φ ∈ Ωij(t) as ‘down-
right paths’ in the semi-lattice R× Z starting at (0, j) and ending at (t, i),
as shown in Figure 1. Write dφ= dsi · · · dsj−1 for the Euclidean measure on
Ωij(t). For φ= (sj−1, . . . , si) ∈Ωij(t), we define

Eη(φ) = ηj(sj−1) + ηj−1(sj−2)− ηj−1(sj−1) + · · ·+ ηi(t)− ηi(si).

For 1≤ i < j ≤ n and t≥ 0, set

(3.1) bii(t) = eηi(t), bij(t) =

∫
Ωij(t)

eEη(φ) dφ.

Setting bij = 0 for i > j, this defines a path in the subgroup B of upper
triangular matrices in GL(n,C). If η is smooth, then b(t) = (bij(t)), t ≥ 0,
satisfies the evolution equation

(3.2) ḃ= ε(η̇)b,

with initial condition b(0) = In, where ε(λ) = ελ is defined for λ ∈C
n by

(3.3) ελ =

⎛⎜⎜⎜⎜⎜⎝
λ1 1 0 . . . 0
0 λ2 1 . . . 0
...

. . .
...

λn−1 1
0 . . . λn

⎞⎟⎟⎟⎟⎟⎠ .

For n= 1, we define ελ = λ1.
The next proposition is a special case of [5, Proposition 3.11]. It shows

that b(t) ∈ P for each t > 0 and also makes clear the connection with Kirillov’s
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original definition of the geometric RSK mapping in terms on non-intersecting
lattice paths. For completeness, we include a direct proof which is adapted
to the present setting.

Proposition 3.1.

(3.4) Δm
k

(
b(t)

)
=

∫
Ωm

k (t)

eEη(φ1)+···+Eη(φk) dφ1 · · · dφk,

where the integral is with respect to the Euclidean measure on the set Ωm
k (t)

of k-tuples of non-intersecting down-right paths φ1, . . . , φk starting at (0,m−
k+ 1), . . . , (0,m), respectively, and ending at (t,1), . . . , (t, k).

Proof. This is a straightforward variation of the Karlin–McGregor/
Lindström–Gessel–Viennot formula, and is proved by a standard path-
switching argument, see, for example, [24, Section 1.2]. Let

Y (t) =
(
Y1(t), . . . , Yk(t)

)
, t≥ 0

be a collection of independent, unit-rate Poisson processes started at positions
(1, . . . , k). Then Y is a continuous time Markov chain with state space Nk.
Denote the transition probabilities of Y by

pt(y, y
′) = P

(
Y (s+ t) = y′|Y (s) = y

)
, s, t≥ 0.

For σ ∈ Sk and y ∈ N
k, write σy = (yσ(1), . . . , yσ(k)). We note that Y enjoys

the strong Markov property and its law is Sk-invariant, that is, pt(σy,σy
′) =

pt(y, y
′) for all σ ∈ Sk. Let

Ti = inf
{
t > 0 : Yi(t) = Yi+1(t)

}
, 1≤ i≤ n− 1,

and T =mini Ti. Fix t > 0 and let Z be an integrable, measurable function of
(Y (r),0≤ r ≤ t) which is invariant under the substitutions Y → Ỹ (i), where
for each i,

Ỹ (i)(r) =

{
Y (r), r ≤ Ti,

siY (r), r > Ti,

with si denoting the adjacent transposition (i, i+ 1).
We will first show that, for y ∈N

k with y1 < y2 < · · ·< yk,

(3.5) E
[
Z;T > t;Y (t) = y

]
=

∑
σ∈Sk

sgn(σ)E
[
Z;Y (t) = σy

]
.

Note that, since E[Z;T > t;Y (t) = σy] = 0 unless σ is the identity, this is
equivalent to ∑

σ∈Sk

sgn(σ)E
[
Z;T ≤ t;Y (t) = σy

]
= 0,

or indeed ∑
i

∑
σ∈Sk

sgn(σ)E
[
Z;T = Ti ≤ t;Y (t) = σy

]
= 0.



890 N. O’CONNELL

It therefore suffices to show that, for each i,∑
σ∈Sk

sgn(σ)E
[
Z;T = Ti ≤ t;Y (t) = σy

]
= 0.

Now fix i and write Ỹ = Ỹ (i). Then, by the strong Markov property and
Sk-invariance of Y , Ỹ has the same law as Y . Moreover,

Tj = inf
{
t > 0 : Ỹj(t) = Ỹj+1(t)

}
, 1≤ j ≤ n− 1.

Thus,

E
[
Z;T = Ti ≤ t;Y (t) = σy

]
=E

[
Z;T = Ti ≤ t; Ỹ (t) = siσy

]
=E

[
Z;T = Ti ≤ t;Y (t) = siσy

]
,

and we conclude that∑
σ∈Sk

sgn(σ)E
[
Z;T = Ti ≤ t;Y (t) = σy

]
=

∑
σ∈Sk

sgn(σ)E
[
Z;T = Ti ≤ t;Y (t) = siσy

]
=−

∑
σ∈Sk

sgn(siσ)E
[
Z;T = Ti ≤ t;Y (t) = siσy

]
=−

∑
σ∈Sk

sgn(σ)E
[
Z;T = Ti ≤ t;Y (t) = σy

]
,

as required.
To see that (3.5) implies the formula (3.4), we take

Z = eEη(Ŷ1)+···+Eη(Ŷk),

where Ŷ (s) = Y (t − s), and y = (m − k + 1, . . . ,m). Then, using the fact
that a collection of independent, identically distributed exponential random
variables, conditioned on the value of their sum is uniformly distributed in
the corresponding simplex, we can write:

E
[
Z;T > t;Y (t) = y

]
= P

(
Y (t) = y

)∣∣Ωk,m(t)
∣∣−k

∫
Ωm

k (t)

eEη(φ1)+···+Eη(φk) dφ1 · · · dφk

and ∑
σ∈Sk

sgn(σ)E
[
Z;Y (t) = σy

]
= det

[
E
[
eEη(Ŷi);Yi(t) = yj

]]
1≤i,j≤k

= det
[
P
(
Yi(t) = yj

)∣∣Ωi,m−k+j(t)
∣∣−1

bi,m−k+j(t)
]
1≤i,j≤k

.
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Now, for each i≤ j,

P
(
Yi(t) = j

)
= e−t tj−i

(j − i)!
= e−t

∣∣Ωij(t)
∣∣,

hence

P
(
Yi(t) = yj

)∣∣Ωi,m−k+j(t)
∣∣−1

= e−t

and

P
(
Y (t) = y

)∣∣Ωk,m(t)
∣∣−k

= e−kt,

which concludes the proof. �

In particular, X(t) = (xm
i (t)) = f(b(t)), t > 0 defines a path in the set of

triangles T . The mapping Π : η 
→ (X(t), t > 0) was introduced and studied
in the papers [5], [6] and can be thought of as a continuous time version of
the geometric RSK correspondence introduced by Kirillov [25]. It also ap-
peared, in a different form (see below) in the paper [34]. For readers familiar
with the usual RSK correspondence, for each fixed t > 0, the path (η(s),0≤
s≤ t) should be interpreted as the input ‘word’, the triangle X(t) = (xm

i (t),
1 ≤ i ≤ m ≤ n) as the ‘P -tableau’, the path (xn(s),0 < s ≤ t) as the ‘Q-
tableau’ and the vector xn(t) as their common ‘shape’.

The mapping Π : η 
→ (X(t), t > 0) defined above admits the following al-
ternative formulation which is, in fact, equivalent to the original definition
given in [34]. For i= 1, . . . , n− 1, and continuous η : (0,∞)→R

n, define

(Piη)(t) = η(t) +

(
log

∫ t

0

eηi+1(s)−ηi(s) ds

)
(ei − ei+1),

where e1, . . . , en denote the standard basis vectors in R
n. Let Π1 denote the

identity mapping (Π1η = η) and, for 2≤m≤ n, define

Πm = P1 ◦ · · · ◦ Pm−1 ◦Πm−1.

Now, for continuous η : [0,∞) → R
n with η(0) = 0, define X(t) = (xm

i (t)),
t > 0, by

(3.6) xm
i (t) = (Πmη)i(t), 1≤ i≤m≤ n.

Then it holds that Πη = (X(t), t > 0). This follows from a more general
result [5, Theorem 3.5], which states that (ex

n
1 , . . . , ex

n
n) is the diagonal part

in the Gauss decomposition of bw̄0, as well as the recursive nature of the
construction. For completeness, we will include a self-contained proof of this
fact in the following, see Proposition 3.4 below.

In [5], it was shown that the Pi satisfy the braid relations, that is

PiPi+1Pi = Pi+1PiPi+1, i= 1, . . . , n− 1.

It follows that, for each w ∈ Sn,

Pw := Pir · · ·Pi1
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is well defined, where w = si1 · · ·sir is any reduced decomposition of w as
a product of adjacent transpositions, where si denotes the transposition
(i, i+ 1). The above-defined Πn is in fact Pw0 , as can be seen using the
reduced decomposition 121321 · · ·n− 1 · · ·21.

It is a straightforward consequence of (3.6) that, for smooth η, the triangle
X = (xm

i ) evolves according to the dynamics

ẋ1
1 = η̇1;(3.7)

ẋm
1 = ẋm−1

1 + ex
m
2 −xm−1

1 , ẋm
m = η̇m − ex

m
m−xm−1

m−1 , 2≤m≤ n;

ẋm
i = ẋm−1

i + ex
m
i+1−xm−1

i − ex
m
i −xm−1

i−1 , 1< i <m≤ n.

(For details, see Proposition 3.3.) Note that the initial value is singular.
We now will explain how, using the evolution equations (3.7), one can

‘insert’ a path η into an arbitrary initial triangle ξ ∈ T . In the language of
RSK, this corresponds to inserting a word into an arbitrary initial P -tableau.
For a smooth path η, the dynamic (3.7) defines a flow on triangles which we
denote by Sη

t . In other words, if we set X(0) = ξ and allow X(t) to evolve
according to (3.7), then X(t) = Sη

t ξ. Similarly, we denote by Rη
t the flow

on P defined by Rη
t b0 = b(t), where b(t) is the solution to (3.2) with initial

condition b(0) = b0. We will explain shortly how to extend the definitions of
the flows Sη

t and Rη
t to continuous paths η, but first we make a note of the

important relation between them.

Proposition 3.2. For smooth η : [0,∞)→R
n with η(0) = 0,

(3.8) Rη
t = f−1 ◦ Sη

t ◦ f.
Proof. Let X(0) ∈ T and, for t≥ 0, X(t) = Sη

t X(0) and b(t) = f−1(X(t)).

Let us write λ = η̇. We are required to show that ḃ = ελb. We will prove
this by induction. Write T = T n, f = fn, P = Pn, ε= εn to emphasize their
dependence on n and for m<n denote by Sπ

t the flow defined on T m defined
in the same way as above by a smooth path π : [0,∞)→R

m.

For n= 1, b= ex
1
1 so ẋ1

1 = λ1 implies ḃ= λ1b, as required.
For general n, by Proposition 2.1 we can write

b=E1

(
w1

)
· · ·En

(
wn

)
,

where

wm
1 = ex

m
1 ; wm

i = ex
m+i−1
i −xm+i−2

i−1 , 1< i≤ n−m+ 1.

Define Y = (ymi ) ∈ T n−1 by ymi = xm+1
i , 1≤ i ≤m≤ n− 1. In other words,

Y is the triangle of size n−1 obtained from X by removing x1
1, . . . , x

n
n. Define

a smooth path π : [0,∞)→R
n−1 by setting π(0) = 0 and π̇ = ν, where

ν1 = λ1 + a1, ν2 = λ2 − a1 + a2, . . .(3.9)

νn−1 = λn−1 − an−2 + an−1,

ai = ex
i+1
i+1−xi

i , 1≤ i≤ n− 1.
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Then, by (3.7), Y (t) = Sπ
t Y (0). Moreover, from the definition of the wm

above, we can write

b=E1

(
w1

)
⎛⎜⎜⎜⎝
1 0 . . . 0
0
... bn−1

0

⎞⎟⎟⎟⎠ ,

where bn−1 = (fn−1)−1(Y ). We note that w1 = (ex
1
1 , a1, . . . , an−1) and so, by

(3.7),

(3.10) ẇ1 =
(
λ1w

1
1, (λ2 − λ1 − a1)w

1
2, . . . , (λn − λn−1 − an−1)w

1
n

)
.

By the induction hypothesis, ḃn−1 = εn−1(ν)bn−1. Thus,

ḃ= Ė1

(
w1

)
⎛⎜⎜⎜⎝
1 0 . . . 0
0
... bn−1

0

⎞⎟⎟⎟⎠+E1

(
w1

)
⎛⎜⎜⎜⎝
0 0 . . . 0
0
... εn−1(ν)bn−1

0

⎞⎟⎟⎟⎠

=

⎡⎢⎢⎢⎣Ė1

(
w1

)
+E1

(
w1

)
⎛⎜⎜⎜⎝
0 0 . . . 0
0
... εn−1(ν)
0

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
1 0 . . . 0
0
... bn−1

0

⎞⎟⎟⎟⎠ .

Note that Ė1(w
1) = diag(ẇ1). It therefore suffices to show that

diag
(
ẇ1

)
+E1

(
w1

)
⎛⎜⎜⎜⎝
0 0 . . . 0
0
... εn−1(ν)
0

⎞⎟⎟⎟⎠= εn(λ)E1

(
w1

)
,

which is readily verified using (3.9) and (3.10). �
We will now explain how to extend the definition of the flow Sη

t to con-
tinuous paths η : [0,∞)→R

n with η(0) = 0, by simply solving the equations
(3.7) in terms of η and then observing that η need not be smooth in order for
the solution to make sense.

Let ξ = (ξmi ) ∈ T and η : [0,∞)→R
n continuous with η(0) = 0. Denote by

Πξη the path X(t) = (xm
i (t)), t≥ 0 in T , defined as follows. Set μ1 = ξ11 ,

μm =

m∑
i=1

ξmi −
m−1∑
i=1

ξm−1
i ,

and define

(3.11) π(t) = η(t) +

n∑
i=1

μiei.
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For 2≤ k ≤m≤ n, define

(3.12) rmk =

k−1∑
i=1

ξm−1
i −

k−1∑
i=1

ξmi .

Set

(3.13) x1
1(t) = π1(t),

and, for 2≤m≤ n,

(3.14) xm
m(t) = πm(t)− log

[
e−rmm +

∫ t

0

eπm(s)−xm−1
m−1(s) ds

]
.

For 2≤m≤ n and 1< k <m,

(3.15) xm
k (t) = ymk (t)− log

[
e−rmk +

∫ t

0

ey
m
k (s)−xm−1

k−1 (s) ds

]
,

where

(3.16) ymk (t) = xm−1
k (t) + log

[
e−rmk+1 +

∫ t

0

ey
m
k+1(s)−xm−1

k (s) ds

]
;

for 2≤m≤ n, writing y22 = π2,

(3.17) xm
1 (t) = xm−1

1 (t) + log

[
e−rm2 +

∫ t

0

ey
m
2 (s)−xm−1

1 (s) ds

]
.

The mapping Πξ can be written more compactly as follows. For r ∈ R,
i= 1, . . . , n− 1, and continuous η : [0,∞)→R

n, define(
P r
i η

)
(t) = η(t) +

(
log

[
e−r +

∫ t

0

eηi+1(s)−ηi(s) ds

])
(ei − ei+1).

Define Πξ
1 by Πξ

1η(t) = π(t), where π is defined as above by (3.11). For 1<
m≤ n, set

Πξ
m = P

rm2
1 ◦ · · · ◦ P rmm

m−1 ◦Π
ξ
m−1.

Then Πξη = ((Πξ
mη)i,1≤ i≤m≤ n).

Proposition 3.3. Let η : [0,∞) → Rn be a smooth path with η(0) = 0.
Then, for t≥ 0,

Sη
t ξ =Πξη(t).

Also, for t > 0, Πη(t) evolves according to (3.7).

Proof. Let X(t) = (xm
i (t)) be defined by (3.13)–(3.17). For convenience,

write ymm(t) = πm(t) and observe that, for 2≤ k ≤m≤ n,

(3.18)
d

dt
log

[
e−rmk +

∫ t

0

ey
m
k (s)−xm−1

k−1 (s) ds

]
= ex

m
k −xm−1

k−1 .
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First note that ẋ1
1 = η̇1 and, using (3.18),

ẋm
m = η̇m − ex

m
m−xm−1

m−1

for 2≤m≤ n. For 2≤m≤ n and 1< k <m, by (3.15), (3.16) and (3.18),

ẋm
k = ẏmk − ex

m
k −xm−1

k−1 = ẋm−1
k + ex

m
k+1−xm−1

k − ex
m
k −xm−1

k−1 .

For 2≤m≤ n, by (3.17) and (3.18),

ẋm
1 = ẋm−1

1 + ex
m
2 −xm−1

1 .

We have thus shown that X(t) satisfies (3.7), and it remains to check that
X(0) = ξ.

It follows immediately from the definitions (3.11), (3.13) and (3.14) that

xm
m(0) = μm + rmm = ξmm

for 1≤m≤ n. For 2≤m≤ n and 1< k <m, from (3.15) and (3.16),

xm
k (0) = ymk (0) + rmk = xm−1

k (0)− rmk+1 + rmk = xm−1
k (0) + ξmk − ξm−1

k ;

for 2≤m≤ n, from (3.17),

xm
1 (0) = xm−1

1 (0)− rm2 = xm−1
1 (0) + ξm1 − ξm−1

1 .

It follows that xm
i (0) = ξmi for 1≤ i≤m≤ n, as required.

The second claim also follows from the above argument, taking e−rmk = 0
for 2≤ k ≤m≤ n. �

Thus, for ξ ∈ T , b ∈ P and continuous η : [0,∞)→ R
n with η(0) = 0, we

define, for t≥ 0,

(3.19) Sη
t ξ =Πξη(t), Rη

t b= f−1
(
Sη
t f(b)

)
.

Let η : [0,∞)→R
n be a continuous path with η(0) = 0. Set b(t) =Rη

t b(0)
with either b(0) ∈ P or b(0) = I . Then, for each t > 0, b(t) ∈ P and we can
define X(t) = (xm

i (t)) = f(b(t)). If b(0) = I then X(t) = Πη(t). If b(0) ∈ P ,
then X(t) = Sη

t ξ = Πξη(t) where ξ = f(b(0)). By Proposition 2.3, for each
t > 0, b(t)w̄0 has a Gauss decomposition

b(t)w̄0 = L(t)D(t)U(t),

where

Dii = ex
n
i , 1≤ i≤ n

and L ∈ (N−)>0 is given by

L = L1

(
u1
)
L2

(
u2
)
· · ·Ln−1

(
un−1

)
,

um
i = ex

m+1
i+1 −xm

i , 1≤ i≤m<n.

For a square matrix A denote by Π−(A) the strictly lower triangular part
of A. The next proposition is essentially a special case of [6, Proposition 6.4].
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Proposition 3.4. If η is smooth, then L(t) and R(t) =D(t)U(t) satisfy

L̇= LΠ−
(
L−1ε(η̇)L

)
, Ṙ= ε

(
ẋn

)
R.

Proof. We have ḃ= ε(η̇)b, hence

L̇R+LṘ= ε(η̇)LR,

or, equivalently,

L−1L̇+ ṘR−1 = L−1ε(η̇)L.

Now, since ṘR−1 is upper triangular and L−1L̇ is strictly lower triangular,
this implies

L−1L̇=Π−
(
L−1L̇+ ṘR−1

)
=Π−

(
L−1ε(η̇)L

)
,

proving the first claim. Similarly, the strictly upper triangular part of ṘR−1

must equal the strictly upper triangular part of L−1ε(η̇)L, which is just the

shift matrix ε(0); also, since R=DU , the diagonal part of ṘR−1 is ḊD−1 =

diag(ẋn). Hence, ṘR−1 = diag(ẋn) + ε(0) = ε(ẋn), as required. �

4. Whittaker functions and the quantum Toda lattice

Following [20], [23], [18], for X = (xm
i ) ∈ T and λ ∈R

n, we define, for n≥ 2,

(4.1) F(X) =
∑

1≤i≤m<n

ex
m+1
i+1 −xm

i + ex
m
i −xm+1

i

and

(4.2) Fλ(X) =

n∑
m=1

λm

(
m−1∑
i=1

xm−1
i −

m∑
i=1

xm
i

)
+F(X).

If n= 1, we set F(X) = 0 and Fλ(X) =−λ1x
1
1.

For some readers, the following graphical representation may be helpful for
understanding the above definition, and also for following some of the proofs
which will be given later. We view a triangle X = (xm

i ) as an array:

xn
n

x2
2

x1
1

x2
1

xn
1

X =

The elements of this array are connected by arrows as shown, with the obvious
omissions at the boundary:
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xm−1
i

xm
i

xm+1
ixm+1

i+1

xm−1
i−1

To an arrow a→ b, we associated the weight ea−b. Then F(X) is just the
sum of the weights associated with the arrows in the diagram of X .

For x ∈R
n, denote by T (x) the set of triangles X = (xm

i ) ∈ T with bottom
row xn = x. Let ε > 0 and define

ψλ(x) =

∫
T (x)

e−Fλ(X)/ε
∏

1≤i≤m<n

dxm
i .

These are eigenfunctions of the quantum Toda lattice with Hamiltonian

H =−εΔ+
2

ε

n−1∑
i=1

exi+1−xi ,

also known as GL(n,R)-Whittaker functions [28], [20], [23], [18], [22].
In [45], it was shown that, for each x ∈ R

n, the function F(X) is strictly
convex and has a unique critical point on T (x), which is a minimum. This
property extends trivially to Fλ(X), as we are simply adding a linear func-
tional. Denote the corresponding critical point by X∗

λ(x). Note that, since
F(X) is strictly convex, X∗

λ(x) is a continuous function of λ.
For X = (xm

i ) ∈ T and, for 1 ≤ i ≤ m < n, define lmi = lmi (X) and rmi =
rmi (X) as follows. For 1≤ i <m< n,

lmi = ex
m+1
i+1 −xm

i + ex
m−1
i −xm

i ,

and, for 1≤m<n,

lmm = ex
m+1
m+1−xm

m .

Similarly, for 1< i≤m<n,

rmi = ex
m
i −xm+1

i + ex
m
i −xm−1

i−1 ,

and, for 1≤m<n,

rm1 = ex
m
1 −xm+1

1 .

For each x ∈R
n, the critical point X =X∗

λ(x) of Fλ on T (x) satisfies

(4.3) λm + lmi (X) = λm+1 + rmi (X), 1≤ i≤m<n.

For λ ∈ R
n, denote by Tλ the set of X = (xm

i ) ∈ T which satisfy the critical
point equations (4.3). Note that each element X = (xm

i ) ∈ Tλ is uniquely
determined by its bottom row xn, via X =X∗

λ(x
n).
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Remark 4.1. The critical point equations (4.3) are closely related to the
geometric Bender–Knuth transformations introduced in [25]. These are bira-
tional involutions bmi , 1≤ i≤m<n defined on T as follows: if X = (xm

i ) ∈ T
then bmi (X) is obtained from X by replacing xm

i with

x̃m
i = xm

i + log
lmi (X)

rmi (X)
,

and leaving the other entries unchanged. Thus, X ∈ T0 if, and only if, it
is invariant under all of the geometric Bender–Knuth transformations bmi ,
1≤ i≤m<n. We note that this implies, in particular, that each X ∈ T0 is a
fixed point of the geometric lifting of Schutzenberger’s involution, defined in
[25] as a composition of geometric Bender–Knuth transformations.

5. Geometric RSK and Brownian motion

In this section, we recall some of the main results from [37] which relate the
continuous-time geometric RSK mapping, with Brownian motion as input, to
the quantum Toda lattice.

Theorem 5.1 ([37]). If η(t) is a Brownian motion in Rn with η(0) = 0,
infinitesimal variance ε and drift λ ∈ R

n, then x(t) = Πnη(t) is a diffusion
process in R

n with infinitesimal generator given by

Lλ =−1

2
ψλ(x)

−1

(
H +

1

ε

∑
i

λ2
i

)
ψλ(x) =

ε

2
Δ+ ε∇ logψλ · ∇.

We note that in [37] this statement was proved in the case ε= 1, but this
is minor modification. In the case n = 2, it is equivalent to a Theorem of
Matsumoto and Yor [31]. The diffusion process with generator Lλ was first
introduced in [3], in the context of more general root systems.

In the paper [37], more general initial conditions were also considered, and
two quite different stochastic dynamics on triangles, namely:

dx1
1 = dB1 + λ1 dt;(5.1)

dxm
m = dBm +

(
λm − ex

m
m−xm−1

m−1
)
dt, 2≤m≤ n;

dxm
1 = dxm−1

1 + ex
m
2 −xm−1

1 dt, 2≤m≤ n;

dxm
i = dxm−1

i +
(
ex

m
i+1−xm−1

i − ex
m
i −xm−1

i−1
)
dt, 1< i <m≤ n

and

dx1
1 = dW 1

1 + λ1 dt;(5.2)

dxm
m = dWm

m +
(
λm − ex

m
m−xm−1

m−1
)
dt, 2≤m≤ n;

dxm
1 = dWm

1 +
(
λm + ex

m−1
1 −xm

1
)
dt, 2≤m≤ n;

dxm
i = dWm

i +
(
λm + ex

m−1
i −xm

i − ex
m
i −xm−1

i−1
)
dt, 1< i <m≤ n,
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where Bi,W
m
i ,1≤ i≤m≤ n are independent one-dimensional Brownian mo-

tions (without drift) and, for the purposes of this discussion, each with infin-
itesimal variance ε.

The first of these, (5.1), describes the (stochastic) evolution of Πη(t), or
Πξη(t) any initial condition ξ ∈ T , where η(t) =B(t)+ tλ, as can be seen, for
example, from the proof of Proposition 3.3 above. The second dynamic (5.2)
is a geometric lifting of Warren’s process [46].

Theorem 5.2 ([37]). For each x ∈ R
n, if the initial condition X(0) is

chosen at random according to the probability measure on T (x) with density
proportional to e−Fλ(X)/ε and X(t) evolves according to (5.1) or (5.2), then
xn(t), t≥ 0 is a diffusion process with infinitesimal generator Lλ, started at x.
Moreover, for each t > 0, the conditional law of X(t) given xn(s),0≤ s≤ t is
supported on T (xn(t)) with density proportional to e−Fλ(X)/ε.

This theorem can be represented as a commutative diagram, as follows.
Denote by Qλ

t the Markov semigroup associated with the diffusion with in-
finitesimal generator Lλ, that is, Qλ

t = etLλ , by Pλ
t the Markov semigroup

associated with the Markov process defined by either (5.1) or (5.2), and de-
fine Markov kernels Σλ from R

n to T and π from T to R
n, by

(Σλf)(x) = ψλ(x)
−1

∫
T (x)

e−Fλ(X)/εf(X)
∏

1≤i≤m<n

dxm
i

for suitable f : T →R and, writing X = (xm
i ) ∈ T ,

(πg)(X) = g
(
xn

)
.

Then, according to Theorem 5.2, the following diagram commutes:

T
Σλ

R
n

T
π

R
n

Pλ
t Qλ

t

Theorem 5.1 is a generalisation of Pitman’s ‘2M − X ’ theorem [43],
which states that, if Xt is a standard one-dimensional Brownian motion and
Mt =max0≤s≤tXs, then 2M −X is a three-dimensional Bessel process. Pit-
man’s theorem was generalised to the type An−1 case (from A1) in [10], [41]
and to arbitrary finite Coxeter groups in [5], [6]. For discrete versions, see
[35], [36], [30]. These generalisations are closely related to the RSK corre-
spondence, and also longest increasing subsequences, percolation and queues
[1], [2], [21]. Pitman’s theorem was extended to the geometric setting by Mat-
sumoto and Yor [31], and Theorem 5.1 can be regarded as a geometric lifting
of the generalisations of Pitman’s theorem for type An−1 given in [10], [41].
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It has been generalised to other types in [12]. A discrete-time version is given
in [13] (see also [40]) in the context of Kirillov’s geometric RSK mapping on
matrices, and a fully discrete q-version, in the context of Ruijenaars q-Toda
difference operators and q-Whittaker functions, in [39] (see also [9], [42]).

The second dynamics (5.2) is a geometric lifting of a process on Gelfand–
Tsetlin patterns introduced by Warren [46]. Nordenstam [32] showed that a
discrete version of Warren’s process is in fact closely related to a shuffling
algorithm which was previously studied in the random tilings literature [15],
[44], see also [8], [47], [7]. For some time now, it has been a natural question to
understand the relationship between these two types of dynamics. As we will
see, there is one setting in which the answer is simple: in the semi-classical
(ε→ 0) limit of Theorem 5.2, they are, in fact, equivalent!

6. A semi-classical limit

Theorem 5.1 can be restated as follows: if η(t) is a Brownian motion in Rn

with η(0) = 0, infinitesimal variance ε and drift λ ∈R
n, then x(t) = Πnη(t) is

a weak solution to the stochastic differential equation

(6.1) dx=
√
εdW + ε∇ logψλ(x)dt,

where W is a standard Brownian motion in R
n. From the definition of ψλ,

formally taking the limit in (6.1) as ε→ 0 yields

(6.2) ẋ=−∇uλ(x),

where, in the notation of Section 4,

(6.3) uλ(x) =Fλ

(
X∗

λ(x)
)
.

In the case λ = 0, this gradient flow is discussed by Givental [20], where it
is shown to be equivalent to the Toda flow (with opposite sign) on its most
degenerate iso-spectral manifold on which the eigenvalues of the Lax matrix
are all equal to zero. In fact, the corresponding statement holds true for any
λ ∈ R

n, namely, that the gradient flow (6.2) describes the Toda flow on the
iso-spectral manifold corresponding to λ. For more details, see Section 7 and
Theorem 8.5 below.

On the other hand, when ε= 0, η(t) = tλ almost surely. This suggests that
the image of the path η(t) = tλ under Πn defines a solution to the Toda flow
on the iso-spectral manifold corresponding to λ1, . . . , λn, and indeed this is
the case, as we will show in Theorem 8.5.

For more general initial conditions, in the context of Theorem 5.2, note
that when ε= 0, (5.1) becomes

ẋ1
1 = λ1;(6.4)

ẋm
1 = ẋm−1

1 + ex
m
2 −xm−1

1 , ẋm
m = λm − ex

m
m−xm−1

m−1 , 2≤m≤ n;

ẋm
i = ẋm−1

i + ex
m
i+1−xm−1

i − ex
m
i −xm−1

i−1 , 1< i <m≤ n
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and (5.2) becomes

ẋ1
1 = λ1;(6.5)

ẋm
1 = λm + ex

m−1
1 −xm

1 , ẋm
m = λm − ex

m
m−xm−1

m−1 , 2≤m≤ n;

ẋm
i = λm + ex

m−1
i −xm

i − ex
m
i −xm−1

i−1 , 1< i <m≤ n.

Moreover, the fixed time marginals of the process X(t), which are the same
in either case, are concentrated on Tλ. As we will see, Tλ is stable under both
of the flows defined by (6.4) and (6.5), and on Tλ, they are in fact equivalent.
Moreover, we will show that if X(0) ∈ Tλ and X(t) evolves according to ei-
ther/both, then xn(t) defines a solution to the Toda flow with opposite sign
on the iso-spectral manifold corresponding to λ. This last statement can be
interpreted as a semi-classical limit of Theorem 5.2. From this, we will also
deduce the semi-classical limit of Theorem 5.1. For precise statements, see
Theorems 8.4 and 8.5 below.

7. The Toda lattice

The Toda lattice is completely integrable Hamiltonian system which has
been extensively studied in the literature, see, for example, the survey [26].
We will consider the Toda lattice with opposite sign, with Hamiltonian

(7.1)
1

2

n∑
i=1

p2i −
n−1∑
i=1

exi+1−xi .

This is a special case of the indefinite Toda lattice [26], [27]. The equations
of motion are

ẍ1 = −ex2−x1 , ẍn = exn−xn−1 ;(7.2)

ẍi = −exi+1−xi + exi−xi−1 , i= 2, . . . , n− 1.

Writing qi = exi+1−xi for 1≤ i≤ n− 1, set

(7.3) M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 1 0 · · · 0
−q1 p2 1 · · · 0

0 −q2
. . .

. . .
...
0

...
. . . 1

0 . . . 0 −qn−1 pn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

(7.4) Q=Π−(M) =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0

−q1 0 . . . 0
...

. . .
...

0 0
0 . . . −qn−1 0

⎞⎟⎟⎟⎟⎟⎠ .

Then (M,Q) form a Lax pair, that is,

(7.5) Ṁ = [M,Q]

and (7.5) is equivalent to the equations of motion (7.2) or, equivalently,

q̇i = (pi+1 − pi)qi, i= 1, . . . , n− 1;(7.6)

ṗ1 = −q1; ṗn = qn−1;

ṗi = qi+1 − qi, i= 2, . . . , n− 1.

In particular, the eigenvalues λ1, . . . , λn of M form a complete set of integrals
of motion for the system. Denote by M the set of complex, tridiagonal,
Hessenberg matrices and by Mλ the subset of those matrices with eigenvalues
given by λ= (λ1, . . . , λn).

The relation to the usual Toda lattice with Hamiltonian

1

2

n∑
i=1

π2
i +

n−1∑
i=1

eξi+1−ξi

is as follows. If x(t) is a solution to the opposite sign Toda lattice which
can be analytically continued in the time variable t then, formally at least,
ξ(t) = x(ιt) defines a solution to the usual Toda lattice, that is

ξ̈1 = eξ2−ξ1 , ξ̈n =−eξn−ξn−1 ;(7.7)

ξ̈i = eξi+1−ξi − eξi−ξi−1 , i= 2, . . . , n− 1.

To solve (7.5) for a given initial condition M0 ∈M we write, for each t≥ 0,

etM0 = n(t)r(t),

where n(t) ∈N− and r(t) ∈B, assuming for the moment that such a factori-
sation is possible. Then

M(t) = n(t)−1M0n(t) = r(t)M0r(t)
−1

defines a solution to (7.5) with M(0) =M0. The matrices n(t) and r(t) evolve
according to

ṅ= nQ, ṙ = Pr,

where P =M −Q. Denote the corresponding flow on M by Tt, so that

M(t) = TtM0.
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There may exist times at which the solution blows up, as discussed, for ex-
ample, in [16], [26], [27].

Finally, we recall an important result of Kostant [29], namely that for any
M ∈Mλ, there is a unique L ∈N− such that

M = L−1ελL.

Thus, if M0 ∈Mλ with M0 = L−1
0 ελL0, then we can write

M(t) = L(t)−1ελL(t),

where L(t) = L0n(t) evolves according to L̇= LQ with L(0) = L0.

8. Flows on triangles and upper triangular matrices

We consider two flows on T , which we denote by Sλ
t and S̃λ

t , and define by

ẋ1
1 = λ1;(8.1)

ẋm
1 = ẋm−1

1 + ex
m
2 −xm−1

1 , ẋm
m = λm − ex

m
m−xm−1

m−1 , 2≤m≤ n;

ẋm
i = ẋm−1

i + ex
m
i+1−xm−1

i − ex
m
i −xm−1

i−1 , 1< i <m≤ n

and

ẋ1
1 = λ1;(8.2)

ẋm
1 = λm + ex

m−1
1 −xm

1 , ẋm
m = λm − ex

m
m−xm−1

m−1 , 2≤m≤ n;

ẋm
i = λm + ex

m−1
i −xm

i − ex
m
i −xm−1

i−1 , 1< i <m≤ n

respectively.

Proposition 8.1. For each λ ∈ R
n, Tλ is invariant under the flows Sλ

t

and S̃λ
t and, moreover, on Tλ these flows are equivalent.

Proof. We will first show that Tλ is stable under the dynamics (8.1). By
(4.3), this is equivalent to showing that Tλ is stable under the dynamics (8.2).
Suppose X ∈ Tλ. Then it follows from (8.2), using (4.3), that

(8.3) ẋm
i = λm+1 + ex

m
i −xm+1

i − ex
m+1
i+1 −xm

i , 1≤ i≤m<n.

Using (8.2) and (8.3) we have, for 1< i <m< n,

l̇mi =
(
ẋm−1
i − ẋm

i

)
ex

m−1
i −xm

i +
(
ẋm+1
i+1 − ẋm

i

)
ex

m+1
i+1 −xm

i

=
(
ex

m
i −xm−1

i−1 − ex
m
i+1−xm−1

i
)
ex

m−1
i −xm

i

+
(
ex

m
i+1−xm+1

i+1 − ex
m
i −xm+1

i
)
ex

m+1
i+1 −xm

i

= ex
m−1
i −xm−1

i−1 − ex
m+1
i+1 −xm+1

i

and

ṙmi =
(
ẋm
i − ẋm−1

i−1

)
ex

m
i −xm−1

i−1 +
(
ẋm
i − ẋm+1

i

)
ex

m
i −xm+1

i

=
(
ex

m−1
i −xm

i − ex
m−1
i−1 −xm

i−1
)
ex

m
i −xm−1

i−1
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+
(
ex

m+1
i −xm

i−1 − ex
m+1
i+1 −xm

i
)
ex

m
i −xm+1

i

= ex
m−1
i −xm−1

i−1 − ex
m+1
i+1 −xm+1

i .

Similarly, for 1≤m<n, we obtain

l̇m1 = ṙm1 =−ex
m+1
2 −xm+1

1 , l̇mm = ṙmm =−ex
m+1
m+1−xm+1

m .

We conclude that l̇mi = ṙmi for all 1≤ i≤m<n, which shows that Tλ is stable,
as required. �

The flow Sλ
t has a convenient representation in terms of the simple linear

flow on B defined by

Rλ
t b= etελb.

Proposition 8.2. On T , Sλ
t = f ◦Rλ

t ◦ f−1.

Proof. This follows from Proposition 3.2, taking η(t) = tλ. �

We will now explain how the restriction of the flow Sλ
t to Tλ is related to

the Toda flow on Mλ.
Define a map h : T → (N−)>0, X = (xm

i ) 
→ L, by

L= L1

(
u1
)
L2

(
u2
)
· · ·Ln−1

(
un−1

)
,

where

um
i = ex

m+1
i+1 −xm

i , 1≤ i≤m<n.

Define another map gλ : T → M, X = (xm
i ) 
→ M , where M is defined by

(7.3) with

qi = ex
n
i+1−xn

i , 1≤ i≤ n− 1,

and p= pn, where pmi , 1≤ i≤m≤ n are defined by

pm1 = pm−1
1 + ex

m
2 −xm−1

1 ; pmm = λm − ex
n
n−xn−1

n−1 ;

pmi = pm−1
i + ex

m
i+1−xm−1

i − ex
m
i −xm−1

i−1 , 1< i <m.

Note that, if X ∈ Tλ, then by (4.3), we can write

p1 = λn + ex
n−1
1 −xn

1 ; pn = λn − ex
n
n−xn−1

n−1 ;

pi = λn + ex
n−1
i −xn

i − ex
n
i −xn−1

i−1 , 1< i < n.

Proposition 8.3. Let X = (xm
i ) ∈ T , M = gλ(X) and L= h(X). If X ∈

Tλ, then
(8.4) M = L−1ελL.

Proof. For u ∈C
m, 1≤m<n, define

Km(u) =

(
δm(u) 0

0 In−m−1

)
,
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where

δm(u) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0
u1 1 0 . . . 0
0 u2 1 . . . 0

. . .

0 . . . 0 um 1

⎞⎟⎟⎟⎟⎟⎠ .

Note that

Lm(u)−1 =Km(−u).

Let X ∈ T and define

um
i = ex

m+1
i+1 −xm

i , 1≤ i≤m<n;

vmi = ex
m
i −xm+1

i , 1≤ i≤m<n;

qmi = ex
m
i+1−xm

i , 1≤ i <m≤ n;

pm1 = pm−1
1 + ex

m
2 −xm−1

1 ; pmm = λm − ex
n
n−xn−1

n−1 ;

pmi = pm−1
i + ex

m
i+1−xm−1

i − ex
m
i −xm−1

i−1 , 1< i <m.

For 2≤m≤ n, write λm = (λ1, . . . , λm), Lm(u) = Ln
m(u), Km(u) =Kn

m(u),

L(m) = Lm
(
u1
)
· · ·Lm

m−1

(
um−1

)
and

M (m) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

pm1 1 0 · · · 0
−qm1 pm2 1 · · · 0

0 −qm2
. . .

. . .
...
0

...
. . . 1

0 . . . 0 −qmm−1 pmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For v ∈C
m write

εm(v) =

⎛⎜⎜⎜⎜⎜⎝
v1 1 0 . . . 0
0 v2 1 . . . 0
...

. . .
...

vm−1 1
0 . . . vm

⎞⎟⎟⎟⎟⎟⎠ .

First, we will show that X ∈ Tλ implies (8.4). We prove this by induc-
tion.
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For m = 2, write q = q21 , pi = p2i , u = u1
1, v = v11 . Note that q = uv,

p1 = λ1 + u, p2 = λ2 − u and, by (4.3), λ1 + u= λ2 + v. Then(
L(2)

)−1
ε2(λ)L(2) =

(
1 0
−u 1

)(
λ1 1
0 λ2

)(
1 0
u 1

)
=

(
λ1 + u 1

−uλ1 + λ2(λ2 − u) λ2 − u

)
=

(
λ1 + u 1
−q λ2 − u

)
=M (2),

as required.
Now fix 2≤m<n. For A ∈C

m×m, write

Hm(A) =

⎛⎜⎜⎜⎜⎜⎝
0

A
...
0
1

0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ .

Note that

Lm+1
m

(
um

)−1
=Km+1

m

(
−um

)
= δm

(
−um

)
and

um
i vmi = qm+1

i , 1≤ i <m.

Also, since X ∈ Tλ, (4.3) implies

pm+1
1 = λm+1 + vm1 ; pm+1

m+1 = λm+1 − um
m;

pm+1
i = λm+1 + vmi − um

i−1, 1< i <m+ 1.

Hence,

M (m+1) − λm+1Im+1 = Lm+1
m

(
um

)−1
Hm

(
εm

(
vm

))
,

and so

Lm+1
m

(
um

)[
M (m+1) − λm+1Im+1

]
Lm+1
m

(
um

)−1
(8.5)

=Hm

(
εm

(
vm

))
Lm+1
m

(
um

)−1
.

Now, by (4.3),

pmi = λm+1 + vmi − um
i , 1≤ i≤m.

Using this, and

um
i vmi+1 = qmi , 1≤ i <m,

the right-hand side of (8.5) becomes

Hm

(
εm

(
vm

))
Lm+1
m

(
um

)−1
=Hm

(
M (m) − λm+1Im

)
.

By the induction hypothesis,

M (m) =
(
L(m)

)−1
εm

(
λm

)
L(m).
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Hence, using

Hm

(
εm

(
λm

)
− λm+1Im

)
= εm+1

(
λm+1

)
− λm+1Im+1

and

Hm

((
L(m)

)−1
AL(m)

)
=
[
Lm+1
1

(
u1
)
· · ·Lm+1

m−1

(
um−1

)]−1
Hm(A)Lm+1

1

(
u1
)
· · ·Lm+1

m−1

(
um−1

)
,

we conclude that

M (m+1) =
(
L(m+1)

)−1
εm+1

(
λm+1

)
L(m+1),

as required.
Now we will show that (8.4) implies X ∈ Tλ, again by induction. Write

T = T n, Tλ = T n
λ to emphasize their dependence on n. For 1≤m≤ n, write

Xm = (x1, . . . , xm). �

Remark 8.1. It can be shown that, in fact, X ∈ Tλ if, and only if,

M (m) =
(
L(m)

)−1
εm

(
λm

)
L(m),

for each 2≤m≤ n.

In the next theorem, in the case λ= 0, the formula (8.7) and the gradient
flow representation (8.8) are due to Givental [20].

Theorem 8.4. Let x,λ ∈ R
n and define X(t) = (xm

i (t)) = Sλ
t X(0) where

X(0) ∈ Tλ. Let M(t) = gλ(X(t)), b(t) = f−1(X(t)), and

L= L1

(
u1
)
L2

(
u2
)
· · ·Ln−1

(
un−1

)
,

where

um
i = ex

m+1
i+1 −xm

i , 1≤ i≤m<n.

Let Q=Π−(M) and P =M −Q. Then:

(i) For all t≥ 0,

M(t) = L(t)−1ελL(t)

and we have the Gauss decompositions

b(t)w̄0 = L(t)R(t), etM(0) = n(t)r(t),

where n(t) = L(0)−1L(t), R(t) ∈B, r(t) =R(t)R(0)−1 and these satisfy

L̇= LQ, Ṙ= PR, ṅ= nQ, ṙ = Pr.

In particular, M(t) defines a solution to the Toda flow on Mλ.
(ii) The eigenvalues λ1, . . . , λn are given by

(8.6) λ1 = ẋ1
1, λm =

m∑
i=1

ẋm
i −

m−1∑
i=1

ẋm−1
i , 2≤m≤ n.
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(iii) Writing x= x(t) = xn(t),

(8.7) F(X) = (n− 1)ẋ1 + (n− 3)ẋ2 + · · ·+ (1− n)ẋn

and

(8.8) ẋ=−∇xuλ(x).

Proof. (i) First note that, since b(t) ∈ P for all t≥ 0, by Proposition 2.3,
we have the Gauss decomposition b(t)w̄0 = L(t)R(t) where L(t) is defined as
in the statement of the Theorem. It follows from Propositions 8.1 and 8.3 that
M(t) = L(t)−1ελL(t) for all t≥ 0. Thus, by Proposition 3.4, L̇= LQ, which

implies the Lax equation Ṁ = [M,Q]. We also have from Proposition 3.4 that

Ṙ = PR. Applying Proposition 8.3 at t= 0, we have M(0) = L(0)−1ελL(0);
it follows, using

L(t)R(t) = etελL(0)R(0),

that

etM(0) = L(0)−1etελL(0) = L(0)−1L(t)R(t)R(0)−1.

Moreover, defining n(t) = L(0)−1L(t) and r(t) =R(t)R(0)−1, we have ṅ= nQ
and ṙ = Pr, as required.

Here is another, simple direct proof that x= xn satisfies the Toda equations
(7.2). For convenience, write y = xn−1. First suppose 1< i < n. By (8.2),

ẋi = λn + eyi−xi − exi−yi−1

and, by (8.3),

ẏi = λn + eyi−xi − exi+1−yi , ẏi−1 = λn + eyi−1−xi−1 − exi−yi−1 .

Hence,

ẍi = (ẏi − ẋi)e
yi−xi + (ẏi−1 − ẋi)e

xi−yi−1

=
(
exi−yi−1 − exi+1−yi

)
eyi−xi +

(
eyi−1−xi−1 − eyi−xi

)
exi−yi−1

= −exi+1−xi + exi−xi−1 .

For i= 1, we have

ẋ1 = λn + ey1−x1 , ẏ1 = λn + ey1−x1 − ex2−y1 ,

and hence

ẍ1 = (ẏ1 − ẋ1)e
y1−x1 =−ex2−x1 ;

for i= n,

ẋn = λn − exn−yn−1 , ẏn−1 = λn − exn−yn−1 + eyn−1−xn−1 ,

and we obtain

ẍn = (ẏn−1 − ẋn)e
xn−yn−1 = exn−xn−1 ,

as required.
Part (ii) follows immediately from (8.1).
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(iii) We will prove (8.7) and (8.8) by induction. Write Y n
λ , T = T n, Tλ =

T n
λ , Fn

λ and un
λ to emphasize their dependence on n. For 1 ≤m ≤ n, write

λm = (λ1, . . . , λm) and Xm = (x1, . . . , xm) ∈ Tλm . We will show that, for each
1≤m≤ n,

(8.9) Fm
(
Xm

)
= (m− 1)ẋm

1 + (m− 3)ẋm
2 + · · ·+ (1−m)ẋm

m

and

(8.10) ẋm =−∇xmum
λm

(
xm

)
.

First, we show (8.9). For m= 1, F(X) = 0 and the result holds trivially. Let
m> 1 and write x= xm and y = xm−1.

F2
(
X2

)
= ex2−y1 + ey−x1 .

By (8.2), ẋ1 = λ2 + ey−x1 and ẋ2 = λ2 − ex2−y , and so F2(X2) = ẋ1 − ẋ2, as
required. Now suppose m> 2. Note that

Fm
(
Xm

)
=Fm−1

(
Xm−1

)
+ Em,

where

Em = ey1−x1 + ex2−y1 + · · ·+ exm−ym−1 .

By the induction hypothesis,

Fm−1
(
Xm−1

)
= (m− 2)ẏ1 + (m− 4)ẏ2 · · · (2−m)ẏm−1.

Adding Em and using (8.3), then (8.2), gives

Fm
(
Xm

)
= (m− 1)ey1−x1

+ (m− 3)
(
ey2−x2 − ex2−y1

)
+ · · ·+ (1−m)

(
−exm−ym−1

)
= (m− 1)ẋ1 + (m− 3)ẋ2 + · · ·+ (1−m)ẋm,

as required.
Now we will prove (8.10). For m= 1, uλ(x) =−λ1x

1
1 and the result holds

trivially. Let m> 1 and write x= xm and y = xm−1. Set

Em
a = Em + a

(
m−1∑
j=1

yj −
m∑
i=1

xi

)
,

and note that

um
λm(x) = um−1

λm−1(y) + Em
λm .

First, suppose 1< i <m. Note that

∂Em
λm

∂xi
=

m−1∑
j=1

∂Em
λm

∂yj

∂yj
∂xi

+ exi−yi−1 − eyi−xi − λm.

On the other hand, by the induction hypothesis and (8.3),

∂um−1
λm−1(y)

∂yj
=−ẏj =−λm − eyi−xi + exi+1−yi =−∂Em

λm

∂yj
.
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Thus,

∂xiuλ(x) =

m−1∑
j=1

∂um−1
λm−1(y)

∂yj

∂yj
∂xi

+

m−1∑
j=1

∂Em
λm

∂yj

∂yj
∂xi

+ exi−yi−1 − eyi−xi − λm

= exi−yi−1 − eyi−xi − λm =−ẋi,

as required. The cases i= 1 and i=m are similar. �

We note that, as this is a recursive construction, implicit in the statement
of Theorem 8.4 is the statement that, for each m≤ n, xm(t) defines a solution
to the m-particle Toda flow on the iso-spectral manifold corresponding to
λ1, . . . , λm.

Note, in particular, the above shows that Tt ◦ gλ = gλ ◦ Sλ
t on Tλ. To

summarise, if we let Pλ = f−1Tλ, then the following diagram commutes:

Pλ

f
Tλ

gλ
Mλ

Rλ
t

Pλ

f
Tλ

gλ
Mλ

Sλ
t Tt

In particular, the semi-classical limit of the commutative diagram shown at
the end of Section 6 is:

Tλ
X∗

λ
R

n

Tλ
π

R
n

Sλ
t Tλ

t

where now Tλ
t denotes the gradient flow defined by (8.8) and, with a slight

abuse of notation, π denotes the projection π : X = (xm
i ) 
→ xn.

Example 8.1. Suppose n= 2 and x= λ= 0. Then, on T (x),

F0(X) =F(X) = e−x1
1 + ex

1
1 .

This has its unique critical point at x1
1 = 0, and so

X(0) =
x1
1(0)

x2
2(0) x2

1(0)
=X∗

0 (0,0) =
0

0 0
.

Setting b(0) = f−1(X∗
0 (0,0)), this implies

logΔ2
1

(
b(0)

)
= logΔ2

2

(
b(0)

)
= logΔ1

1

(
b(0)

)
= 0
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and hence

b(0) =

(
1 1
0 1

)
.

Now,

ε0 =

(
0 1
0 0

)
, etε0 =

(
1 t
0 1

)
,

and hence

b(t) = etε0b(0) =

(
1 1 + t
0 1

)
.

Now, applying the map f again gives

X(t) =
0

− log(1 + t) log(1 + t)
,

and hence
x2(t) =

(
log(1 + t),− log(1 + t)

)
.

Note that this gives

p1 =
1

1+ t
, p2 =− 1

1 + t
, q = ex

2
2−x2

1 =
1

(1 + t)2
.

For the usual Toda lattice this gives the solution

ξ(t) =
(
log(1 + ιt),− log(1 + ιt)

)
.

The symmetric form of the Lax matrix in this case is given by

Λ=

(
π1 e(ξ2−ξ1)/2

e(ξ2−ξ1)/2 π2

)
=

(
ι

1+ιt
1

1+ιt
1

1+ιt − ι
1+ιt

)
which, at t= 0, is given by

Λ(0) =

(
ι 1
1 −ι

)
.

Example 8.2. Suppose n= 2, x= (x,−x) and λ= (λ,−λ). Then

X∗
λ(x) =

y
−x x

,

where y ∈R is the unique solution to

λ+ e−x−y =−λ+ ey−x,

that is
e−y =

√
λ2e2x + 1− λex.

Now

b(0) =

(
ey ex

0 e−y

)
, ελ =

(
λ 1
0 −λ

)
,

etελ =

(
eλt 1

λ sinh(λt)
0 e−λt

)
,
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and hence

b(t) = etελb(0) =

(
ey+λt ex+λt + e−y 1

λ sinh(λt)

0 e−y−λt

)
.

The solution is thus given by

x2
1(t) = log

(
ex+λt + e−y 1

λ
sinh(λt)

)
,

and x2
2(t) =−x2

1(t). Note that

q(t) = ex
2
2(t)−x2

1(t) =

(
ex+λt + e−y 1

λ
sinh(λt)

)−2

.

Note that, when x→−∞, y→ 0 and b(0)→ I , and the solution becomes

x2
1(t) = log

(
1

λ
sinh(λt)

)
,

as discussed in Example 8.3 below.

Finally, we consider the flow Rλ
t on B started from the identity.

Theorem 8.5. Let λ ∈ R
n and b(t) = etελ . Note that f(b) = Πη, where

η(t) = tλ. Then Πη(t) ∈ Tλ for t > 0 and gλ(Πη(t)), t > 0 defines a solution to
the Toda flow on Mλ which is singular at t= 0. All of the other conclusions
of Theorem 8.4 also hold for t > 0 with X(t) = (xm

i (t)) = Πη(t). In this case,
b(t) is given explicitly by bii(t) = eλit and, for i < j,

bij(t) =
∑

i≤k≤j

[ ∏
l=i,...,j;l �=k

(λk − λl)
−1

]
eλkt(8.11)

=
1

2πι

∮
etz dz∏

i≤k≤j(z − λk)
,

where the integration is anti-clockwise around a circle containing λi, . . . , λj .
Alternatively, for i < j, we can write

(8.12) bij(t) =

[ ∏
i≤k<l≤j

(λk − λl)

]−1

∣∣∣∣∣∣∣∣∣
eλit λj−i−1

i . . . λi 1

eλi+1t λj−i−1
i+1 . . . λi+1 1

...

eλjt λj−i−1
j . . . λj 1

∣∣∣∣∣∣∣∣∣ .
We recall that, by definition,

xn
1 + · · ·+ xn

k = log τk, 1≤ k ≤ n,
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where τ1 = b1n and, for 2≤ k ≤ n,

(8.13) τk =

∣∣∣∣∣∣∣∣∣
b1,n−k+1 . . . b1,n−1 b1n
b2,n−k+1 . . . b2,n−1 b2n

...
bk,n−k+1 . . . bk,n−1 bkn

∣∣∣∣∣∣∣∣∣ .
Writing τ1 = τ , this solution can also be expressed in the more familiar form

(8.14) τk =

∣∣∣∣∣∣∣∣∣
τ (k−1) . . . τ ′ τ
τ (k) . . . τ ′′ τ ′

...
τ (2k−2) . . . τ (k−1)

∣∣∣∣∣∣∣∣∣ .
As matrix integrals, assuming |λi|< 1 for each i,

(8.15) τk =

∫
U(k)

(detM)k−1et trM∏n
i=1 det(M − λiI)

dM.

When λ= 0,

(8.16) τk =
(k− 1)!(k− 2)! · · ·1

(n− 1)!(n− 2)! · · · (n− k)!
tk(n−k).

Proof. Let ξ(N) =X∗
λ(−Nρn), where ρn = (n− 1, n− 3, . . . ,1−n), and set

XN (t) = Sλ
t ξ(N). By Propositions 3.3 and 8.1, XN (t) = Πξ(N)η(t) ∈ Tλ for

each t > 0.
For 2≤ k ≤m≤ n, define

rmk (N) =

k−1∑
i=1

ξm−1
i (N)−

k−1∑
i=1

ξmi (N).

We will show that, as N →∞, rmi (N)→ +∞ for each 2≤ i ≤m ≤ n. Note
that this implies that Πξ(N)(η)(t) converges to Π(η)(t) for each t > 0, and
hence that Π(η)(t) ∈ Tλ for each t > 0. But Π(η)(t) also evolves according to
(8.1) for t > 0, so by Theorem 8.4, gλ(Πη(t)), t > 0 defines a solution to the
Toda flow on Mλ, as claimed. For convenience, write XN (0) =X = (xm

i ). For

1≤m≤ n, define X̃ = (x̃m
i ) ∈ T by x̃m = xm+Nρm. Note that x̃n = 0. Then

Fλ(X) = eNFe−Nλ(X̃) and X̃ =X∗
e−Nλ(0). Thus, as N →∞, X̃ →X∗

0 (0). It
follows that, as N → ∞, for each 1 ≤ i ≤ m ≤ n, xm

i ∼ −Nρmi and hence
rmk (N)∼N(k− 1)→∞, as required.

We verify the formula (8.11) by induction. Without loss of generality, we
only need to show that the formula holds for b1n, n≥ 2. As b(t) is a continuous
function of λ we can also assume, for convenience, that the λi are distinct.
Write bn(t) = b1n(t). First, we note that

b2(t) =

∫ t

0

eλ2s+λ1(t−s) ds=
1

λ1 − λ2

(
eλ1t − eλ2t

)
.
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Now assume that, for each t > 0,

bn−1(t) =
∑

1≤k≤n−1

[ ∏
l=1,...,n−1;l �=k

(λk − λl)
−1

]
eλkt.

From the definition (3.1), we can write

b1n(t) =

∫ t

0

bn−1(s)e
λn(t−s) ds

=

n−1∑
k=1

[ ∏
l=1,...,n−1;l �=k

(λk − λl)
−1

][∫ t

0

e(λk−λn)s ds

]
eλnt

=
n−1∑
k=1

[ ∏
l=1,...,n;l �=k

(λk − λl)
−1

][
e(λk−λn)t − 1

]
eλnt

=

n−1∑
k=1

[ ∏
l=1,...,n;l �=k

(λk − λl)
−1

][
eλkt − eλnt

]
.

It therefore suffices to show that
n−1∑
k=1

[ ∏
l=1,...,n;l �=k

(λk − λl)
−1

]
=−

∏
1≤k≤n−1

(λn − λk)
−1

or, equivalently,

(8.17)

n∑
k=1

[ ∏
l=1,...,n;l �=k

(λk − λl)
−1

]
= 0.

To see that this holds, denote

Δm(a1, . . . , am) =
∏

1≤i<j≤m

(ai − aj) = det
[
an−j
i

]
i,j=1,...,m

and note that

Δn(λ)

n∑
k=1

[ ∏
l=1,...,n;l �=k

(λk − λl)
−1

]
=

n∑
i=1

(−1)i−1Δn−1(λ1, . . . , λ̂i, . . . , λn)

=

∣∣∣∣∣∣∣∣∣
1 λn−2

1 . . . λ1 1
1 λn−2

2 . . . λ2 1
...

1 λn−2
n . . . λn 1

∣∣∣∣∣∣∣∣∣= 0,

which implies (8.17). Note that essentially the same calculation yields the
alternative formula (8.12).

Set τ1 = b1n and, for 2≤ k ≤ n,

τk = det[bij ]1≤i≤k,m−k+1≤j≤m.
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Then
xn
1 + · · ·+ xn

k = log τk, 1≤ k ≤ n,

and since xn satisfies the Toda equations (7.2), this implies

(log τk)
′′ =−τk+1τk−1

τ2k
for each 1≤ k ≤ n with the conventions τ0 = 1 and τn+1 = 0.

On the other hand, the tau functions τ̃k defined by τ̃0 = 1, τ̃1 = τ1,

τ̃k = det
[
τ
(k+i−j−1)
1

]
1≤i,j≤k

, k ≥ 2

also satisfy

(log τ̃k)
′′ =− τ̃k+1τ̃k−1

τ̃2k
.

This is well known and is easily verified using basic properties of Wronskians
and Sylvester’s identity. It follows, by induction, that τ̃k = τk for 1≤ k ≤ n,
and in fact τ̃k = 0 for k > n.

To obtain the last formula (8.16), note that when λ= 0, bij(t) = tj−i/(j−i)!
for i < j, hence

τk = det

[
tn−k+j−i

(n− k+ j − i)!
1n−k+j−i≥0

]
i,j=1,...,k

=
(k− 1)!(k− 2)! · · ·1

(n− 1)!(n− 2)! · · · (n− k)!
tk(n−k) det

[(
n− i

k− j

)]
i,j=1,...,k

,

with the convention that
(
a
b

)
= 0 if b > a. Now, by a theorem of Gessel and

Viennot [19],

det

[(
n− i

k− j

)]
i,j=1,...,k

= 1,

so we are done. �
Example 8.3. Suppose n= 2 and λ= (λ,−λ). Then

x(t) =

(
log

[
1

λ
sinh(λt)

]
,− log

[
1

λ
sinh(λt)

])
.

This yields the solution

ξ(t) =

(
log

[
ι

λ
sin(λt)

]
,− log

[
ι

λ
sin(λt)

])
of the usual Toda lattice. Note that

eξ2−ξ1 =− λ2

sin2(λt)
.

We can also take λ to purely imaginary, λ= ιγ say, where γ ∈R. Then

eξ2−ξ1 =− γ2

sinh2(γt)
.
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This particular singular solution of the usual Toda lattice is discussed, for
example, in [11]. When λ= 0,

x(t) = (log t,− log t), ξ(t) = (ιπ/2 + log t,−ιπ/2− log t),

and
eξ2−ξ1 =−1/t2.
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1120. MR 2884226

[4] A. Berenstein, S. Fomin and A. Zelevinsky, Parameterizations of canonical bases and

totally positive matrices, Adv. Math. 122 (1996), 49–149. MR 1405449

[5] Ph. Biane, Ph. Bougerol and N. O’Connell, Littelmann paths and Brownian paths,
Duke Math. J. 130 (2005), 127–167. MR 2176549

[6] Ph. Biane, Ph. Bougerol and N. O’Connell, Continuous crystals and Duistermaat–
Heckman measure for Coxeter groups, Adv. Math. 221 (2009), 1522–

1583. MR 2522427

[7] A. Borodin and I. Corwin, Macdonald processes, Probab. Theory Related Fields 158

(2014), 225–400. MR 3152785

[8] A. Borodin and P. Ferrari, Large time asymptotics of growth models on space-like
paths. I. PushASEP, Electron. J. Probab. 13 (2008), 1380–1418. MR 2438811

[9] A. Borodin and L. Petrov, Nearest neighbor Markov dynamics on Macdonald processes,
available at arXiv:1305.5501.

[10] Ph. Bougerol and Th. Jeulin, Paths in Weyl chambers and random matrices, Probab.
Theory Related Fields 124 (2002), 517–543. MR 1942321

[11] L. Casian and Y. Kodama, Singular structure of Toda lattices and cohomology of
certain compact Lie groups, J. Comput. Appl. Math. 202 (2007), 56–79. MR 2301813
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