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INTEGRAL REPRESENTATIONS ON NONSMOOTH
DOMAINS

DARIUSH EHSANI

ABSTRACT. We derive integral representations for (0,q)-forms,
q > 1, on nonsmooth strictly pseudoconvex domains, the Henkin—
Leiterer domains. A (0, g)-form, f is written in terms of integral
operators acting on f, f, and 9* f. The representation is applied
to derive L*° estimates.

1. Introduction

Lieb and Range in [7] developed a powerful integral representation by which
estimates in the theory of the d-Neumann problem could be deduced. The
main theorem was an integral representation of (0,¢)-forms on D CC X a
smooth strictly pseudoconvex domain in a complex manifold X.

THEOREM 1.1 (Lieb-Range). Let Py : L?(D) — O N L3(D) be the Bergman
projection. There exist integral operators Ty : L%07q+1)(D) — L?O_q)(D), 0<

g<n=dimX, such that for f € L%Oﬂ) N Dom(d) NDom(0*) one has

f=Pyf +To0f + error terms for g=0
and

(1.1) f=T,0f +T;_ 9" f + error terms for ¢ > 1.

In (1.1), the metric has to be carefully adapted to the boundary. The choice
of the metric as the Levi metric as in Greiner and Stein [3] was essential in
their “cancellation of singularities” argument, which allowed for treatment of
terms in the representation as error terms.

We take up the problem here of establishing an integral representation in
the manner of [7] relaxing the assumption that D be smooth. Let D have a
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defining function, r. We allow for singularities in the boundary, 0D of D by
permitting the possibility that dr vanishes at points on 0D. Such domains
were first studied by Henkin and Leiterer in [5], and we therefore refer to them
as Henkin—Leiterer domains.

We shall make the additional assumption that r is a Morse function. Let
U be a neighborhood of dD. Then

UND={zeU:r(x)<0},
r with only nondegenerate critical points on U. We have
0D ={x: r(x) =0},

and we can assume that there are finitely many critical points on bD, and
none on U \ bD.

In [2], Lieb and the author studied the Bergman projection on Henkin—
Leiterer domains in C", and obtained weighted LP estimates. We here con-
cern ourselves with proving an analogue of (1.1) on Henkin—Leiterer domains.
The domain D has an exhaustion of smooth strictly pseudoconvex domains
{D.}c on each of which the analysis of Lieb and Range applies. One im-
mediate problem one runs into with this approach is that forms which are
Dom(0*) on D may not be in Dom(d*) on D.. We deal with this problem
by using a density lemma of Henkin and Iordan [4] which provides for forms
fe which are in L?(D.) N Dom(d) N Dom(9;) and which approximate a given
f € L?(D) N Dom(d) N Dom(0*). Our approach therefore is to obtain an in-
tegral representation valid on each domain D, and in the end let ¢ — 0. In
this approach, we need to multiply our operators by factors of |dr| so that
convergence of the representation as € — 0 is obtained. Let = |0r|. The
analogue of Theorem 1.1 we establish here is the following.

THEOREM 1.2. Let D be a Henkin-Leiterer domain with a defining function
which is Morse. There exist integral operators Ty : L?O q+1)(D) — L?O q)(D),

0<g<n=dimX, such that for f € L%M) N Dom(d) N Dom(0*) one has
Vi f=T,0f + T;_l O0* f + error terms  for ¢ > 1.

In a separate paper, [1], we build off the integral representation established
here, and in particular we look at the mapping properties of the integral
operators under differentiation so as to establish C* estimates.

2. Admissible operators

With local coordinates denoted by (1,...,(,, we define a Levi metric in a
neighborhood of 0D by

ds® = o (¢) d¢; .
gk aCJ 6Ck !
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A Levi metric on X is a Hermitian metric which is a Levi metric in a neigh-
borhood of 9D.

We thus equip X with a Levi metric and we take p(z,y) to be a symmetric,
smooth function on X x X which coincides with the geodesic distance in a
neighborhood of the diagonal, A, and is positive outside of A.

For ease of notation, in what follows we will always work with local coor-
dinates, ¢ and z.

Since D is strictly pseudoconvex and r is a Morse function, we can take
re =1 + € for epsilon small enough. Then r. will be defining functions for
smooth, strictly pseudoconvex D.. For such 7., we have that all derivatives
of re are independent of e. In particular, v.({) =~(¢) and pc(¢, z) = p(¢, 2).

Let F be the Levi polynomial for D.:

87"6 "L 9%,

We note that F' (C , z) is independent of € since derivatives of r. are.
For e small enough, we can choose § > 0 and € > 0 and a patching function
(¢, 2), independent of €, on C™ x C™ such that

1 for p?(6,2) <5,
#l7)= {0 for p?(¢,2) > %
and defining S5 = {C: |r({)| < ¢}, D_s={C: r({) <}, and
¢e(C,2) = (¢, 2) (F(¢,2) = 7e(Q)) + (1 — (¢, 2)) p°(C, 2),
we have the following lemma.

LEMMA 2.1. On D, x D. NS5 x D_g,
¢el 2 1(Ore(2),¢ — 2)| + p* (¢, 2),

where the constants in the inequalities are independent of e.

Proof. From a Taylor series expansion,
(2.1) |¢6|Z_TE(O_TE(Z)+p2(C7Z)+|Im¢E|'
On D. X D¢y —rc(C) = re(2) > |re(€) — 7e(2)]. We combine this with
[T @]+ p?(¢, 2) 2 [Tm(dr(¢),¢ — 2)],
and we therefore write
|6l 2 Ire(¢) = re(2)] + [Tm(Are(¢), ¢ — 2)| + p*(¢, 2)
Z ‘<a’l"€(2), C - Z>| + p2(<7 Z)a
where the last inequality follows from
[(Ore(2),¢ = 2)| + [(0re(O), ¢ = )+ p°(¢, 2)
~[re(€) = re(2)] + [Tm(Are(¢), ¢ = )| + p*(¢, 2),
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which itself is an easy consequence of a Taylor expansion.

2
All inequality signs have constants which are independent of ¢ since r %o
O

We at times have to be precise and keep track of factors of v which occur
in our integral kernels. We shall write & 1({, %), k <0, for those double forms
on open sets U C D x D such that & is smooth on U and satisfies
(2:2) Ein(C,2) SA () =2, I1+m=k,
where [, m <0, with the property that

A& k=81, +Ej k-1,

where A is a first order differential operator in either the ¢ or z variable. Here
and below v* = v(z), the * having a similar meaning for other functions of
one variable. We write £ (¢) for a function with the property

Iy DE&R()] SV,
where D¢ is a differential operator of order a.

We shall write &; for those double forms on X x X such that & is smooth
and satisfies

Ei(x,y) S P ().

re(¢) re(2)

Y(¢) v(z)

Definition 2.2. A double differential form «7¢(¢,z) on D, x D, is an admis-

sible kernel, if it has the following properties:

(i) @€ is smooth on D, x D, — A..

(ii) For each point ((p,¢o) € A, there is a neighborhood U x U of ({y,(p) on
which «7¢ or &/ has the representation

(2.3) ENE PTG Gl g 3 G el

with N, M, a,j,tg,...,m integers and j,k,t9,l,m >0, —t =1t +--- +
ty <0, NNM>0,and N+ M +a>0.

The above representation is of smooth type s for

Here

Pe(Caz) :p2(<7z) +2

s=2n+j+min{2,t —l—m}—2(toc+t—1—m).
We define the type of @7¢((,z) to be
T=s—max{0,2—- N — M — a}.

/¢ has smooth type > s if at each point ({p,(y) there is a representation
(2.3) of smooth type >s. /€ has type > 7 if at each point (p,(p) there is a
representation (2.3) of type > 7. We shall also refer to the double type of an
operator (7,s) if the operator is of type 7 and of smooth type s.
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The definition of smooth type above is taken from [6].

Let /¢ be kernels of type j. We denote by «/; the pointwise limit as e — 0
of /¢ and define the double type of <7; to be the double type of the &F of
which it is a limit. We also denote by A§ to be operators with kernels of the
form «/f. A; will denote the operators with kernels «7;. We use the notation
A 1y (resp. ;1)) to denote kernels of double type (j, k).

We begin with estimates on the kernels of a certain type.

PROPOSITION 2.3. Let /f be of type j, and

2n+2—j
Then
(24) | 1gcaravio <c
and, similarly,
(2.5) | 1capavie <c

€

for C < oo a constant independent of €, z or (.

Proof. That (2.4) and (2.5) hold for a fixed € > 0 and a constant C' which
may depend on € follows from the results on smooth strictly pseudoconvex
domains (see [6]). We will perform the calculations in the limit € — 0 so that
standard uniform boundedness principles apply to provide bounds uniform
in e.

We handle the estimates case by case depending on the kernel’s double
type. For the various cases, we now describe the coordinate system with
which we work. Fix z such that v(z) # 0. We define the complex tangent
space at z:

T; ={¢: (9r(2),¢ = 2) = 0}.

We define the orthonormal system of coordinates, si, So, t1,...,t2,_o such
that
51 = Re<8r(2),é - Z>
7(2)
So = Im<8r(z) ,C— z>,
v(2)

and such that ¢1,...,t2,_2 span T¢. Let also

5:\/5%+s§,
t=/ti+ - +13, s
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From Lemma 2.1, we have
] 2 [(0r(2),¢ — 2)| + 07,
which in the above coordinates reads
lo| Z~v(2)s + s2 + 12

Case (a). 2 is of double type (j,j).

For kernels of double type (j,;), we can use the relation |y(¢) —v(2)| =
O(|¢ — z|) along with estimates for kernels of double types (4,74 1) and (4,7 +
2), to reduce the different subcases we need to consider to

() eyl g 2

pn—j/2’
. v(2)°
< =)
(11) |'Q{J| ~ Pn_(j+1)/2|¢|)
2
TP p—ic. pl

Pn—j/2—u|¢‘u+1 ’

We will consider the last two subcases, since the first is easier to handle,
and can be covered by case (c) below.
Subcase (ii). We choose a < 2 such that
N e 2n — 242«
n+1—35"

and let 8 =min(a, A). We have

1
(2.6) /[)7(2)2’\ |} PA(n—(+1)/2) v(©)

St2n73

S22 [ |
- v (7(2)s + 82 + 12)2 (2 + t2)An=G+1)/2)

t2’n73
20—4 1-8
S7(2) /VS (s+ t>2>\n+>\(1—j)—2ﬂ ds dt,

where V is a bounded subset of R?. In the case 3 = o, we can estimate the
integral in (2.6) by

dsdt

o) 1 t2n73
— —
7(2) /VS By za WS,

where the inequality follows from our choice of a.
In the case that 8= A, we choose a o such that

o<2—),

2n—240
A< o—7
2n—1—3j
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and we have
t2n_3

y(z)* /V sl_’\(— dsdt

s+ t)Aen—1-7)

< A 1-A—0 t2n_3 dsd
S(2) e PEn—1=5)—o dsdt
S,

where the last inequality follows from our choice of o.
(2.5) holds in a similar manner by switching ¢ and z.

Subcase (iii). In this case to prove (2.4), we choose « so that a <2 and
2n—2+2

Py
n+2—j

and estimate
1

2\
’Y(Z) /D |¢‘>\(u+1)P>\("—H—j/2) dV(C)

t2n73
5 ds dt

Sy(2)*

- v (7(2)s + 82 +12)A A (52 4 2)An=n=i/2)
o [ B

~TE 5 tA2n+2—j5)—2a s

1%
<L
where V is a bounded subset of R2.
Again, (2.5) holds in a similar manner.
Case (b). <7 is of double type (4,7 +1).
The different subcases we need to consider are

: (2)
ORREANS Ppr-Gt1)/2’

. (2)
o < —— 7
(11) | ]| ~ P7l—(j+2)/2|¢| ’

e (Z)
< )
(ili) |«] S G 2 gl > 1.

Subcases (i) and (ii) can be handled by the estimate in case (c) below. The
more difficult estimate is that of subcase (iii), for which we choose an a < 1/2
which satisfies
2n + 2«

Soyi—j

and estimate
1

7("")A/D oD PGz 4V ()

< \ st2n73
SH(2) 2 D\ (1) (2 2\ A (n—(j+1)/2—
v (7(2)s + 87 + £2)AFD (52 4 ¢2)A= (41

dsdt
©)
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t2n—3
< A—1
S(2) /V (52 2N e=G-n/2-1 4
5 S—2at2n—1—>\(2n+1—j)+2a dt ds
14
<1

where V is a bounded subset of R2.
Case (c). <7; is of double type (4,7 + 2).
Using the coordinates of cases (a) and (b), we can estimate all the subcases
for kernels of double type (j,7 + 2) by
st2n73

L1 VO 5 [ o dsde

M
< / T2n717)\(2n7j) dr
0

~

<1,

~

where V is a bounded subset of R?, M >0 is a bounded constant, and r =
V82 + 12,

The same estimates hold for (2.5). d

As a consequence of Proposition 2.3 and a generalization of Young’s in-
equality [8] is the following.
COROLLARY 2.4. Let A; be an operator of type j > 1. Then
1 1 J

We let &7_,,,(¢,2) be a kernel of the form

; Em,0(Cs ,
%?—27L(Caz)_$7 J Zla

where m — 2k > j — 2n. We denote by F;_s, the corresponding isotropic
operator. The following theorem follows from [6] (see Theorem VII.4.1).

THEOREM 2.5. Then we have the following properties:
E1—2n : LP(D) — LS(D)
forany 1<p<s<oo with1/s>1/p—1/2n.

3. Basic integral representation

In this section, we present the basic integral representation for forms on
bounded smooth strictly pseudoconvex domains as worked out by Lieb and
Range [7].

We will need the following lemma.
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LEMMA 3.1.

r

< ecCcY(D.
S (De)

with C'-estimates independent of e.

1
Proof. Since r R r, we show that
r
—eCcY(D).
v
Outside of a neighborhood of any critical point of r, the result is obvious.

We denote the critical points of r by p1,...,px, and take € small enough so
that in each

Uze(pj) ={¢: DNIC—p;| <2¢}
for j=1,...,k, there are coordinates u;,,...,uj, ,Vj,..1,---,Vj,, such that

(3.1) —r(C)—u g —?2 2

]-m Jm+1 J2n
with uj, (pj) = vj;(p;) =0 for all 1 <a<m and m +1 < 3 < 2n, from the
Morse lemma.
In these coordinates

2,2
r(Q) Ui
’Y(C) /u2. + 1)2. ,
2_ .2 2 —
where uj =uj +---+uj and v v]mJr1 +o 4 v]%
It is then easy to see r(¢)/v(¢ ) is in C! by differentiating with respect to
the given coordinates. O

We start with the differential forms

_0cp*(¢,2)
ﬁ(C?Z) - PQ(C,Z) 9

_ ore(()
O‘e(éaz) 76(4)(;55((72)’

where £(() is a smooth patching function which is equivalently 1 for |r(¢)| < d
and 0 for [r(¢)| > 26, and § > 0 is sufﬁciently small. We define

n—q—< q
—Cq(amﬂ): Z Z Aquv QPW 0167,6)
u=0 v=0

L\" (p+v\ (n—2—p—v
Gome =\ 2mi p q—p

Cq,uu(aevﬂ) = N\ /6 A (5Cae)u A (5Cﬂ)niqiuiz A (5z045)u A (azﬂ)Q7V'

where

and
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Denoting the Hodge *-operator by *, we then define
Lq(¢,2) = (1) x¢ Ce(¢, 2).

We also write
€ _ (_1\a(g—1)/2 n—1 1 5 n—g—1 5 q
Ky(6) = (12 (M) o A @ca 1 B

and ( )
. n-—2 1
FO,q(Cvz) = 27'{'—" pgn p) (aC azp )

The kernels in our integral representation are defined through the following
for g > 1:

746 2) = 0cL4(Co2) = 0: L4 (G 2),
T,%(C, %) = 0cT§ 4 (¢, 2),

I, (G 2) = T°(¢, 2) + T, 2),
Py(¢,2) = 4(¢,2) = Q57 (¢, 2)

=0 0:L5 (¢ 2) — (9 9:L£5 (¢, 2))7,
Q4(¢,2) = V¢ 0L (¢, 2).
We denote the operators with kernels 7.7 and Py by T¢ and P¢, respectively.
As mentioned above, our goal is to establish C*-estimates on the Henkin—
Leiterer domain, D, by exhausting D by smooth strictly pseudoconvex do-
mains, {D.}. and using the analysis of Lieb and Range [7] on the smooth

domains D.. It is therefore necessary to be able to approximate a given form
f € Dom(9*) N Dom(9) by forms f, such that

Iy
a1 % df.
g o s
For this purpose, we define the graph norm on D
el = [l + 192 + 8]
With H. =00 + 00+ 1,
Dom(H,) = {f € Dom(d}) N Dom(d)|df € Dom(9}),d: f € Dom(d)},

and . defined by

%
+9:0,

=00}
we make the following.

Definition 3.2. Wesay f is in the space M, (D), f € M, ) (D), if f is the
limit in L%p,q)(D§ loc) of f. € Dom H, such that sup {||fe|la,e; [|[Defelle} < 00.
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From Lemma 1 in [4], we have the following.

PROPOSITION 3.3. M, (D) is dense in Dom(9*) NDom(d) for the graph
norm.

Let f € L§ ,(D)NDom(9*) NDom(d). We take a sequence { fc}c such that
fe€eDomH, and f. — f in the graph norm.

For each f., we apply the analysis of [7] on D., taking into account factors
of 7, and obtain the integral representation.

THEOREM 3.4.
fe(z):Tgéfe ( ; 1) g:fe+P;fe
_ - 1
+ (AEOQ) + E2—2n) afe + E2—2n a:fe + <¥AE_171) + E1—2n> fe~

The proof follows as in [6] (see the proof of Theorem IV.5.52), but since the
factors of v are of particular importance here, we sketch the proof including
this new detail. For N >0, we let Ry denote an N-fold product, or a sum of
such products, of first derivatives of r(z), with the notation Ry = 1.

Sketch of proof of Theorem 3.4. Our starting point is the Bochner-Marti-
nelli-Koppelman (BMK) formula for f € Cj ,(D.). Let B, be defined by

—1 1 _ _
By =04(9) = (1102 (") e @ @6
Then for z € D,
(3.2) / F(O) A By(G,2) /”af ) A By(C.2)

—@Aj@A&Am@

+(f(€), 61-20(C, 2)) + (9 (C), E2-2n (¢, 2))-

Define the kernels K¢((,2) by K¢(¢,2) = Q4(ac). We then proceed to
replace the boundary integral in the BMK formula by

IAKG.
oD,
Let (o € 9D, be a fixed point and U a sufficiently small neighborhood of (.

F(¢, z) vanishes on the diagonal of U x U, so Hefer’s theorem applies to give
us

F(¢ 2)= Z’%(C,Z)(Cj — zj).

We set

" hi(C2)dE;
)= D6



1138 D. EHSANI

With the metric given by
ds® = g;1(¢) dz; dzy,

(recall the Levi metric is independent of €), we define

Z 95%(C, — Zx) A,

7,k=1
2)= > gl —2)(C, —Z),
G k=1
_ (¢ 2)
BO(CVZ) - R2(§,z)

With use of the transition kernels C, defined above, we have via Koppelman’s
homotopy formula

() = Qq(a®) + (=1)7"1 9:Cy(a®, B%) + 0.Cy—1(a”, 5°).
On (0D NU) x U we have
Qq(a) = Qq(a0) + o,
€\ _ gl((vz)
Qo(a ) = Qo(ao) + m

and on U x U we have

R2n o
Qq(8) = pWQqB + &2-on.

Thus, we write

R2n
Qq(ﬂ) = TQq(ﬁO) + & _an

R2n
oo
by which it then follows from the homotopy formula and the relations between
b0 and p? and R?, exactly as it was obtained in [6], that we have

(3.3) Qq(B) = Qqlae) + (-1)*** 5405 + 5ZO;—1

o (Q4(8°%) — Qq(a®)) + 2y (a®) + g;gglaq(ao) & o

2n

_ 0p® + &
+ &o_on + 5‘( [(Cq <Oto, pp22> - Cq(‘%aﬂ))

£3+2u+2u 0 0P+ &
+Z 1+u+u ‘““’ Qs p2

+ (Qq(ao) = Qq(a0)) + 5’;n+1 Q,(a%)
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Eiyoptov 0 0P+ &
+ Z (p2 )2+t Cow | @7 2
v

SBrizpsan o 0 PP +&
+Z 2) 2+t Clg-nw | @, 02

+a, Kc (2 2222) — 6y se)

&340 +20 o 0p*+ &
+Z 1iu+u (g—Dpv | & 02 :

We now work with ¢ € 3DE so that F' = ¢,.
For ¢ > 0 we have Q,(a.) = Q4(a’) =0 near the boundary diagonal. Fur-
thermore,

0p? + & &1
0 _
Couv (O‘ ) T =1 ¢i+#+’/(p2)n717#7u ’

5 E3 o420 0 0p*+ &
(S (4 15

and thus

v

—5.(r Ehyoutov

1 ¢1+H+V 2n
€ P

_ Suyouta E3 42,420 Esrout2v
= l4utr L Ttutv 1" Tt utv

g pn pe T pn pe T (p2)n

+ R, Esyoutov + Eagoputor N 3@‘7"5

¢2+H+Vp2n
And a similar formula holds for the
5 E342u+2v o 0p*+ &
9 (Z 2 1} Clg-nuw | @
+ptr TAT IRV ’ 2
() P

term.
For v > 0, we have Cy,,(a®, %) = Cyuv (e, ) =0 near the boundary
diagonal, and for v =0 we have

dp? + & &
(3.4) Cypo (ao, %) — Cyuo(ae, B) = :

STy

and thus
= dp* + &
Oc (quo (a %) = Cypo(ae, 5))

&1 &3+ E N Or, &
%+u(p2)n71ﬂ¢ ¢?+#(p2)n717y + ¢l+#(p2)n7,u'
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An analogous formula holds for

_ op* + &
az (Cq,uO (aoa %) - Cq,u,()(am 5))

Equation (3.3) can thus be written

Qq(ﬁ) = Qq(ae) + (_1)q+1 5ch(a€7ﬁ) + 5ch—1(aevﬁ) + é()2—271

n Z Ezqor 6504+2T A Or, E5427
1+T 2n ¢§+7’p2n 1 (bg-‘rﬂ' (pz)n-',-l :

Thus, after integrating by parts we obtain

f A B
0D,

= FAQ () + 8f/\C’E+8/ fAC 1+/ fAE_on

aD. aD.
6573+2T 505+27
+ Z/ ( 1+T m st ¢)2+T(p2)n+l )

We now replace all occurrences of p? in the denominators by P., since the
two are equal on dD,, and then we change the boundary integrals to volume
integrals by Stoke’s theorem. In the calculation, we use the property

_ r*

OP. =&+ 7%&)(C),

which follows from Lemma 3.1 and the definition of P.. We have
I AB;
:/ Of NQq(ae) + (—1)‘1/ FAOQ () + (—1)q+1/ df NOC
D. D, D.
+/ Of NO.Cy_y +(—1)q52/ FAOCS_y +/ Of N Er_an
D,
53+27 Esqar
5’2+2T 5’3+2T 5’44-27 7’: 53+2T
+ Z/ f/\ < 1+7‘Pn Rl ¢2+7‘P£ + qsg—‘rTPen—‘rl + ,yi*qs%—&-TPEn—&-l

Est2r Epr2r re  Shyor
¢2+7’Pn+1 + ¢1+7’Pn+2 + R ,.Y* ¢1+TP€71+2

+ Ry
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Inserting this expression of the boundary integral into (3.2), and using our
notation of operators of a certain type, we can write

f(2) = (~1)7 /D £ A8 (a0) + /D Bf A Qy(ac) + (—1)7+! /D Bf A BCE

—/Dgaf/\B;—&—az((—l)q/DFf/\@cC;1—/D€f/\B;1)
+ (f,61-2n) + <f7 %9{(6_1,1)) +(0f, Ea2n) + (Of, A5 y)

The rest of the proof follows as in [6] to obtain a rearrangement of the
terms, and we arrive at the form of the representation in our theorem. O

4. Cancellation of singularities

THEOREM 4.1.
TZ =F1 on+ Ai

Proof. The proof is a direct result of the operators which make up Tf. In
particular, the kernels £{ and L{_; are sums of terms of the form

&1
(4.1) Ri(¢ )W7
and if X is an arbitrary vector field in either  or z, we use

XP.=&0+81(0)¢(2) +E&1(2)0(C)

to calculate derivatives of the kernels (4.1). O

p=>0,

The proof of the next theorem will take up the bulk of this section. If one
calculates the type of the operators associated with the operator Py as we did
in Theorem 4.1 just by looking at two vector fields operating on the kernels

1, the conclusion would be that Pf is an operator of double type (—1,0).
However, the combination of the two terms involved in P cancels one order
of singularity in the kernels and thus leads to better mapping properties. We

shall prove the following theorem.

THEOREM 4.2.
1
—— A7 oy
7y T
The following lemma follows as in the smooth case (see Proposition 3.12

of [7]).

LEMMA 4.3.

1 1 1
PE=—-A7 | |\ +—A7 |+ —A o+
17 5 (-1,1) ¥ (=11 yy* (0,2)

(be_(b: :@@i’w
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For all e sufficiently small, we work in coordinate patch near a bound-
ary point of D and define orthogonal frame of (1,0)-forms on a neighbor-
hood U N D, with w},...,w"® where Or. = yw™ as the orthogonal frame, and
Lg,..., Lt comprising the dual frame. These operators refer to the variable (.
When they are to refer to the variable z, they will be denoted by ©7 and A5,
respectively.

PROPOSITION 4.4.

(1) YALP. = =2¢, + & (P + &) + &165 62,1 + 062 + £0&5 63,21,
(i) Y*LEPe = =20 + 7" 1(Pe + &2) + &€ 6,1 + £5E2 + &5 E5,-1-

Proof. We follow the proof of Proposition 2.18 in [6]. We prove (i) since
(ii) is a consequence of (i).
We have

Ty

el
We fix the point ¢ and choose local coordinates z¢ such that
dz5(¢) = ©5(¢).

Working in a neighborhood of a singularity in the boundary and using the
coordinates in (3.1), we see A,, — is a sum of terms of the form

6 1
ASP. = App?® + 225 — —¢(2)
v Y

0
0z§

i) Q)Y ye_ oo * 5
(4.2) (*y(z) 7(0)1\ (£0&061,—1 +E-18562,—1 +£_161)AS,

where a is a smooth function, |a(¢)| <, and A€ denotes a first order differ-
ential operator. (4.2) follows from

a(z

~—
S
—~
Iy
~
|
—~
N
~—
=2
—~

*

+&16
= {0y 61,1 + 16562, 1 +E161.

By symmetry, we also have

0 N « . e
(4.3) An = 50 = (08061, -1 + €087 1 62,1 + €2, 61) A"
We note that ©5 =©;|p_, and therefore we will suppress the € superscript
in the variable zf, as well as in the differential operators denoted by A. We
have

(4.4) p’=R*+ &
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and

0
Anp? = 5~ R+ 60562 1 +E1E5 63 1 + €16

==2((, —Zn) + &5 G, —1 + E1E5 88,1 + €162,

where the last line follows from g;, = 20,1 due to the orthogonality of the ©;.
Finally, this gives

(45) Anpe = - (C - Zn) + 2; - _50 ’7 +€0§Oéa2 —1

+8-1£563,-1 + §—1@@2
~ Te * *
=—2(¢,, — Zn) + 27 — & (P + 62) + £0€5 82,1
+& 1883, -1 +E 160,
We compare (4.5) to ¢, by calculating the Levi polynomial, F,(¢,z) in the
above coordinates:
(46) 56(47 ) F (Cv ) - TE(C) + éaQ
V(C)(C - En) - re(C) + @@2~

i) then easily follows. O
(i) y

PROPOSITION 4.5.
47 ( = > L2 )
j<n

=4|ge? +7e(Q)E + E1&1 851 + 7 60
+ 08161+ 116 1 + 183 1 + 283 1 +E,—1.

Proof. We use coordinates as in the proof of Proposition 4.4. In particular,
we write

0

L. =
J 84—]

+ (€085 61,—1 + €152 1 +E_161)A.

Thus,

|L;p*|* = (L;jp°) (% + (&0&581,-1 + 185621 +€15’1)A) P’
J

2

0
O &1 +E &1+ E 15y

2
Py + 8080 63,—1 +E1656u,—1 + €163
8@

=4|¢j — 2|? + €&3Es—1 +E1E5Es 1 + €165,

= (Ljr?)

2
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We can then write
2P = Y |L; " = 4G — 2l +4 +§o§0<% 1+ E1E G T €16
j<n
Furthermore, from (4.6), we have
¢€$e = (7(471 - Z’n) - T€(<) + g2>$e
= 'Y(Cn - zn)h(zﬂ - En) - TE(O + @@2} - Te(C)Ee + ‘9@266
=71 = 2l = e () (G — 20) + @] +7e(O) G + E265 1 +7E4 1,
where we use v(¢) =v(z) +£161,-1 + 2,1 in the last step.
From Lemma 4.3, we have
Y(Cn — 2n) +$e =7(Cn — 2n) +5: + &3
Y(Cn = 2n) + 7 (20 — Cn) —7e(2) + &
=—r(z) +E2+ 6621+ 85,1,
and so we can write

Gebe = VY |G — 2n|® + 1t A 1B +1E1 21 + 78 1+ E283 1 +7Eu 1.

(4.7) now easily follows. O
From
1
(4.8) Ag

qu0 = T 1 pn—p—1
PETPITH

X Ore A 8p2 A (5§8§TG)M A (5C8Cp2)niq7“72 A (528<p2)q + &0,

we have e
Z (gqu an %)*5&
where )
(4.9) o= %WQ N O°
Q=g P T

j<n
and g4, (¢) is a real valued function of the form R;(¢)oq,(¢) for a real valued
function og,,. It follows that
n—q—2
€ € € * 1 €
q+1 = Z [gqu(oﬁ(j 82Cqu - gqu(z)(ﬁé achu) |+ ?% :
pn=0
PROPOSITION 4.6. Let Cg,, be given by (4.9). Then

gqu(oﬁqa Cq/t gqu( ) (¢ 0. q/l,)

1
:;ﬂ 11)"’ ”Q{(ll)_’_ W(oz)‘*‘ — 913

2y
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We write
9 0.C, = Af @ neb
| K|=q+1
|L|=q+1
and
(0c0.C) = Y. ApS@ner.
|K|=g+1
|L|=q+1

To prove Proposition 4.6, we show
’Y(C)A%L_'V(Z)AELMK*:lﬂ/6 1,1 +id6 1,1 +Ld%2 + 55 91.3)-
')/(7’) ,Y* (=1,1) ry,-y* (0,2) 72,}/* (1,3)

With

I
€ J
Mkj awrl Ay, (Penul ) )
and using Ap¢, = &1,0, we have

A =— Z%QE AR 437(02
|Ql=q
j<n
k.m

where K, L, and @) are multi-indices, and the symbol séQ is defined by
0 if{k}UQ#L,

sﬁQ =<1 if kQ differs from L by an even permutation,
—1 if kQ differs from L by an odd permutation.

LEMMA 4.7.
. € 1 _25k i n—u— 1 —
() M=ty [ 2 2L ) T |+ ervor, k<,
1 2(n—p—1)L;p?
(i) M= (n—p=DLp +error, j<n,

O glprH
where “error” refers to error terms with the property that any derivative with
respect to the C variable leads to kernels of the form

1 1 1
—ﬂ’ + 42{ + 42{ — Dot 5513 T 3924
SR (=1,1) (0,2) 77 (0:2) T 520 T(13) T 130 T(24)
Proof. We will prove (ii), the proof of (i) following similar arguments, and
being easier to prove.
With the aid of coordinates chosen as in Proposition 4.5, we have

Lip® =2(G — 25) + 085 a1 + €185 651 + €16
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When it is not necessary to refer to the special coordinates in Proposition 4.5,
we can also write L; p? = &. We will also refer to the calculation

— 0
AnLjp* = A, Kf + (§0&p61,—1 +E16562, -1 + 5_151)/\) 32] + &
j

= A (2(G — 2) + Eo&iEr 1 T EAELEs 1 HEE) + &
0 . )
= 2(5 + (€080 61,—1 + €186, 1 +£1£1)A) (¢ —2)
+ &€ 18,1 +E0&5 a2+ €188 1831 €165 1
+£*156‘£3,72 +&416
=&0&061,-1 +€-1§062,—1 + §161 + §o€l1 62,1 + §0&5 62,2
FEE L EG b + GG

for j < n, below.

We have
e 1 Lijp®
(410) Mnl; = aﬂ‘f‘l A” <Pn—u—1>
L;p? 1
:—n—u—l_ J AnP€+ %6
( )¢5+1P27 v (0,2)
1 1
+ _dﬁ + —%E
,Y,Y* (133) 72,}/* (274)
S e 1)L;p?
L A
X (=20, +7E5 (Pe+ &) + £165E2,-1 + £0éa + £065E5,-1)
1 1 1
+ _%E + _d€ + —d€
fy (0’2) ryry* (1»3) 727* (214)
1(n—pu—1)L;p* 1 1
=2———— = 4 g+ —
v ¢/:P€'IL—/L ~ (0,2) 'Y* (0,2)
I SR
v (1,3) A2 (2,4)>

from which (ii) easily follows. We used Proposition 4.4 in the third equality
above.

Applying a differential operator with respect to ¢ to the last three terms
in (4.10) and noting the types of kernels which arise finishes the proof. O

REMARK 4.8. We make a note here which is crucial in the proof of Propo-
sition 4.6 that, by making use of the property (2.2), we can replace the last
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term of the error terms in Lemma 4.7 by a term

1 €
o e
We start with the case p =0 and compute Lm./\/l;g».

LEMMA 4.9. Let m,k,j <n. Then
_2(n-1)

0P,

n(n— 1) 5 9y = o 1. 1.
N Lo ) (Lp?) (L") + Z A+

1 1 1
+ Ao+ — Do+ 5D 3 T =D 4
(0,2) fy (0,2) 727* (1,3) ,)/37* (2,4)

(i) LM = 2(n7 )(25@ - P:+1(me2)(LjP2)>

(i) M ———(0k; L mp? + 0 Lip?)

Pn
1 € 1 € 1 € 1 €
Yt S T s Yot e Yy
2815 — 1) (Lp?)(L; p?
(111) LnMEOZ_’y_Q ]:L]71 + (n )(_zkp )( Jp)
¢6P6 ¢6Pg7/
L1 2n(n —1)(Lrp®)(Lip?)  4(n—1)dy; )\ ¢F
'7* Pn+l pPn 56
1
+ 0‘2411)7L ﬂ(llﬁ v‘zj(ozﬂr S F02)
1
+"/ T3+ ﬂ(z 4)
. dn(n—1) ¢* — 1
iv) LML =—’ + d + —
( ) J yy* Pn+1 p (=1,1) yy* (=1,1)
1 1
4+ ——A o+ ——— T ..
A2 (0,2) R (1,3)
Proof. (i) We use
1 1 —
(4.11) Lypy———— = —— Lo, — (n—1)=——L,,P.
¢ Fe ! ¢)§P5n_1 PP
= (g ;i)Lm P+ %%f_w

since for m < n we have

§o

Ly P. = Ly,p*+ > (P€+£’2),
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and
(4.12) L (5 ;n (Lkpz)(fjp2)>
) _
o.Pr (LinLip®)(L;p?) + = G P! (Lip*)(Lm Ljp?)

—(Lkp )(ij )(mee)~

An easy calculation, using (4.3), in combination with the relation in (4.4),
gives

(4.13) Ly Lpp® = L (2(Co — 21) 4+ £0&5 82,1 + 051851 + £5162)
=2 (% + (§0€561,-1 + &€ 162,-1 + f*léal)A) (G = 2x)

L (§0€082,—1 4+ &8 163, 1 +E7162)
= 60808121 + &85 18,1 + &1 81 +E165E0,—1 + 0y Ea,—2
+E 1871851+ &€ 18,1 + Eo&T 165, o

Similarly, we can write

(4.14)  LinL;jp® = 20m; + £0&5E1,—1 + E0&™ 1621 + €181 + €165 62,1
+ &858, —2 + €167 185 1+ &8 1 &1 + €T 185 .
Thus the right-hand side of (4.12) becomes
20

mj 2
(4.15) S pn (Lip?)

=t () L) L)

505052 —1+&085165,-1 +§* y+E 16563, 1
¢.P,
505053 —2+E&-185,6, 71+§0§* &3,-1+ &0 16,2
é.Pr
f 18§16 &3
¢P" o P! EfPG"

20mm.i 2
~ 9. Pi (Lip®) — #(LW%(LJP%(LTW?)
1

+7*b‘27( B ~Qf<11)+ ﬁf(oz)“‘ et ()

(4.11), and (4.15) together with the form of ./\/lekg from Lemma 4.7 prove
part (i).
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(if) We have

Lm< 1 z(n—l)fj;ﬂ)

RO e
_ 2(n—1) Ly, L;p? ~ 2n(n—1) Lfﬁi L P+t %foéﬂ
g pe v P v P
_ 4n—1)0pm;  2n(n—1) L;p? ?
v P vy Pt

1 1 1 1
b — A o+ ——
2P T T o Do) T o5 )

as in the proof of (i). Taking into consideration the error terms from Lem-
ma 4.7, we conclude (ii).

(iii)

(bepen
201 . — Okj
LG+ 2(n— 1) =L L, P,
¢ PPt o P
201
B 52]3”]71 ( Q)+ (55‘1)
+o(n— 1)
RS
X (—Z’Y—i + 6_1(P€ + gg) + 505352,—1 + fing + §0£i1£)3,—1>
STy B g, et e Ty

As in (4.13), we have

LnLp? = Eo&561,—1 + E0€% 1621 + 5181 +E165 6,1 + E065 6o, —a
+ 86185163, —1 + &€ 62,1 + &L 163, -2,
LnijQ =808061,—1 + &8 162, 1 +E5 16+ E 1856, 1 + &b, 2
+ 86185165, -1 + &€ 62,1 + &€l 83 2.
Thus,
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5 Il (Tip) + Zepe (Lip®)(Ln;p?)

W(LKPQ)(ZjPQ)

( 2% L6 (Pt )+ i + €16 +5o£i1£‘3,_1)
50505’2 1 F &S S FE 16563

o P
505()(9@3 o+ E 181+ 6081851 +E0EF 162
6 P
0= DA | 1 20— DA ¢
Y afpen y* Pn+1 a

1 1
+ -yt S H T 5D o2t Y + M
v (=1,1) y* (=1,1) 72 (0,2) vy (0,2) (1,3)°

Putting these calculations together and including the error terms from Lem-
ma 4.7, we can prove (iii).

(iv) To prove (iv), we calculate

I < 1 2(n—1)fjp2>

Q) pe
1 2(n— 1)fjp2L 12(n—1)L,Lip*> 12(n—1)L;p?
D
12(n—1)L;p?
o Pn+1

X ( dj* SHE (Pt &) + 60851 +E5 1+ ﬁofilt%,—l)

1 50@@1 1&0&5E2,—1 +E0E" 163, -1 +E5 162 +E1£5683,1
2 pr o "

v Pr oy P

N 1 808063,—2+ 81871641 + 8085163, —1 + &o&" 1642
gl pr

_dnn-1) ¢ -
oy prtt

1 1

+ ?@7(6_1,1) +—

+

1
- + A o+ —— A ay.
(=1,1) A2y (0,2) 3y (1,3)
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The error terms from Lemma 4.7 may also be absorbed into the terms of the
last calculation. (]

REMARK 4.10. Again, we note that the last of the error terms in each part
of Lemma 4.9 may be replaced by

1 €
72 (7*)2 'Qf(lﬁ%)'
We implicitly use this property below in each case composing the proof of

Proposition 4.6, to handle errors in subtracting adjoint terms.

Proof of Proposition 4.6. To compute A%}, we follow the proof of Theo-
rem VI.1.29 in [6] and consider four cases:
Case 1. n€ K and n € L.

2 €0
KL - 5 Mn]?

jm<n
€0 * __ § : JjL €0 \*
AKL - €mK(LJMnm) .
jm<n

By Lemma 4.9(ii),

**VQ{( Lyt os "Qf( Ly JZ{(02 21
v
Case 2. n¢ K and n ¢ L. From [7] (see also [6])

€0 JjQ €0
A% =— E sts L, My,
JEK
kel

€0 x
ALK = E g QEL ) .
JEK
kel

We refer to Lemma 4.9(iii) to calculate
V(C)LnMZ(j - ’Y(Z)(LnMj?s)*
We have
2 *\2 2 1 1 & &
(4.16) v )y <_ > £i21+ 2
P

o.prl (g2t P

3 € €
+ o1y T Ho,2)
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Furthermore,
L 2 f 2 L. 2 Z 2 *
a1 0B ) (L))
d)epen (ZSSPEn
(Lep*)(Lip?*)  ( (Lip*)(Lip®) \ ) 1,
:7( k53P£] _< ]5313; ))+ﬂ(1’”+5%*2>

68 (1 1 . 1.
GG ARGERER(E

€

& * .
=P—il(g—z F(GE 6+ ézl)%e

+(§-11& 6,1 + 51&,1)%)

& [ 083+ 9. 6: 1 1
o (BB i +

PETIN G0,

1 1 1
=—A gyt 90t Y00

S L) Ty T 0

Similarly,

vlgr (1 erY 1
(1.19) E-T(m8) e+ maln + =

€ €

From the last three terms in Lemma 4.9(iii) and (4.16), (4.17), (4.18), and
(4.19), we conclude

YO LnMiG =7 () (Ln MG
_ 1@{6 n 1 o n 1 g 1 o
~ (—-1,1) A* (—-1,1) A+ (0,2) 72’7* (2,4)"
Case 3. n¢ K and n € L.
AR =—¢ nQZEnJQ (L Mf%

j<n
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1)oe
(4.20) = —5,LQ Z é‘JQL *P"+1
j<n
1 1 1 1
(4.21) + 3 — — Ayt =T T =
(- 11) ’Y (-1,1) 5 ’)’* (0,2) ,}/3,),* (1,3)

by Lemma 4.9(iv). We work out the rest of Case 3, after we do some calcula-

tions which also apply to Case 4.
Case 4. n€ K and n ¢ L. From [6] (see IV.2.57),

L K €0
KL* nJE 5kJ E L; M E EkmMEanLkaj'

kel j<n m,keL
jeJ
The second sum is —%611)+ ;276 Tz 437(%2 ;276 2)—1— ;276 3t

L_o7¢ .\ because

Py (2,4)

LkMeo —Lm./\/l + — JZ(( 1,1) + le( 1,1)

! o7 ! o L p S
TR0t a oy T s (13>+7 (2.4)
from Lemma 4.9(i). For the first sum, we set m = j in Lemma 4.9(i), and use
2n(n—1) 2 n(n—1) 2
ZL M = —=——Lip’ — =——FLrp Z|LJP 2
j<n ¢ P ¢ Fe j<n
1

€

T IR W7 G
v (-1,1) y* (-1,1) ,YQ (0,2) A+ (0,2)

1 1
T
,)/ny* (1,3) 73,},* (2,4)

the first two terms on the right of which can be written by Proposition 4.5 as

n(n—1) 2 2> dn(n—1) |¢c|? o, 1
L 2P, — E L; = = Lyp*+ —A° 4.
d) Pn+1 kP < ]<n| ]p | ’Y’Y* ¢6P6n+1 kP ,y,y* (-1,1)
This gives
dn(n —

7* n+1 nJZEkJLkP
7Y P k<n

1

(4.22) A, =
1 1 1

iyt 5Tt s D s T Do)
(=1,1) 72 (0,2) 2y (1,3) A3 (2,4)

Case 3. n¢ K and n € L. Comparing (4.20) and (4.22), we obtain

dn(n—1) ¢
0 _ L _kQ € 2
Ay = —EnQfK Tpe"ﬂ Lyp

1 1 1 1
+ 5yt Yyt 5502t 52903
A2 LD T L) T e (02 T g (1)
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dn(n—1) ¢
L _K e
ATk = ety vy prtl Lip?

€ € €

+ 0,2) 1 N2y ,52/(173) + I 'Q/(274)’

1
A+ =
- (=1,1) 72 (

and

1 1 1 1
AL — ()AL ==+ — T+ — A oy + —— T .
V(O A% L —7(2)(ALKk) Sy e T o) T s s
Case 4. We can reduce it to Case 3 by
NOARL = 7(2)(ATK)" = —(VQOATK —(2)(ARL)") " O

This also concludes the proof of Theorem 4.2. As an important corollary
to Theorems 4.1 and 4.2 we see if we compose the operator Py with vy, we
obtain operators which are of type 1. This is the idea behind the next theorem
which results from multiplying the basic integral representation Theorem 3.4
by an appropriate number of factors of v and v*. We can then let ¢ — 0 to
obtain a representation on the domain D.

For a given f e L§ (D) N Dom(9) N Dom(9*), we take a sequence {f}
which approaches f in the graph norm by Proposition 3.3. With the use
of Theorem 3.4, we define operators T, S¢, and P; so that we have the
representation for each f.

(4.23) fe(2) =T 0fc + S5 0! fe + Py fe.

We then define the operators T, S,, and P, to be such that v*T;, 0v%, v*S, o
7%, and v* P, 0~? are the limit operators, as € — 0, of y*T 0y?, v*S¢ 0~?, and
Y Py o ~2, respectively, which exist by Proposition 2.3. We therefore obtain
the

THEOREM 4.11. For f € LY, (D) N Dom(9) N Dom(9*),

0,9)
122 f(2) =V T, 007 ) +7784 0" (v f) + 7" Py (v ).

We can see how Theorem 1.2 follows from Theorem 4.11. To obtain the
theorem in the form of Theorem 1.2, we set T, =~v*T,¥?. Then, from Theo-
rem 3.4, we see 7v*S,7? has the form

W*T;—HQ + Ag = (’Y*)QT;—H + Ap
=T; |+ As.

The error terms in Theorem 1.2 then involve operators of type 2 acting on
the derivatives of f, or those of type 1 acting on f.
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5. Estimates
We define Z; operators to be those which take the form
Zy=Aay +Ei-2n07,
and we write Theorem 4.11 as
(5.1) Vf =21V 0f + Ziv 0" f + Z1 f.
We define Z; operators to be those operators of the form
j times
—
Zj:Z10-~OZ1.
By applying Corollary 2.4 and Theorem 2.5 n + 2 times, we have the prop-
erty
Zpyo: L*(D) — L™(D).
We now iterate (5.1) to get
VI f = (2173042 4 2030 D42 Ly 7042) Of
(ZWB(J D42 4 Z,430=2+2 Ziv )a*erij,

Then we can prove the following theorem.

THEOREM 5.1. For f € L3 (D) NDom(8) N Dom(d*), ¢ >1,
722 e S 172 0F oo + 1197 0" Flloo + [1£l2-

6. Note added in proof

In recent work of the author with I. Lieb, a new notation to deal with error
terms is developed, as well as a more efficient definition of type. Further-
more, a more careful study of the mapping properties of operators involved
shows that Ay o 1/v is bounded from L?(D) to itself. These observations
lead to slight improvements of Theorem 4.11 and Theorem 5.1. In particular,
Theorem 4.11 can be written as follows.

THEOREM 6.1. For f € L(o »(D)N Dom(d) NDom(d"),
V(@) f(2) =V Tdf +7*S,0° f + 7 Py f.
Theorem 5.1 can be written as follows.
THEOREM 6.2. For f € L3 ,(D)NDom(d)N Dom(8"), ¢ > 1,
72" Fllz S 1720f oo + 1770 Flloo + (12

Acknowledgments. The author wishes to acknowledge the fruitful discus-
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