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THE FOLIATED STRUCTURE OF CONTACT
METRIC (κ,μ)-SPACES

BENIAMINO CAPPELLETTI MONTANO

Abstract. In this note, we study the foliated structure of a
contact metric (κ,μ)-space. In particular, using the theory of

Legendre foliations, we give a geometric interpretation of the

Boeckx’s classification of contact metric (κ,μ)-spaces and we find

necessary conditions for a contact manifold to admit a compat-
ible contact metric (κ,μ)-structure. Finally, we prove that any

contact metric (κ,μ)-space M whose Boeckx invariant IM is dif-
ferent from ±1 admits a compatible Sasakian or Tanaka–Webster

parallel structure according to the circumstance that |IM | > 1 or
|IM | < 1, respectively.

1. Introduction

A contact metric manifold (M,ϕ, ξ, η, g) is called a contact metric (κ,μ)-
manifold if the Reeb vector field ξ belongs to the (κ,μ)-nullity distribution,
that is, the curvature tensor field satisfies, for all vector fields X and Y on M ,

(1) RXY ξ = κ
(
η(Y )X − η(X)Y

)
+ μ

(
η(Y )hX − η(X)hY

)
for some real numbers κ and μ; here 2h denotes the Lie derivative of ϕ in
the direction of ξ. This definition was introduced by Blair, Kouforgiorgos and
Papantoniou [4] and can be regarded as a generalization both of the Sasakian
condition RXY ξ = η(Y )X − η(X)Y and of those contact metric manifolds
satisfying RXY ξ = 0 which were studied by Blair in [1].

Lately, contact metric (κ,μ)-manifolds have attracted the attention of
many authors and various recent papers have appeared on this topic (e.g., [6],
[12], [14]). In fact, there are many motivations for studying (κ,μ)-manifolds:
the first is that, in the non-Sasakian case (that is for κ �= 1), the condition (1)
determines the curvature completely; moreover, while the values of κ and μ
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may change, the form of (1) is invariant under D-homothetic deformations;
finally, a complete classification of contact metric (κ,μ)-manifolds is known [5]
and there are nontrivial examples of such manifolds, the most important be-
ing the tangent sphere bundle of a Riemannian manifold of constant sectional
curvature with its usual contact metric structure.

One of the peculiarities of contact metric (κ,μ)-manifolds is that they give
rise to three mutually orthogonal involutive distributions D(λ), D(−λ) and
Rξ = D(0), corresponding to the eigenspaces λ, −λ and 0 of the operator h,
where λ =

√
1 − κ. In particular, D(λ) and D(−λ) define two transverse

Legendre foliations of M so that any contact metric (κ,μ)-manifold is canoni-
cally endowed with a bi-Legendrian structure. The study of the bi-Legendrian
structure of a contact metric (κ,μ)-manifold was initiated in [9], where the
following characterization of contact metric (κ,μ)-manifolds in terms of Le-
gendre foliations was proven.

Theorem 1 ([9]). Let (M,ϕ, ξ, η, g) be a non-Sasakian contact metric man-
ifold. Then M is a contact metric (κ,μ)-manifold if and only if it admits two
mutually orthogonal Legendre distributions L and Q and a unique linear con-
nection ∇̄ satisfying the following properties:

(i) ∇̄L ⊂ L, ∇̄Q ⊂ Q,
(ii) ∇̄η = 0, ∇̄dη = 0, ∇̄g = 0, ∇̄ϕ = 0, ∇̄h = 0,
(iii) T̄ (X,Y ) = 2dη(X,Y )ξ for all X,Y ∈ Γ(D), T̄ (X,ξ) = [ξ,XL]Q +[ξ,XQ]L

for all X ∈ Γ(TM),

where T̄ denotes the torsion tensor field of ∇̄ and XL and XQ are, respectively,
the projections of X onto the subbundles L and Q of TM . Furthermore,
L and Q are integrable and coincide with the eigenspaces D(λ) and D(−λ) of
the operator h, and ∇̄ coincides in fact with the bi-Legendrian connection ∇bl

associated to the bi-Legendrian structure (L,Q) (cf. [7], [8]).

Using the approach of Theorem 1, in [10] the authors recently were able
to prove the strong result that any invariant submanifold of a non-Sasakian
contact metric (κ,μ)-space is totally geodesic.

In this paper, the study of the foliated structure of a contact metric (κ,μ)-
space is carried on. We start with the following question, which generalizes the
well-known problem of finding conditions ensuring the existence of Sasakian
structures compatible with a given contact form: let (M,η) be a contact mani-
fold; then does (M,η) admit a compatible contact metric (κ,μ)-structure? As
a matter of fact, the answer to this question involves the foliated nature of
contact metric (κ,μ)-spaces. In particular, we find necessary conditions, in
terms of bi-Legendrian structures, for a contact manifold (M,η) to admit a
compatible contact metric (κ,μ)-structure (cf. Theorem 6 and Theorem 7).
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Moreover, we interpret the Boeckx classification [5] of contact metric (κ,μ)-
manifolds in terms of the Pang classification [16] of Legendre foliations, clar-
ifying the geometric meaning of the invariant

IM =
1 − μ

2√
1 − κ

which was defined by Boeckx in [5] in a rather obscure way.
It follows that contact metric (κ,μ)-spaces divide into 5 main classes, ac-

cording to the behavior of each Legendre foliation D(λ) and D(−λ). We prove
that those classes of contact metric (κ,μ)-manifolds such that |IM | �= 1 admit
a family (ϕa,b, ξ, η, ga,b) of compatible contact metric (κa,b, μa,b)-structures,
where the constants κa,b, μa,b are parameterized by the real numbers a and b
satisfying the relation ab = (2 − μ)2 − 4(1 − κ), namely,

κa,b = 1 − (a − b)2

16
, μa,b = 2 − a + b

2
.

In particular, we show that, in the case |IM | > 1, choosing a = b, the above
contact metric (κa,b, μa,b)-structures are in fact Sasakian. Thus, rather sur-
prisingly, it follows that any contact metric (κ,μ)-manifold such that |IM | > 1
admits a compatible Sasakian structure and hence, under the assumption of
compactness, for each 1 ≤ p ≤ 2n, the pth Betti number of M is even, where
2n + 1 is the dimension of the manifold. At the knowledge of the author, the
last one is the first topological obstruction for contact metric (κ,μ)-manifolds
known at the moment. Whereas, if |IM | < 1, choosing a = −b, we obtain a
family of Tanaka–Webster parallel structures, that is, contact metric struc-
tures whose Tanaka–Webster connection preserves the Tanaka–Webster tor-
sion and the Tanaka–Webster curvature [6].

Finally, we show that those contact metric manifolds with |IM | = 1 admit
a family (ϕc, ξ, η, gc) of compatible contact metric (κc, μc)-structures, with

κc = 1 − c2

16
, μc = 2

(
1 − c

4

)
,

where c varies in the interval (0,4] in the case IM = 1 and [−4,0) in the case
IM = −1.

2. Preliminaries

2.1. Contact geometry. A contact manifold is a (2n + 1)-dimensional
smooth manifold M which carries a 1-form η, called contact form, satisfy-
ing η ∧ (dη)n �= 0 everywhere on M . It is well known that given η there exists
a unique vector field ξ, called Reeb vector field, such that iξη = 1 and iξdη = 0.
In the sequel, we will denote by D the 2n-dimensional distribution defined by
ker(η), called the contact distribution. It is easy to see that the Reeb vector
field is an infinitesimal automorphism with respect to the contact distribution
and the tangent bundle of M splits as the direct sum TM = D ⊕ Rξ.
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It is well known that any contact manifold (M,η) admits a Riemannian
metric g and a (1,1)-tensor field ϕ such that

ϕ2 = −I + η ⊗ ξ, dη(X,Y ) = g(X,ϕY ),
(2)

g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y )

for all X,Y ∈ Γ(TM), from which it follows that ϕξ = 0, η ◦ ϕ = 0 and η =
g(·, ξ). The structure (ϕ, ξ, η, g) is called a contact metric structure and the
manifold M endowed with such a structure is said to be a contact metric
manifold. In a contact metric manifold M , the (1,1)-tensor field h := 1

2 Lξϕ
is symmetric and satisfies

h ξ = 0, η ◦ h = 0, hϕ + ϕh = 0,
(3) ∇ξ = −ϕ − ϕh, tr(h) = tr(ϕh) = 0,

where ∇ is the Levi Civita connection of (M,g). The tensor field h vanishes
identically if and only if the Reeb vector field is Killing, and in this case the
contact metric manifold in question is said to be K-contact.

Moreover, in any contact metric manifold one can consider the tensor
field Nϕ, defined by

Nϕ(X,Y ) := ϕ2[X,Y ] + [ϕX,ϕY ] − ϕ[ϕX,Y ] − ϕ[X,ϕY ] + 2dη(X,Y )ξ

for all X,Y ∈ Γ(TM). The tensor field Nϕ satisfies the following formula,
which will turn out very useful in the sequel,

(4) ϕNϕ(X,Y ) + Nϕ(ϕX,Y ) = 2η(X)hY

for all X,Y ∈ Γ(TM), from which, in particular, it follows that

(5) η(Nϕ(ϕX,Y )) = 0.

A contact metric manifold such that Nϕ vanishes identically is said to be
Sasakian. In terms of the covariant derivative, the Sasakian condition can be
expressed by the following formula

(6) (∇Xϕ)Y = g(X,Y )ξ − η(Y )X,

whereas, in term of the curvature tensor field, the Sasakian condition is

RXY ξ = η(Y )X − η(X)Y.

Any Sasakian manifold is K -contact, and in dimension 3 the converse also
holds (see [2] for more details).

A recent generalization of Sasakian manifolds is the notion of contact metric
(κ,μ)-manifolds [4]. Let (M,ϕ, ξ, η, g) be a contact metric manifold. If the
curvature tensor field of the Levi Civita connection satisfies

(7) RXY ξ = κ
(
η(Y )X − η(X)Y

)
+ μ

(
η(Y )hX − η(X)hY

)
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for some κ,μ ∈ R, we say that (M,ϕ, ξ, η, g) is a contact metric (κ,μ)-manifold
(or that ξ belongs to the (κ,μ)-nullity distribution). This definition was in-
troduced and deeply studied by Blair, Koufogiorgos and Papantoniou in [4].
Among other things, the authors proved the following result.

Theorem 2 ([4]). Let (M,ϕ, ξ, η, g) be a contact metric (κ,μ)-manifold.
Then necessarily κ ≤ 1. Moreover, if κ = 1 then h = 0 and (M,ϕ, ξ, η, g) is
Sasakian; if κ < 1, the contact metric structure is not Sasakian and M admits
three mutually orthogonal integrable distributions D(0) = Rξ, D(λ) and D(−λ)
corresponding to the eigenspaces of h, where λ =

√
1 − κ.

Given a non-Sasakian contact metric (κ,μ)-manifold M , Boeckx [5] proved
that the number

IM :=
1 − μ

2√
1 − κ

,

is an invariant of the contact metric (κ,μ)-structure, and he demonstrated
that two non-Sasakian contact metric (κ,μ)-manifolds (M1, ϕ1, ξ1, η1, g1) and
(M2, ϕ2, ξ2, η2, g2) are locally isometric as contact metric manifolds if and only
if IM1 = IM2 . Then the invariant IM has been used by Boeckx for giving a
full classification of contact metric (κ,μ)-spaces.

The standard example of contact metric (κ,μ)-manifolds is given by the
tangent sphere bundle T1N of a manifold of constant curvature c endowed
with its standard contact metric structure. In this case, κ = c(2 − c), μ = −2c
and IT1N = 1+c

|1−c| . Therefore, as c varies over the reals, IT1N takes on every
value strictly greater than −1. Moreover, one can easily find that IT1N < 1 if
and only if c < 0.

2.2. Legendre foliations. Let (M,η) be a (2n + 1)-dimensional contact
manifold. Notice that the condition η ∧ (dη)n �= 0 implies that the contact
distribution is never integrable. One can prove that in fact the maximal
dimension of an integrable subbundle of D is n. This motivates the follow-
ing definition. A Legendre distribution on a contact manifold (M,η) is an
n-dimensional subbundle L of the contact distribution such that dη(X,X ′) = 0
for all X,X ′ ∈ Γ(L). Then by a Legendre foliations of (M,η) we mean a fo-
liation F of M whose tangent bundle L = T F is a Legendre distribution,
according to the above definition.

Legendre foliations have been extensively investigated in recent years from
various points of views. In particular, Pang [16] provided a classification of
Legendre foliations by means of a bilinear symmetric form ΠF on the tangent
bundle of the foliation F , defined by

ΠF (X,X ′) = −(LX LX′ η)(ξ) = 2dη([ξ,X],X ′).

He called a Legendre foliation nondegenerate, degenerate or flat according to
the circumstance that the bilinear form ΠF is nondegenerate, degenerate or
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vanishes identically, respectively. In terms of Lie brackets, the flat condition
is equivalent to the requirement that [ξ,X] ∈ Γ(T F ) for all X ∈ Γ(T F ). Two
interesting subclasses of nondegenerate Legendre foliations are given by those
for which ΠF is positive definite and negative definite; we then speak of
positive definite and negative definite Legendre foliations, respectively.

For a nondegenerate Legendre foliation F , Libermann [15] defined a linear
map ΛF : TM −→ T F , whose kernel is T F ⊕ Rξ, such that

(8) ΠF (ΛF Z,X) = dη(Z,X)

for any Z ∈ Γ(TM), X ∈ Γ(T F ). The operator ΛF is surjective, satisfies
(ΛF )2 = 0 and

(9) ΛF [ξ,X] =
1
2
X

for all X ∈ Γ(T F ). Then we can extend ΠF to a symmetric bilinear form on
TM by putting

ΠF (Z,Z ′) :=

{
ΠF (Z,Z ′), if Z,Z ′ ∈ Γ(T F ),

ΠF (ΛF Z,ΛF Z ′), otherwise.

If (M,η) admits two transversal Legendre distributions L1 and L2, we say
that (M,η,L1,L2) is an almost bi-Legendrian manifold. Thus, in particular,
the tangent bundle of M splits up as the direct sum TM = L1 ⊕ L2 ⊕ Rξ.
When both L1 and L2 are integrable we speak of bi-Legendrian manifold. An
(almost) bi-Legendrian manifold is said to be flat, degenerate or nondegen-
erate if and only if both the Legendre distributions are flat, degenerate or
nondegenerate, respectively. Any contact manifold (M,η) endowed with a
Legendre distribution L admits a canonical almost bi-Legendrian structure.
Indeed let (ϕ, ξ, η, g) be a compatible contact metric structure. Then by the
relation dη(φ·, φ·) = dη it easily follows that Q := φL is a Legendre distrib-
ution on M which is g-orthogonal to L. Q is usually called the conjugate
Legendre distribution of L and in general is not integrable, even if L is.

In [7] (see also [8]), a canonical connection, which plays an important role
in the study of almost bi-Legendrian manifolds, has been introduced.

Theorem 3 ([7]). Let (M,η,L1,L2) be an almost bi-Legendrian manifold.
There exists a unique connection ∇bl such that

(i) ∇blL1 ⊂ L1, ∇blL2 ⊂ L2,
(ii) ∇blξ = 0, ∇bldη = 0,
(iii) T bl(X,Y ) = 2dη(X,Y )ξ for all X ∈ Γ(L1), Y ∈ Γ(L2), T bl(X,ξ) =

[ξ,XL1 ]L2 + [ξ,XL2 ]L1 for all X ∈ Γ(TM),

where T bl denotes the torsion tensor field of ∇bl and XL1 and XL2 the pro-
jections of X onto the subbundles L1 and L2 of TM , respectively.
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Such a connection is called the bi-Legendrian connection of the almost bi-
Legendrian manifold (M,η,L1,L2). We recall also the complete expression of
the torsion tensor field of ∇bl ,

T bl(X,Y ) = −[XL1 , YL1 ]L2⊕Rξ − [XL2 , YL2 ]L1⊕Rξ + 2dη(X,Y )ξ(10)
+ η(Y )([ξ,XL1 ]L2 + [ξ,XL2 ]L1)

− η(X)([ξ,YL1 ]L2 + [ξ,YL2 ]L1).

3. The main results

By Theorem 2, it follows that any non-Sasakian contact metric (κ,μ)-
manifold is endowed with a canonical bi-Legendrian structure given by the
mutually orthogonal integrable distributions D(λ) and D(−λ). Therefore, we
can classify non-Sasakian contact metric (κ,μ)-manifolds by using the afore-
mentioned Pang’s classification of Legendre foliations based on the behavior
of the invariants ΠD(λ) and ΠD(−λ). The explicit expression of the invariants
of the Legendre foliations defined by D(λ) and D(−λ) was found in in [9]:

ΠD(λ) =
(λ + 1)2 − κ − μλ

λ
g

∣∣∣∣
D(λ)× D(λ)

(11)

=
(
2

√
1 − κ − μ + 2

)
g| D(λ)× D(λ),

ΠD(−λ) =
−(λ − 1)2 + κ − μλ

λ
g

∣∣∣∣
D(−λ)× D(−λ)

(12)

=
(

−2
√

1 − κ − μ + 2
)
g| D(−λ)× D(−λ).

Using (11)–(12) we can classify non-Sasakian contact metric (κ,μ)-manifolds
as follows.

Theorem 4. Let (M,ϕ, ξ, η, g) be a non-Sasakian contact metric (κ,μ)-
manifold. Then the bi-Legendrian structure (D(λ), D(−λ)) associated to
(M,ϕ, ξ, η, g) is nonflat. More precisely, only one among the following cases
occurs:

(I) both D(λ) and D(−λ) are positive definite;
(II) D(λ) is positive definite and D(−λ) is negative definite;

(III) both D(λ) and D(−λ) are negative definite;
(IV) D(λ) is positive definite and D(−λ) is flat;
(V) D(λ) is flat and D(−λ) is negative definite.

Furthermore, M belongs to the class (I), (II), (III), (IV), (V) if and only if
IM > 1, −1 < IM < 1, IM < −1, IM = 1, IM = −1, respectively.

Proof. By (11)–(12), we have immediately that D(λ) and D(−λ) are ei-
ther positive definite or positive negative or flat, depending on the sign of the
functions f1(κ,μ) = 2

√
1 − κ − μ + 2 and f2(κ,μ) = −2

√
1 − κ − μ + 2. Since
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f1(κ,μ) and f2(κ,μ) both vanish if and only if κ = 1, the bi-Legendrian struc-
ture (D(λ), D(−λ)) turns out to be nonflat. Moreover, one easily finds that
f1(κ,μ) > 0 if and only if IM > −1 and f2(κ,μ) > 0 if and only if IM > 1. Con-
sequently, taking into account (11)–(12), the cases ΠD(λ) negative definite and
ΠD(−λ) positive definite, ΠD(λ) = 0 and ΠD(−λ) positive definite, ΠD(λ) neg-
ative definite and ΠD(−λ) = 0 cannot occur, and the remaining combinations
of all possible signs of f1(κ,μ) and of f2(κ,μ) give the claimed assertion. �

Using Theorem 4, we are able to study the following interesting problem.
It is a well-known question in contact geometry whether, given a contact
manifold (M,η), there exists a Sasakian structure on M compatible with the
contact form η. Now we generalize this problem and we ask whether, given
a contact manifold (M,η), there exists a compatible contact metric structure
(ϕ, ξ, η, g) such that (M,ϕ, ξ, η, g) is a contact metric (κ,μ)-manifold. In order
to answer this question, we need to recall the following lemma proven in [8].

Lemma 5 ([8]). Let (M,ϕ, ξ, η, g) be a contact metric manifold endowed
with a Legendre distribution L. Let Q := ϕL be the conjugate Legendre distri-
bution of L and ∇bl the bi-Legendrian connection associated to (L,Q). Then
the following statements are equivalent:
(i) ∇blg = 0.
(ii) ∇blϕ = 0.
(iii) For all X,X ′ ∈ Γ(L) and Y,Y ′ ∈ Γ(Q), ∇bl

XX ′ = −(ϕ[X,ϕX ′])L and
∇bl

Y Y ′ = −(ϕ[Y,ϕY ′])Q, and the tensor field h maps the subbundle L
onto L and the subbundle Q onto Q.

(iv) g is a bundle-like metric with respect both to the distribution L ⊕ Rξ and
to the distribution Q ⊕ Rξ.

Furthermore, assuming L and Q integrable, (i)–(iv) are equivalent to the total
geodesicity (with respect to the Levi Civita connection of g) of the Legendre
foliations defined by L and Q.

Theorem 6. Let (M,η) be a contact manifold endowed with a bi-Legen-
drian structure (F1, F2) such that ∇blΠF1 = ∇blΠF2 = 0. Assume that one of
the following conditions holds

(I) F1 and F2 are positive definite and there exist two positive numbers a
and b such that ΠF1 = abΠF2 on T F1 and ΠF2 = abΠF1 on T F2,

(II) F1 is positive definite, F2 is negative definite and there exist a > 0 and
b < 0 such that ΠF1 = abΠF2 on T F1 and ΠF2 = abΠF1 on T F2,

(III) F1 and F2 are negative definite and there exist two negative numbers a
and b such that ΠF1 = abΠF2 on T F1 and ΠF2 = abΠF1 on T F2.

Then (M,η) admits a compatible contact metric structure (ϕ, ξ, η, g) such
that
(i) if a = b, (M,ϕ, ξ, η, g) is a Sasakian manifold;
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(ii) if a �= b, (M,ϕ, ξ, η, g) is a contact metric (κ,μ)-manifold, whose associ-
ated bi-Legendrian structure is (F1, F2), where

(13) κ = 1 − (a − b)2

16
, μ = 2 − a + b

2
.

Proof. We consider, for each Legendre foliation F1 and F2, the Libermann
operators ΛF1 : TM −→ T F1 and ΛF2 : TM −→ T F2 defined by (8). Then
we set

g|T F1×T F1 := 1
aΠF1 , g|T F2×T F2 := 1

b ΠF2 ,(14)
g := η ⊗ η elsewhere.

That g is a Riemannian metric follows from the fact that the bilinear maps ΠF1

and ΠF2 are symmetric and, by the assumptions (I)–(III), they are positive
or negative definite according to the signs of a and b, respectively, in such a
way that the bilinear forms 1

aΠF1 and 1
b ΠF2 are always positive definite. In

particular by (14), we have that F1 = F ⊥
2 ∩ D and F2 = F ⊥

1 ∩ D. Next, let us
define a tensor field ϕ by

(15) ϕZ :=

⎧⎪⎪⎨
⎪⎪⎩

−bΛF2Z, if Z ∈ Γ(T F1),

−aΛF1Z, if Z ∈ Γ(T F2),

0, if Z ∈ Γ(Rξ).

Notice that, by definition, ϕ maps T F1 onto T F2 and T F2 onto T F1. More-
over, for any X,X ′ ∈ Γ(T F1),

ΠF1(ϕ
2X,X ′) = abΠF1(ΛF1ΛF2X,X ′) = abdη(ΛF2X,X ′)

= −abdη(X ′,ΛF2X) = −abΠF2(ΛF2X
′,ΛF2X)

= −abΠF2(X,X ′) = − ab

ab
ΠF1(X,X ′) = −ΠF1(X,X ′)

from which it follows that ϕ2X = −X . Analogously, one can prove that
ϕ2Y = −Y for all Y ∈ Γ(T F2). Thus, ϕ2 = −I + η ⊗ ξ. We prove that
(ϕ, ξ, η, g) is in fact a contact metric structure. Indeed, for all X,X ′ ∈ Γ(T F1)

g(ϕX,ϕX ′) = b2g(ΛF2X,ΛF2X
′) = bΠF2(ΛF2X,ΛF2X

′)

= bΠF2(X,X ′) =
1
a
ΠF1(X,X ′) = g(X,X ′).

Analogously, one has g(ϕY,ϕY ′) = g(Y,Y ′) for all Y,Y ′ ∈ Γ(T F2), so that we
can conclude that g(ϕ·, ϕ·) = g(·, ·) − η ⊗ η. Furthermore, for all X ∈ Γ(T F1)
and Y ∈ Γ(T F2) we have

g(X,ϕY ) =
1
a
ΠF1(X,ϕY ) = −ΠF1(X,ΛF1Y )

= −ΠF1(ΛF1Y,X) = −dη(Y,X) = dη(X,Y )
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and, in the same way, g(Y,ϕX) = dη(Y,X). Moreover, since F1 and F2 are
mutually orthogonal with respect to g and they are Legendre foliations, we
have dη(X,X ′) = 0 = g(X,ϕX ′) and dη(Y,Y ′) = 0 = g(Y,ϕY ′) for all X,X ′ ∈
Γ(T F1) and for all Y,Y ′ ∈ Γ(T F2). Therefore, dη = g(·, ϕ·) and (ϕ, ξ, η, g)
is contact metric structure. Notice that F1 and F2 are conjugate Legendre
foliations with respect to (ϕ, ξ, η, g), since ϕ(T F1) = T F2 and ϕ(T F2) = T F1.
Now, since ∇blΠF1 = ∇blΠF2 = 0, we have that the bi-Legendrian connec-
tion preserves the Riemannian metric g and this, by Lemma 5, implies that

∇blϕ = 0 and h := 1
2 Lξϕ preserves the foliations F1 and F2. Then, as

ker(ΛF1) = T F1 ⊕ Rξ and by (9) we have, for any X ∈ Γ(T F1), ϕ([ξ,X]T F2) =
−aΛF1([ξ,X]T F2) = −aΛF1 [ξ,X] = − a

2X , hence

(16) ϕX =
2
a
[ξ,X]T F2 .

Analogously, one can prove that

(17) ϕY =
2
b
[ξ,Y ]T F1

for all Y ∈ Γ(T F2). Thus, for any X ∈ Γ(T F1), 2hX = [ξ,ϕX] − ϕ[ξ,X] =
[ξ,ϕX]T F1 + [ξ,ϕX]T F2 − ϕ([ξ,X]T F1) − ϕ([ξ,X]T F2), from which, as
h(T F1) ⊂ T F1, it follows that 2hX − [ξ,ϕX]T F1 +ϕ([ξ,X]T F2) = [ξ,ϕX]T F2 −
ϕ([ξ,X]T F1) = 0. Hence, using (16)–(17),

(18) hX =
1
2
(
[ξ,ϕX]T F1 − ϕ([ξ,X]T F2)

)
=

1
2

(
− b

2
+

a

2

)
X =

a − b

4
X.

In the same way one has, for any Y ∈ Γ(T F2),

(19) hY =
1
2
(
[ξ,ϕY ]T F2 − ϕ([ξ,Y ]T F1)

)
=

1
2

(
− a

2
+

b

2

)
Y = − a − b

4
Y.

We then distinguish the cases a �= b and a = b. In the first case, assum-
ing for instance a > b, the manifold is not K -contact and F1 and F2 are
the eigenspaces of the operator h corresponding to the eigenvalues λ = a−b

4

and −λ, respectively. Therefore, ∇blh = 0 and so (M,ϕ, ξ, η, g) fulfils all the
conditions required by Theorem 1 and we conclude that it is a contact metric
(κ,μ)-manifold. Comparing (14) with (11)–(12), we obtain the linear system
2λ − μ + 2 = a, −2λ − μ + 2 = b which admits the unique solution λ = a−b

4 ,
μ = 2 − a+b

2 . Hence, κ = 1 − λ2 = 1 − (a−b)2

16 . Now we consider the case a = b.
By (18)–(19), we have that h = 0. Due to (iii) of Lemma 5 and using (10), we
have for all X,X ′ ∈ Γ(T F )

(Nϕ(X,X ′))T F1 = −[X,X ′] − (ϕ[ϕX,X ′])T F1 − (ϕ[X,ϕX ′])T F1

= −[X,X ′] − ∇bl
X′ X + ∇bl

XX ′

= T bl(X,X ′)
= −[X,X ′]T F2⊕Rξ = 0,
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because of the integrability of F1. Analogously, (Nϕ(Y,Y ′))T F2 = 0 for all
Y,Y ′ ∈ Γ(T F2). Now, for all X,X ′ ∈ Γ(T F1),

Nϕ(ϕX,ϕX ′) = −[ϕX,ϕX ′] + [ϕ2X,ϕ2X ′] − ϕ[ϕ2X,ϕX ′] − ϕ[ϕX,ϕ2X ′]
= −[ϕX,ϕX ′] + [X,X ′] + ϕ[X,ϕX ′] + ϕ[ϕX,X ′]
= −Nϕ(X,X ′),

hence (Nϕ(X,X ′))T F2 = −(Nϕ(ϕX,ϕX ′))T F2 = 0. Since, by (5), g(Nϕ(X,
X ′), ξ) = η(Nϕ(X,X ′)) = 0, Nϕ(X,X ′) has zero component also in the direc-
tion of ξ and we conclude that Nϕ(X,X ′) ≡ 0. In the same way, one can
show that Nϕ(Y,Y ′) ≡ 0 for all Y,Y ′ ∈ Γ(T F2). Moreover, (4) implies that
Nϕ(X,Y ) = 0 for all X ∈ Γ(T F1) and Y ∈ Γ(T F2). Finally, directly by the
definition of Nϕ we have η(Nϕ(Z, ξ)) = 0 for all Z ∈ Γ(D), and from (4) it
follows that ϕNϕ(Z, ξ) = 0. Hence, Nϕ(Z, ξ) ∈ ker(η) ∩ ker(ϕ) = {0}. Thus,
the tensor field Nϕ vanishes identically and (M,ϕ, ξ, η, g) is a Sasakian man-
ifold. �

The expressions of κ and μ in (13) should be compared with the example
presented by Boeckx in his local classification of non-Sasakian contact metric
(κ,μ)-manifolds with IM ≤ −1 (cf. Section 4 of [5]). Therefore, in some sense
Theorem 6 may be regarded also as a generalization of the Boeckx construction
for every value of the invariant IM .

Furthermore, it should be remarked that the cases (I), (II) and (III) of
Theorem 6 correspond, respectively, to the classes (I), (II) and (III) of Theo-
rem 4. This is also clear by the computation of the invariant IM . Indeed by
(13), we get straightforwardly IM = a+b

|a−b| , so that, according to the signs of a

and b, IM can assume values strictly greater than 1, strictly lower than −1,
or in the interval (−1,1). However an easy computation shows that IM = ±1
if and only if a = 0 or b = 0, that’s impossible because of the assumptions of
Theorem 6. Now, we complete our results by proving the following theorem
concerning the remaining classes (IV) and (V) of Theorem 4.

Theorem 7. Let (M,η) be a contact manifold endowed with a bi-Legen-
drian structure (F1, F2) such that ∇blΠF1 = 0 (respectively, ∇blΠF2 = 0).
Assume that F1 is positive definite (respectively, flat) and F2 is flat (respec-
tively, negative definite). Then for each 0 < c ≤ 4 (respectively, −4 ≤ c < 0)
(M,η) admits a compatible contact metric (κ,μ)-structure, whose associated
bi-Legendrian structure is (F1, F2), where

(20) κ = 1 − c2

16
, μ = 2

(
1 − c

4

)
.

Proof. Let us assume that F1 is positive definite and F2 is flat. Then F1 is,
in particular, nondegenerate and we can consider the corresponding linear map
ΛF1 : TM −→ T F1 defined by (8). Since the operator ΛF1 is surjective and its
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kernel is T F1 ⊕ Rξ, we have that ΛF1 |T F2 : T F2 −→ T F1 is an isomorphism.
Then for each c ∈ (0,4] we define a tensor field ϕ of type (1,1) by

(21) ϕ|T F1 :=
1
c
(ΛF1 |T F2)

−1, ϕ|T F2 := −cΛF1 |T F2 , ϕξ = 0.

Moreover, we put

g|T F1×T F1 := 1
c ΠF1 , g|T F2×T F2 := cΠF1 |T F2×T F2 ,

(22)
g := η ⊗ η elsewhere.

Notice that g defines a Riemannian metric since, by assumption, F1 is positive
definite and c > 0. We prove that in fact (ϕ, ξ, η, g) is a contact metric struc-
ture. Indeed we have easily that ϕ2 = −I +η ⊗ ξ. Next, for all X,X ′ ∈ Γ(T F1)
we have g(ϕX,ϕX ′) = cΠF1(ΛF1ϕX,ΛF1ϕX ′) = (1/c)ΠF1(ΛF1Λ

−1
F1

X,

ΛF1Λ
−1
F1

X ′) = (1/c)ΠF1(X,X ′) = g(X,X ′). In a similar way, one can prove
that g(ϕY,ϕY ′) = g(Y,Y ′) for all Y,Y ′ ∈ Γ(T F2). Moreover, the same argu-
ments used in the proof of Theorem 6 show that g is an associated metric, that
is dη = g(·, ϕ·). Thus, (ϕ, ξ, η, g) is a contact metric structure. Notice that,
by construction, F1 and F2 are conjugate Legendre foliations with respect
to (ϕ, ξ, η, g). Finally, the definition of g and the assumption ∇blΠF1 = 0
imply that the bi-Legendrian connection is metric with respect to g. Hence,
by Lemma 5, the tensor field ϕ is ∇bl -parallel and the operator h preserves
the Legendre foliations F1 and F2. We are now able to compute the explicit
expression of h. For any X ∈ Γ(T F1), we have 2hX = [ξ,ϕX] − ϕ[ξ,X] =
[ξ,ϕX]T F1 + [ξ,ϕX]T F2 − ϕ([ξ,X]T F1) − ϕ([ξ,X]T F2). The flatness of F2

yields [ξ,ϕX]T F1 = 0. Thus,

(23) 2hX + ϕ([ξ,X]T F2) = [ξ,ϕX]T F2 − ϕ([ξ,X]T F1).

Since h preserves the foliations, the right-hand side of (23) is a section of
both T F1 and T F2, hence vanishes. Consequently, taking into account that
ker(ΛF1) = T F1 ⊕ Rξ,

(24) hX = − 1
2
ϕ([ξ,X]T F2) =

c

2
ΛF1([ξ,X]T F2) =

c

2
ΛF1([ξ,X]) =

c

4
X.

Moreover, let Y be a section of T F2. As ϕ(T F1) = T F2, Y = ϕX for some
X ∈ Γ(T F1). Then, by (24), hY = hϕX = −ϕhX = − c

4ϕX = − c
4Y . Thus, the

bi-Legendrian structure (F1, F2) coincides with that one determined by the
eigendistributions of the operator h. In particular, this implies that ∇blh = 0.
Therefore, all the conditions in Theorem 1 are satisfied and we conclude that
(M,ϕ, ξ, η, g) is a contact metric (κ,μ)-manifold such that D(λ) = F1 and
D(−λ) = F2. Finally, comparing (22) with (11) and taking into account that
ΠF2 = 0, we get κ = 1 − ( c

4 )2 and μ = 2(1 − c
4 ). The case when F1 is flat

and F2 is negative definite is analogous, the only difference being to use ΛF2



THE FOLIATED STRUCTURE OF CONTACT METRIC (κ,μ)-SPACES 1169

setting

ϕ|T F1 := −cΛF2 |T F1 , ϕ|T F2 := 1
c (ΛF2 |T F1)

−1, ϕξ = 0,

g|T F1×T F1 := cΠF2 |T F1×T F1 , g|T F2×T F2 := 1
c ΠF2 ,

g := η ⊗ η elsewhere.

where c ∈ [−4,0). Arguing as in the previous case, one can find that (ϕ, ξ, η, g)
is a contact metric (κ,μ)-structure, where κ and μ are given by (20) and
D(λ) = F1, D(−λ) = F2. �

Remark 1. Notice that, as expected, by (20), we get IM = 1 if c > 0 and
IM = −1 if c < 0. Furthermore, it should be remarked that for no value of c
one can obtain a Sasakian structure, since κ = 1 if and only if c = 0. Whereas,
for c = 4 one gets κ = μ = 0, that is RXY ξ = 0 for all X,Y ∈ Γ(TM). Such
contact metric manifolds were deeply studied by Blair in [1].

Corollary 8. Let (M,ϕ, ξ, η, g) be a non-Sasakian contact metric (κ,μ)-
manifold. Then

(i) if IM �= ±1, (M,η) admits a family of compatible contact metric
(κa,b, μa,b)-structures, where a and b are real numbers such that ab =
(2 − μ)2 − 4(1 − κ);

(ii) if IM = 1 (respectively, IM = −1), (M,η) admits a family of compatible
contact metric (κc, μc)-structures, where 0 < c ≤ 4 (respectively,
−4 ≤ c < 0).

Furthermore, the above contact metric (κa,b, μa,b) and (κc, μc)-structures are
of the same classification as (ϕ, ξ, η, g).

Proof. In order to prove the statements, it suffices to show that (M,ϕ, ξ,
η, g) satisfies all the hypotheses of Theorem 6 for the case (i) and of Theorem 7
for the case (ii).

(i) By (11)–(12) and by Theorem 1, we have immediately that ∇blΠD(λ) =
∇blΠD(−λ) = 0, where, as usual, ∇bl denotes the bi-Legendrian connection as-
sociated to the bi-Legendrian structure (D(λ), D(−λ)) defined by the eigendis-
tributions of the operator h. Next, we compute the explicit expression of
the Libermann operators ΛD(λ) : TM −→ D(λ) and ΛD(−λ) : TM −→ D(−λ).
For any X ∈ Γ(D(λ)) and Y ∈ Γ(D(−λ)) we have, by (11),

ΠD(λ)

(
ΛD(λ)Y,X

)
= dη(Y,X) = g(Y,ϕX) = − 1

2
√

1 − κ − μ + 2
g(ϕY,X),

from which it follows that

(25) ΛD(λ) =

{
0, on D(λ) ⊕ Rξ,

1
μ−2−2

√
1−κ

ϕ, on D(−λ).



1170 B. CAPPELLETTI MONTANO

Whereas, using (12), one can find

(26) ΛD(−λ) =

{
1

μ−2+2
√

1−κ
ϕ, on D(λ),

0, on D(−λ) ⊕ Rξ.

Notice that the denominators in (25) and (26) are different from zero just
because of the assumption IM �= ±1. Next, for all X,X ′ ∈ Γ(D(−λ)),

ΠD(−λ)(X,X ′) = ΠD(−λ)

(
ΛD(−λ)X,ΛD(−λ)X

′)
=

1
−2

√
1 − κ − μ + 2

g(ϕX,ϕX ′)

=
1

−2
√

1 − κ − μ + 2
g(X,X ′)

=
1

(2 − μ)2 − 4(1 − κ)
ΠD(λ)(X,X ′).

Thus, ΠD(λ) = ((2 − μ)2 − 4(1 − κ))ΠD(−λ) on D(λ) and in a similar man-
ner one can find that ΠD(−λ) = ((2 − μ)2 − 4(1 − κ))ΠD(λ) on D(−λ). We
distinguish the cases (I) IM > 1, (II) −1 < IM < 1 and (III) IM < −1. By
Theorem 4, in the first case both D(λ) and D(−λ) are positive definite, in
the second D(λ) is positive definite and D(−λ) negative definite and in the
third one both D(λ) and D(−λ) are negative definite. Then we take any two
a, b ∈ R such that ab = (2 − μ)2 − 4(1 − κ) and a > 0, b > 0 in the case (I),
a > 0, b < 0 in the case (II) and a < 0, b < 0 in the case (III). Thus, in any case
the hypotheses of Theorem 6 are satisfied and so the structure (ϕa,b, ξ, η, ga,b)
defined by (14) and (15) is a contact metric (κa,b, μa,b)-structure on (M,η).

(ii) If IM = 1 then, by Theorem 4, D(λ) is positive definite and D(−λ)
is flat. Moreover, again by (11) and Theorem 1 we have that ∇blΠD(λ) = 0.
Thus, all the assumptions of Theorem 7 are satisfied and it suffices to take
any c ∈ (0,4] for obtaining a contact metric (κc, μc)-structure given by (21)
and (22). The proof for the case IM = −1 is similar to that for IM = 1. �

Corollary 9. Any contact metric (κ,μ)-manifold (M,ϕ, ξ, η, g) such that
|IM | > 1 admits a compatible Sasakian structure.

Proof. If (M,ϕ, ξ, η, g) is Sasakian then the assertion is trivial, so we can
assume that the structure (ϕ, ξ, η, g) is non-Sasakian. Then we can apply
Corollary 8. The assumption |IM | > 1 implies by Theorem 4 that the Le-
gendre foliations D(λ) and D(−λ) are either both positive definite or both
negative definite. So it is sufficient to take a = b =

√
(1 − μ

2 )2 − (1 − κ) in the
case of positive definiteness and a = b = −

√
(1 − μ

2 )2 − (1 − κ) in the case of
negative definiteness, for obtaining, by Theorem 6, a Sasakian structure on
M compatible with the contact form η. �
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Corollary 10. For each 1 ≤ p ≤ 2n, the pth Betti number of a compact
contact metric (κ,μ)-manifold M2n+1 such that |IM2n+1 | > 1 is even.

Proof. The assertion is a consequence of Corollary 9 and the results in [3]
and [11]. �

Finally, applying twice Theorem 6 and Corollary 9 we get the following
result.

Corollary 11. Let (M,η) be a contact manifold endowed with two positive
definite or negative definite Legendre foliations satisfying the conditions (I) or
(III) of Theorem 6, respectively. Then (M,η) admits a compatible Sasakian
structure.

We conclude by recalling the definition of Tanaka–Webster parallel space,
recently introduced by Boeckx and Cho [6]. A contact metric manifold is
a Tanaka–Webster parallel space if its generalized Tanaka–Webster torsion
tensor T̂ and its curvature tensor R̂ satisfy ∇̂T̂ = 0 and ∇̂R̂ = 0, that is the
Tanaka–Webster connection ∇̂ is invariant by parallelism (in the sense of [13]).
Boeckx and Cho have proven that a contact metric manifold M is a Tanaka–
Webster parallel space if and only if M is a Sasakian locally ϕ-symmetric
space or a non-Sasakian (κ,2)-space ([6, Theorem 12]). Thus, in particular,
we deduce the following corollaries of Theorem 6 and of Corollary 8.

Corollary 12. Any non-Sasakian contact (κ,μ)-manifold (M,ϕ, ξ, η, g)
such that |IM | < 1 admits a compatible Tanaka–Webster parallel structure.

Proof. The assumption |IM | < 1 implies by Theorem 4 that the Legendre
foliation D(λ) is positive definite and D(−λ) is negative definite. So it is
sufficient to take a = −b =

√
(1 − μ

2 )2 − (1 − κ) for obtaining, according to
Theorem 6, a compatible contact metric (κa,b, μa,b)-structure (ϕa,b, ξ, η, ga,b)
on (M,η) such that κ = 1 − a2

4 and μ = 2. Thus, by applying the aforemen-
tioned result by Boeckx and Cho, we conclude that (M,ϕa,b, ξ, η, ga,b) is a
Tanaka–Webster parallel space. �

Corollary 13. Let (M,η) be a contact manifold endowed with a posi-
tive definite Legendre foliation F1 and negative definite Legedre foliation F1

satisfying the condition (II) of Theorem 6. Then (M,η) admits a compatible
Tanaka–Webster parallel structure.

References

[1] D. E. Blair, Two remarks on contact metric structures, Tôhoku Math. J. 29 (1977),
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