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THE NUMBER OF REPRESENTATIONS OF RATIONALS AS
A SUM OF UNIT FRACTIONS

T. D. BROWNING AND C. ELSHOLTZ

Abstract. For given positive integers m and n, we consider the
frequency of representations of m

n
as a sum of unit fractions.

1. Introduction

This paper centres on the question of representing fractions as sums of
unit fractions. Specifically, for a positive integer k ≥ 2 and given m,n ∈ N, we
would like a better understanding of the counting function

fk(m,n) = #
{

(t1, . . . , tk) ∈ N
k : t1 ≤ · · · ≤ tk and

m

n
=

1
t1

+ · · · +
1
tk

}
.

We will be mainly concerned with upper bounds for fk(m,n) which are uni-
form in k,m and n. On observing the trivial upper bound fk(m,n) ≤ fk(1, n),
we will generally be interested in bounds for fk(m,n) that get sharper as the
size of m increases.

The easiest case to deal with is the case k = 2, for which we have the
following essentially complete description.

Theorem 1. We have

f2(m,n) ≤ exp
((

log 3 + o(1)
) logn

log logn

)
.

Furthermore, for fixed m ∈ N, there are infinitely many values of n for which

f2(m,n) �m exp
((

log 3 + o(1)
) logn

log logn

)
.
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When k = 3, the equation appearing in the definition of f3(m,n) has re-
ceived much attention in the context of the conjecture1 of Erdős and Straus [5].
This predicts that f3(4, n) > 0 for any n ≥ 2. The conjecture has since been
generalised to arbitrary numerators by Schinzel [10]. Thus, for any m ≥ 4 one
expects the existence of Nm ∈ N such that f3(m,n) > 0 for n ≥ Nm. Both of
these conjectures are still wide open and have generated a lot of attention in
the literature. An overview of the domain can be found in work of the second
author [4]. The following result provides an upper bound for f3(m,n) which
is uniform in m and n.

Theorem 2. For any ε > 0, we have

f3(m,n) �ε

(
n

m

) 2
3

nε.

It follows from the theorem that f3(m,n) �ε n
2
3+ε. Numerical experimen-

tation reveals that f3(m,n) varies considerably as n varies but nonetheless
ought to correspond to a superposition of divisor functions. Indeed we would
conjecture that f3(m,n) �ε nε for any ε > 0. Moreover, our numerical inves-
tigations lead us to expect that f3(m,n) → ∞ as n → ∞, for fixed m.

Once the denominators are cleared the equation appearing in f3(m,n) takes
the shape

mxyz = n(xy + xz + yz).
This is one of several affine cubic equations for which the number of solutions
in positive integers is expected to grow like the divisor function. In private
communication with the authors, Brian Conrey has asked whether the number
of solutions in positive integers to the equation

n = xyz + x + y

can be bounded by Oε(nε) for any ε > 0. Kevin Ford2 has posed a gen-
eralisation of this problem, in which one would like to show that there are
Oε((|AB|)ε) nontrivial positive integer solutions to the equation xyz = A(x+
y) + B, for given nonzero A,B ∈ Z. A further problem of this type has been
posed by Pelling3, in which it is asked whether there are Oε(nε) solutions to
the cubic equation

xyz = n(x + y + z),
with x, y, z ∈ N. For this equation, it is known that the relevant counting
function grows at most like Oε(n

1
2+ε) but the original question is open. We

shall not say anything more about these equations here.

1 The earliest reference in the literature to this conjecture appears to be a paper by Obláth

[7], submitted in 1948.
2 First presented at the DIMACS Meeting in Rutgers in 1996.
3 Problem 10745, Solution in: Amer. Math. Monthly 108 (2001), 668–669.
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Recording anything meaningful for fk(m,n) when k ≥ 4 seems to be a
harder problem. Nonetheless, we are able to build Theorem 2 into an induction
argument which leads us to the following result.

Theorem 3. Let k ≥ 4. For any ε > 0, we have

f4(m,n) �ε nε

{(
n

m

) 5
3

+
n

4
3

m
2
3

}
,

and for k ≥ 5

fk(m,n) �ε (kn)ε

(
k

4
3 n2

m

) 5
3 ×2k−5

.

The special case fk(1,1) has received special attention in the literature. In
one direction, Croot [2] has solved a difficult problem of Erdős by showing that
any finite colouring of the positive integers allows a monochromatic solution
of the equation

(1) 1 =
k∑

i=1

1
ti

for unspecified k. In a different direction, for given k ∈ N, let K(k) = fk(1,1)
denote the number of vectors (t1, . . . , tk) ∈ N

k with t1 ≤ · · · ≤ tk, for which (1)
holds. Define the sequence un via u1 = 1 and un+1 = un(un + 1). This se-
quence grows doubly exponentially and one has c0 = limn→∞ u2−n

n = 1.264 . . . .
Building on earlier work of Erdős, Graham and Straus [6], Sándor [8] has es-
tablished the upper bound

K(k) < c
(1+ε)2k−1

0

for any ε > 0 and any k ≥ k(ε). Taking m = n = 1 in Theorem 3, we deduce
the following estimate.

Corollary. For any ε > 0, we have

K(k) �ε k
5
9 ×2k−3+ε.

For intermediate k, this improves upon Sándor’s result. By revisiting
Sándor’s argument, we achieve the following sharpening for large k.

Theorem 4. Let ε > 0 and assume that k ≥ k(ε). Then we have

K(k) < c
( 5
12+ε)2k−1

0 .

While interesting in its own right it transpires that the study of Egyptian
fractions has applications to various problems in topology. For example, Bren-
ton and Hall [1] have established a bijection between solutions (t1, . . . , tk) ∈ N

k

to the equation

1 =
k∑

i=1

1
ti

+
k∏

i=1

1
ti
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and homeomorphism equivalence classes of homologically trivial complex sur-
face singularities whose dual intersection graph is a star with central weight
1 and weights ti on the arms. In [1, Section 4] the authors ask for a bet-
ter understanding of the counting function S(k) for large k, which is defined
to be the number of solutions (t1, . . . , tk) ∈ N

k to the above equation with
t1 ≤ · · · ≤ tk. On observing that S(k) ≤ K(k + 1), we observe the following
trivial consequence of Theorem 4.

Corollary. Let ε > 0 and assume that k ≥ k(ε). Then we have

S(k) < c
( 5
12+ε)2k

0 .

2. Sums of two unit fractions

In this section, we establish Theorem 1. Beginning with the upper bound,
Sándor [8, Lemma 4] has shown that

f2(m,n) ≤ f2(1, n) =
1
2
(
d
(
n2

)
+ 1

)
,

where d denotes the divisor function. To see this, we note that if 1
n = 1

t1
+ 1

t2

then t2 = nt1
t1−n = n + n2

t1−n , which is an integer if and only if t1 − n | n2. The
condition t1 ≤ t2 ensures that t1 ≤ 2n, so that 0 < t1 − n ≤ n and indeed
f2(1, n) = 1

2 (d(n2) + 1). Applying work of Shiu [9] on the maximum order of
multiplicative functions we easily deduce the upper bound in Theorem 1.

We now turn to the lower bound for f2(m,n) for fixed m ∈ N. It will
suffice to examine g2(m,n), which is defined as for f2(m,n), but without the
restriction that t1 ≤ t2 in each solution. Indeed we plainly have

g2(m,n) ≤ 2f2(m,n).

Let n =
∏s

i=1 qi, where s is odd and qi denotes the ith prime which is con-
gruent to −1 mod m. Then we claim that

g2(m,n) ≥ 3s

2
.

To see this, let x1 be the product of any subset of an odd number i of the s
prime factors. Let x2 be a product of an even number j of the remaining s − i
prime factors. Then x12 = n

x1x2

x1+x2
m is an integer and we have

m

n
=

1
x1x12

+
1

x2x12
.

Counting up the number of available x1, x2 gives the contribution

S1 =
s∑

i odd

s−i∑
j even

(
s

i

)(
s − i

j

)
=

s∑
i odd

(
s

i

)
2s−i−1.
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Likewise we can instead choose x1 to consist of an even number i of the s
primes, and x2 an odd number j of the remaining s − i primes. This gives the
contribution

S2 =
s∑

i even

s−i∑
j odd

(
s

i

)(
s − i

j

)
=

s∑
i even

(
s

i

)
2s−i−1.

Thus, we deduce that

g2(m,n) ≥ S1 + S2 =
s∑

i=0

(
s

i

)
2s−i−1 =

3s

2
,

as required. To complete the proof of the theorem, we note that

n =
s∏

i=1

qi = exp

(
s∑

i=1

log qi

)
.

By the prime number theorem for arithmetic progressions,
s∑

i=1

log qi ∼
s∑

i=1

log
(
i(log i)ϕ(m)

)
∼ s log s + s log log s + s logϕ(m).

It follows that s ∼ log n
log logn+logϕ(m) ∼ log n

log logn , for fixed m. Therefore, there are

at least 1
43s = exp((log 3 + o(1)) log n

log logn ) solutions counted by f2(m,n), which
thereby completes the proof of Theorem 1.

3. Sums of three unit fractions

In this section we establish the upper bound in Theorem 2 for f3(m,n).
It will clearly suffice to assume that gcd(m,n) = 1. Since t1 ≤ t2 ≤ t3 in the
definition of the counting function, it is clear that

(2)
n

m
< t1 ≤ 3n

m
.

In particular, we must have m ≤ 3n. We can get an upper bound for t2 via
the expression

m

n
− 1

t1
=

1
t2

+
1
t3

≤ 2
t2

.

Suppose that m < n. Let n = mq + r for 0 < r ≤ m − 1. We have t1 ≥ 
 n
m � =

q + 1 and it follows that the left hand side is at least
m

mq + r
− 1

q + 1
≥ 1

(q + 1)(mq + r)
≥ m

2(mq + r)(mq + r)
=

m

2n2
≥ m

3n2
,

giving

(3) t2 ≤ 6n2

m
.
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Suppose now that m > n, with m ≤ 3n. Then we have t1 ≥ 
 n
m � = 1, whence

m

n
− 1 ≥ 1

n
≥ m

3n2
,

whence (3) holds in this case also. Once combined with the underlying equa-
tion in f3(m,n), the inequalities (2) and (3) are enough to show that

f3(m,n) ≤ 3n

m

6n2

m
=

18n3

m2
.

Proceeding to the proof of the sharper bound in Theorem 2, we may henceforth
assume that t1, t2 satisfy t1 ≤ t2 and lie in the ranges given by (2) and (3), in
any given solution (t1, t2, t3) ∈ N

3 counted by f3(m,n).
In what follows, let i, j, k denote distinct elements from the set {1,2,3}.

Let

x123 = gcd(t1, t2, t3), xij =
gcd(ti, tj)

x123
, xi =

ti
xijxikx123

,

with xij = xji. Then

(4) t1 = x1x12x13x123, t2 = x2x12x23x123, t3 = x3x13x23x123,

with

(5) gcd(xixik, xjxjk) = 1.

Substituting these values for t1, t2, t3 into the equation in the definition of
f3(m,n), we obtain

mx1x2x3x12x13x23x123 = n(x1x2x12 + x1x3x13 + x2x3x23).

It follows from (5) that x1x2x3 | n. Since gcd(m,n) = 1, we may conclude that

(6) n = x1x2x3h12h13h23h123,

where

hij = gcd
(

n

x1x2x3
, xij

)
, h123 = gcd

(
n

x1x2x3
, x123

)
.

If we write xij = hijyij and x123 = dh123, then we obtain the simplification

(7) mdy12y13y23 = x1x2h12y12 + x1x3h13y13 + x2x3h23y23.

Furthermore, we have the additional coprimality relations

gcd(yij , hikhjkh123) = gcd(d,hij) = 1.

Thus, (5) and (7) imply that any two elements of the set {x1, x2, x3, d} must
be coprime.

Let D > 0. It will be convenient to consider the overall contribution to
f3(m,n) from x1, x2, x3, d, hij , h123, yij such that that d is constrained to lie
in an interval

D ≤ d < 2D.
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We will write F (m,n;D) for this quantity. It follows from (2), (3) and (4)
that

(8) y12y13 =
x1x123x12x13

x1x123h12h13
=

t1
x1h123dh12h13

≤ 3n

x1mh12h13h123D
,

and similarly

y12y23 ≤ 6n2

x2mh12h23h123D
.

We proceed to estimate F (m,n;D) in two different ways.

Lemma 1. For any ε > 0, we have

F (m,n;D) �ε
n1+ε

mD
.

Proof. It follows from (7) that there exists an integer r such that

y23r = x2h12y12 + x3h13y13.

For fixed x2, x3, h12, h13, y12, y13, the trivial estimate for the divisor function
implies that there are Oε(nε) choices for y23, r. Summing over y12, y13, we
conclude from (8) that there are Oε(m−1D−1n1+ε) choices for the yij and r.
A choice of d is fixed by (7). Since there are Oε(nε) possible choices for
x1, x2, x3, hij , h123, by (6), so it follows that

F (m,n;D) �ε

∑
x1,x2,x3,hij ,h123

n1+ε

mD
�ε

n1+2ε

mD
.

The statement of the lemma follows on redefining the choice of ε > 0. �

Lemma 2. For any ε > 0, we have

F (m,n;D) �ε
D

1
2 n

1
2+ε

m
1
2

.

Proof. Assume without loss of generality that y12 ≤ y13. Fixing y12, we
then estimate the number of integers A,B � n2 for which

mdy12AB = x1x2h12y12 + x1x3h13A + x2x3h23B.

But we may rewrite this equation as

(mdy12A − x2x3h23)(mdy12B − x1x3h13) = mx1x2dh12y
2
12 + x1x2x

2
3h13h23.

For each x1, x2, x3, d, hij , h123, y12, there are clearly Oε(nε) possible values of
A,B, by elementary estimates for the divisor function. Moreover, (8) and the
assumption y12 ≤ y13 together imply that y12 �

√
n

mD . Thus, we obtain the
bound

F (m,n;D) �ε

∑
x1,x2,x3,d,hij

n
1
2+ε

(mD)
1
2

�ε
D

1
2 n

1
2+2ε

m
1
2

,
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on summing over values of d in the range D ≤ d < 2D, and the Oε(nε) pos-
sible values of x1, x2, x3, hij , h123 for which (6) holds. The lemma follows on
redefining the choice of ε > 0. �

We are now ready to complete the proof of the theorem. There are O(logn)
possible dyadic ranges for d, such that d ≤ n. Theorem 2 therefore follows on
applying Lemma 1 to deal with the contribution from d ≥ ( n

m )
1
3 , and Lemma 2

to handle d < ( n
m )

1
3 .

4. Sums of k unit fractions

In this section, we establish Theorems 3 and 4. Beginning with the former,
let (t1, . . . , tk) ∈ N

k be a point with t1 ≤ t2 ≤ · · · ≤ tk counted by fk(m,n).
Then

mt1 − n

nt1
=

m

n
− 1

t1
=

1
t2

+ · · · +
1
tk

.

It is easy to see that fk(m,n) = 0 unless m ≤ kn which we now assume.
Furthermore, the analogue of (2) in the preceding section is clearly

(9)
n

m
< t1 ≤ kn

m
.

Our induction is based on the observation that

fk(m,n) ≤
∑
t1

fk−1(mt1 − n,nt1),

where the summation is over t1 ∈ N for which (9) holds. Making the change
of variables u = mt1 − n, we obtain

(10) fk(m,n) ≤
∑

0<u≤(k−1)n
m|u+n

fk−1

(
u,

n(u + n)
m

)
.

Note that u + n ≤ kn for each u under consideration.
Let ε > 0. We begin by establishing the theorem in the case k = 4. It

follows from Theorem 2 that

f4(m,n) �ε nε
∑

0<u≤3n
m|u+n

( n(u+n)
m

u

) 2
3

�ε
n

4
3+ε

m
2
3

∑
0<u≤3n
m|u+n

u− 2
3 .

Given θ ∈ [0,1), we now require the estimate

Sθ(x) =
∑
n≤x

n≡a mod q

n−θ =
x1−θ

(1 − θ)q
+ Oθ(1),

which is valid uniformly for a ∈ Z and q ∈ N. This follows from combining
partial summation with the familiar estimate S0(x) = q−1x+O(1). If θ ≥ 1+δ
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for some fixed δ > 0, then Sθ(x) �δ 1. We may now conclude that

(11) f4(m,n) �ε
n

4
3+ε

m
2
3

(
n

1
3

m
+ 1

)
.

This establishes the theorem in the case k = 4. Turning to the case k = 5, we
repeat the above analysis based on (10), but use the inequality in (11) as our
bound for f4(m,n). It follows that

f5(m,n) �ε nε
∑

0<u≤4n
m|u+n

{(
m−1n2

u

) 5
3

+
(m−1n2)

4
3

u
2
3

}
�ε nε

(
n2

m

) 5
3

,

which thereby establishes the theorem when k = 5.
It remains to establish Theorem 3 for k ≥ 6. We will begin by showing that

(12) fk(m,n) �ε,k nε

(
n2

m

) 5
3 ×2k−5

for k ≥ 5, where the implied constant is allowed to depend on k. This will be
achieved by induction on k, the case k = 5 already having been dealt with.
When k ≥ 6, we deduce from the induction hypothesis and (10) that

fk(m,n) �ε,k nε
∑

0<u≤(k−1)n

(
n2(u + n)2

um2

) 5
3 ×2k−6

�ε,k nε

(
n2

m

) 5
3 ×2k−5

,

since 5
3 × 2k−6 ≥ 5

3 for k ≥ 6. This therefore establishes (12).
We now turn to a bound for fk(m,n) which is uniform in k, which we will

again achieve via induction on k. Let ε > 0. We will take for our induction
hypothesis the estimate

(13) fk(m,n) �ε (kn)ε

(
kθkn2

m

) 5
3 ×2k−5

for an undetermined function θk. We may henceforth suppose that

(14) k ≥ log 3 − log(5ε)
log 2

+ 5,

else (13) follows trivially from (12). Now for any L ≤ k it follows from (10)
that

fk(m,n) ≤
∑

0<u≤(L−1)n
m|u+n

fk−1

(
u,

n(u + n)
m

)

+
∑

(L−1)n<u≤(k−1)n
m|u+n

fk−1

(
u,

n(u + n)
m

)
.
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One notes that u+n ≤ Ln in the first sum and u+n ≤ kn in the second. The
induction hypothesis therefore gives

fk(m,n) �ε (kn)εk
5θk−1

3 ×2k−6
{(

Ln2

m

) 5
3 ×2k−5

Σ1 +
(

kn2

m

) 5
3 ×2k−5

Σ2

}
,

where

Σ1 =
∑

0<u≤(L−1)n

(
1
u

) 5
3 ×2k−6

� 1,

Σ2 =
∑

(L−1)n<u≤(k−1)n

(
1
u

) 5
3 ×2k−6

≤
∑
u≥L

(
1
u

) 5
3 ×2k−6

� L1− 5
3 ×2k−6

.

We deduce that

fk(m,n) �ε (kn)ε

(
k

θk−1
2 n2

m

) 5
3 ×2k−5{

L + k

(
1
L

) 1
2 − 3

5 2−(k−5)} 5
3 ×2k−5

.

Now (14) ensures that 1
2 − 3

5 × 2−(k−5) ≥ 1
2 − ε. Hence, on taking L = k

2
3 , we

conclude that

fk(m,n) �ε kε(1+ 5
9 ×2k−4)nε

(
k

θk−1
2 + 2

3 n2

m

) 5
3 ×2k−5

.

Redefining the choice of ε therefore leads us to the induction hypothesis (13)
with

θk =
θk−1

2
+

2
3
.

It is now easy to deduce that θk < 4
3 , which completes the proof of Theorem 3.

We now turn to the proof of Theorem 4, for which we will modify the
argument in [8]. Recall the definition of the sequence un from the introduction
and let c0 = limn→∞ u2−n

n . Since u2−n

n is monotonically increasing we have
un < c2n

0 . Suppose that 1 =
∑k

i=1
1
ti

, with t1 ≤ · · · ≤ tk. Then Curtiss [3] has
shown that

1 −
m∑

i=1

1
ti

≥ 1
um+1

for 1 ≤ m ≤ k − 1. It follows that tj ≤ (k − j + 1)uj for each j since otherwise

1 =
k∑

i=1

1
ti

=
j−1∑
i=1

1
ti

+
k∑

i=j

1
ti

< 1 − 1
uj

+
k − j + 1

(k − j + 1)uj
= 1,

which is a contradiction.
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Let ε > 0 and let L be chosen to be the least positive integer for which
24−L < ε

2 . The number of tuples (t1, . . . , tk−L) with tj ≤ (k − j + 1)uj is
therefore

k−L∏
j=1

(k − j + 1)uj ≤ k!
k−L∏
j=1

c2j

0 < k!c2k−L+1

0 .

For a given (t1, . . . , tk−L)-tuple, it remains to estimate the number of vectors
(tk−L+1, . . . , tk) that complete the sum

∑k
i=1

1
ti

= 1. We write

1 − 1
t1

− · · · − 1
tk−L

=
m

n
,

where n ≤ t1 · · · tk−L < k!c2k−L+1

0 . Applying Theorem 3 we deduce that the
number of available (tk−L+1, . . . , tk) is at most

fL(m,n) �ε

(
k!c2k−L+1

0

) 10
3 ×2L−5+ε �ε (k!)

10
3 ×2L−5+εc

10
3 ×2k−4+ε

0

for any ε > 0. Combining our two estimates, we may now conclude that

K(k) �ε (k!)eL × c2k−L+1

0 × c
10
3 ×2k−4+ε

0 �ε (k!)eLc
( 10

3 +ε)×2k−4

0 ,

where eL = 1+ 10
3 × 2L−5 +ε. This therefore concludes the proof of Theorem 4

on redefining the choice of ε.
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