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ON M-PERMUTABLE SYLOW SUBGROUPS OF FINITE
GROUPS

LONG MIAO AND WOLFGANG LEMPKEN

ABSTRACT. A p-subgroup P # 1 of G is called M-permutable in
G if there exists a set Mq(P) = {P1, ..., P4} of maximal subgroup
P; of P and a subgroup B of G such that: (1) ﬂj:l P, = ®(P)
and |P: ®(P)|=p% (2) G=PB and P,B= BP, <G for any
P; of M4(P). In this paper, we investigate the influence of M-
permutability of Sylow subgroups in finite groups. Some new
results about supersolvable groups and formations are obtained.

1. Introduction

All the groups in this paper are finite. Let G be a finite group and M(G)
be the set of all maximal subgroups of the Sylow subgroups of G. An inter-
esting question is how the elements in M(G) influence the structure of finite
groups. As a typical example of this aspect Srinivasan [13] states that G is
supersolvable provided that each member of M(G) is normal in G. Later,
this result has been widely generalized (see [8], [9], [16], [17]).

Recall that a subgroup H of G is said to be supplemented in G, if there
exists a subgroup K of G such that G = HK. The relationship between the
property of primary subgroups and the supplements of some restricted con-
ditions has been studied extensively by many scholars. For instance, Hall [5]
in 1937 proved that a group G is solvable if and only if every Sylow sub-
group of G is complemented in G. Later on, Arad and Ward [1] further
proved that a group G is solvable if and only if every Sylow 2-subgroup and
every Sylow 3-subgroup of G are complemented in G. Recently, Ballester-
Bolinches, Wang and Guo ([2], [16]) introduced the concept of c-supplemented
subgroup and proved that G is solvable if and only if every Sylow subgroup
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of G is c-supplemented in G. More recently, Miao and Lempken [9] consid-
ered M-supplemented subgroups of finite groups G and obtained some new
characterization of saturated formations containing all supersolvable groups.

Now, we introduce the following new concept of M-permutable subgroups.

DEFINITION 1.1. Let G be a finite group and p a prime divisor of |G|.
A p-subgroup P # 1 of G is called M-permutable in G if there exists a set
My(P)={Py,...,P;} of maximal subgroups P; of P and a subgroup B of G
such that

(1) ﬂ?zl P; = ®(P) and |P: ®(P)| = p? (so d is the smallest generator
number of P);
(2) G=PB and P,B= BP, <G for any P; of M4(P).

Recall that, a subgroup H is called M-supplemented in a finite group G, if
there exists a subgroup B of G such that G = HB and H; B is a proper sub-
group of G for any maximal subgroup H; of H [9, Definition 1.1]. Obviously,
if a p-subgroup H is M-supplemented in G, then H is also M-permutable
in G. The following example shows that the converse is not true.

EXAMPLE 1.2. G = (s,a) x (t,b) where |a| = |b] =3, |s| =|t| =2 and (s,a) =
(t,b) = S5. Clearly, P = (a,b) € Syl3(G), d =2 and My(P) = {{(a), (b)}.
Choose B = (s,t). (a)B = B(a),(b)B = B(b), but (ab)B # B{ab). There-
fore, we conclude that Sylow 3-subgroup of G is M-permutable in G, but is
not M-supplemented in G.

Most of the notation is standard and can be found in [4] and [11]. In
particular, H < G indicates that H is a proper subgroup of G, |G| denotes
the order of G, G, is a Sylow p-subgroup of G and 7(G) is the set of all
prime divisors of |G|. Moreover, ®(G), F(G) and F*(G) denote the Frattini
subgroup, the Fitting subgroup and the generalized Fitting subgroup of G,
respectively. Furthermore, i/ denotes the class of all supersolvable groups.

In this paper, we will investigate the properties of the M-permutable Sylow
subgroups in a finite group G. The main goal of this paper is to prove the
following theorem.

THEOREM 3.6. Let F be a saturated formation containing U. Suppose
that G is a finite group with a normal subgroup H such that G/H € F. If
every noncyclic Sylow subgroup of F*(H) is M-permutable in G, then G € F.

In order to prove Theorem 3.6, we shall prove the following fact which is
one of the main step in the proof of Theorem 3.2 and Theorem 3.4.

THEOREM 3.2. Let F be a saturated formation containing U and let H be
a normal subgroup of G such that G/H € F. Suppose that every noncyclic
Sylow subgroup of H is M-permutable in G, then G € F.
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THEOREM 3.4. Let F be a saturated formation containing U. Suppose
that G is a finite group with a solvable normal subgroup H such that G/H € F.
If every noncyclic Sylow subgroup of F(H) is M-permutable in G, then G € F.

Recall that a class F of groups is said to be a formation if G/H € F
whenever G € F and H < G and if G/(M N N) € F whenever G/M and
G/N are in F. A formation F is said to be saturated if G € F whenever
G/®(G) € F. Note that for a formation F every group G has a uniquely
determined smallest normal subgroup G7 such that G/G* € F. It is also
well known that the class of all supersolvable groups and the class of all p-
nilpotent groups are saturated formations (e.g., see [4]).

2. Preliminaries

For the sake of convenience, we first list here some results which will be
used in the sequel.

LEMMA 2.1. Let G be a finite group and P # 1 a p-subgroup of G for some
p en(G). Assume that P is M-permutable in G with respect to Mq(P) and
that L is a normal subgroup of G contained in P. Then the following hold:

(1) There exists a subgroup B of G such that G=PB and |G: P,B|=p
for any P; € My(P); moreover, PNB=P,NB=®(P)NB.

(2) If P< H <G, then P is M-permutable in H.

(3) If L < ®(G), then L < (P).

(4) If L < ®(P), then P/L is M-permutable in G/L.

(5) If L is a minimal normal subgroup of G and L £ ®(P), then |L| =p.

Proof. (1) By definition, there exists a subgroup B of G with G = PB
and P;B = BP; <G for P, € My(P). Since |P : P;| =p, order considerations
show that |G: P,B|=p and PN B = P, N B for any P, € My(P). Hence,
PNB=N_,(PNB)=®(P)NB.

(2) Now we have H=HNPB=P(HNB) and H> HNP,B=P,(HNB)
for any P; € My(P). Since PN(HNB)=PNB=P,NB=P,N(HNB) and
P, < P, we have P;(HNB) < P(HNB)= H. Therefore, P is M-permutable
in H.

(3) If L<®(G), then L <(!_, P,B=®(P)B and thus L < PN &®(P)B =
O(P)(PNB)=(P).

(4) If L < ®(P), then we may set My(P/L)={P;/L| P, € My(P)}. Then
we have L < BL< ®(P)B< P,B< G and BL/L <G/L as well as G/L =
(P/L)(BL/L) and (P;/L)(BL/L)= P,B/L < G/L; so P/L is M-permutable
in G/L.

(5) If L is a minimal normal subgroup of G and L £ ®(P), then there
exists P; € Mg4(P) with L £ P;B by the proof of part (3). Then G = LP,B
and so LN P;B <G. As L is minimal normal in G, L N P;B =1 and hence
L] =p. O
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LEMMA 2.2 ([17, Theorem 3.1]). Let F be a saturated formation containing
U, G a group with a solvable normal subgroup H such that G/H € F. If for
any mazimal subgroup M of G, either F(H) < M or F(H)NM is a mazimal
subgroup of F(H), then G € F. The converse also holds, in the case where
F=U.

LEMMA 2.3 ([4, Theorem 1.8.17]). Let N be a solvable normal subgroup of
a group G (N #1). If NN®(G) =1, then the Fitting subgroup F(N) of N
is the direct product of minimal normal subgroups of G which are contained
in N.

LEMMA 2.4 ([10, Lemma 2.6]). If H is a subgroup of G with |G : H| = p,
where p is the prime divisor of |G| such that (|G|,p—1) =1, then H <G.

LEMMA 2.5. Let p € m(G) and P € Syl,(G). Then the following hold:
(1) If Ng(P) = Cg(P), then G is p-nilpotent. In particular, G is p-
nilpotent whenever P is cyclic and p is the smallest prime in 7(G).

(2) If N QG with PNN < ®(P), then N is p-nilpotent.

Proof. (1) This is a result of W. Burnside; see [6, Theorem IV.2.6 and
v.2.8].
(2) This is a result of Tate [14]; also see [6, Theorem IV.4.7]. O

LEMMA 2.6. Let G be a finite group and P a Sylow p-subgroup of G where
p is the prime diwisor of |G| such that (|G|,p—1)=1. Then G is p-nilpotent
if and only if P is M-permutable in G.

Proof. If G is p-nilpotent, then G has a normal p-complement D. For the
Sylow p-subgroup P of G and every maximal subgroup P; of P, we may easily
get G=PD and P, D < G. Therefore P is M-permutable in G.

Conversely, if P is M-permutable in G, there exists a subgroup B of G
such that G = PB and P;B < G for any P; of M4(P). By Lemma 2.1, we
have |G: P;B| =p and hence P,B <G by Lemma 2.4. Since |G: P,B| =
|PB: P,B|=p, we have PN B = P, N B for any P; of M4(P). On the other
hand N?_, P, = ®(P) and hence PN B =", (P,N B) = ®(P) N B. Next
we will prove (\p, ., (p) (PiB) = (Np,em,(py Fi)B- In fact, we only need to
prove P,BN P;B = (P; N P;)B for any two maximal subgroups P; and P;
of My(P). Clearly, P,BN P;B > (P;N P;)B. On the other hand, we may
choose xby =yb, € P,BN P; B, where x € P;, y € P; and b;,b2 € B. Hence,
y lo= bel_l € PNB=PF,NB=PFP;NB. Therefore, x € P, N P; and we get
P,BN P;B=(P;N P;)B. Therefore, we have that N’_,(P,B) = (N’_, P})B =
®(P)B and ®(P)B 4 G. It follows from PN®(P)B =®(P)(PNB)<d(P)
that we have ®(P)B is p-nilpotent by Lemma 2.5. Let H be a normal Hall
p’- subgroup of ®(P)B. Clearly, H is also the normal Hall p’-subgroup of G
and hence G is p-nilpotent. The proof is over. O
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LEMMA 2.7 ([8, Lemma 2.7]). Let P be an elementary Abelian p-group of
order p?, d>2, p a prime and let My(P)={Mi,...,My}. Then

(a) Xi=;z; M; is cyclic of order p;

(b) P=(X1,...,Xq).

LEMMA 2.8 ([7]). Let G be a group and N a subgroup of G. The generalized
Fitting subgroup F*(G) of G is the unique mazimal normal quasinilpotent
subgroup of G. Then

(1) IfN is normal in G, then F(N)=NNF(G) and F*(N)=NNF*(G);

(é)) (G)#1if G# L in fact, F*(G)/F(G) = Soc(F(G)Ca(F(G))/
(3) F*(F*(G))=F*(G) > F(GQ); if F*(QG) is solvable, then F*(G) = F(G);
(4) Ca(F*(Q)) < F(G);

(5) Let P <G and P < O,(G); then F*(G/®(P))=F*(G)/®(P);
(6) If K is a subgroup ofG contained in Z(G), then F*(G/K)=F*(G)/K.

LEMMA 2.9. Let H and L be normal subgroups of G and let p € w(G). Then
the following hold:

(1) ®(H) < 2(G);

(2) If L<®(G), then F(G/L)=F(G)/L;

(3) If L<HN®(G), then F(H/L)=F(H)/L;

(4) If H is a p-group and L < ®(H), then F*(G/L) = F*(G)/L.

P

(

roof. (1) See [6, Lemma III.3.3].

2) Note that F(G/®(G)) = F(G)/®(G) and ®(G/L) = ®(G)/L. With this
we obtain (F(G)/L)/B(G/L) = (F(G)/L)/(B(G)/1) = F(G)/%(G) = F(G/
(@) = F(G/L)/(®(G)/L)) = F(G/L)/®(G/L)) = F(G/L)/®(G/L) and
then F(G)/L=F(G/L).

(3) Note that F(H/L)=H/LNF(G/L)=H/LNF(G)/L=(HNF(Q))/

=F(H)/L.

(4) Since L < ®(H), we have ®(H/L)=®(H)/L. By Lemma 2.8, we ob-
tain that F*((G/L)/®(H/L))=F*(G/L)/®(H/L) = F*(G/®(H))=F*(G)/
®(H) and hence (F*(G)/L)/(®(H)/L) = F*(G/L)/®(H/L). Therefore,
F*(G/L)=F*(G)/L. O

LEMMA 2.10 ([12, Lemma 1.9]). Let F be a saturated formation containing
U and G be a group with a normal subgroup E such that G/E € F. If E is
cyclic, then G € F.

LEMMA 2.11 ([4, Lemma 3.6.10]). Let K be a normal subgroup of G and P
a p-subgroup of G where p is a prime divisor of |G|. Then Ng/x(PK/K)=
Ng(P)K/K, here Py is a Sylow p-subgroup of PK.

LEMMA 2.12. Let F be a saturated formation containingU. Suppose that G
is a finite group with a solvable normal subgroup H such that G/H € F. If
every Sylow subgroup of F(H) is cyclic, then G € F.
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Proof. Assume that the assertion is false and choose G to be a counterex-
ample of smallest order.

Let p be a prime of m(H) and assume that ®(O,(H)) # 1. Then we
have F(H/®(Op(H))) = F(H)/®(0Op(H)) by Lemma 2.9. Now, we easily
verify that the pair (G/®(O,(H)),H/®(0,(H))) satisfies the hypotheses of
the lemma. Therefore, by the minimal choice of G, G/®(0O,(H)) € F. As
Op(H) <G, ©(0,(H)) < ®(G). As F is a saturated formation, we now get
G/®(G) € F and hence G € F, a contradiction.

So we have ®(O,(H)) =1. We have shown that every Sylow subgroup of
F(H) is cyclic group of prime order.

Assume now that n(F(H)) = {p1,...,pr} and that R; := Op,(F(H)) is
cyclic of order p; for i € {1,...,r}. So Cy(F(H))=F(H)=R; x--- xR,
and H/F(H) S Aut(F(H)) & X::1 Aut(R;) where Aut(R;) is cyclic of order
pi — 1.

Set F,=Ry x--+xXR; and H; = CH(FZ) for i € {1, .. .,7“}; clearly, F; 4 G
and H; <G with Ri =F 1 <Ih<---<F,=H,<H,_;<---<H; <H such
that H/Hy,H,/Hs,...,H._1/H,,F,./F._1,...,Fs/F; and F; are cyclic. Since
G/H € F, iterated application of Lemma 2.10 yields G € F, a contradiction.

The final contradiction completes our proof. O

3. Main results

THEOREM 3.1. Let p be an odd prime divisor of |G| and P be a Sylow
p-subgroup of G. Then G is p-nilpotent if and only if Ng(P) is p-nilpotent
and P is M-permutable in G.

Proof. As the necessity part is obvious, we only need to prove the sufficiency
part. Assume that the assertion is false and choose G to be a counterexample
of minimal order. We will divide the following steps.

(1) Oy (G)=1.

In fact, if O, (G) # 1, then we consider the quotient group G/O, (G). By
Lemmas 2.1 and 2.11, G/O, (G) satisfies the condition of the theorem, the
minimal choice of G implies that G/O, (G) is p-nilpotent, and hence G is
p-nilpotent, a contradiction.

(2) If S is a proper subgroup of G containing P, then S is p-nilpotent.

Clearly, Ng(P) < Ng(P) and hence Ng(P) is p-nilpotent. Applying
Lemma 2.1, we find that S satisfies the hypotheses of our theorem. Then
the minimal choice of G implies that S is p-nilpotent.

(3) G = PQ, where @ is the Sylow g-subgroup of G with g # p.

Since G is not p-nilpotent, by Thompson ([15], Corollary), there exists a
characteristic subgroup H of P such that Ng(H) is not p-nilpotent. Since
Ng(P) is p-nilpotent, we may choose a characteristic subgroup H of P such
that Ng(H) is not p-nilpotent, but N¢(K) is p-nilpotent for any characteris-
tic subgroup K of P with H < K < P. Since Ng(P) < Ng(H) and Ng(H) is
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not p-nilpotent, we have Ng(P) < Ng(H). Then by (2), we have Ng(H) =G.
This leads to O,(G) # 1 and Ng(K) is p-nilpotent for any characteristic sub-
group K of P such that O,(G) < K < P. Now by Thompson ([15], Corollary),
again, we see that G/O,(G) is p-nilpotent and therefore, G is p-solvable.
Since G is p-solvable, for any ¢ € n(G) with ¢ # p, there exists a Sylow ¢-
subgroup @ of G such that PQ = QP is a subgroup of G by Gorenstein
([3], Theorem 6.3.5). If PQ < G, then PQ is p-nilpotent by (2). This leads to
Q < Ce(0,(@)) < O,(G) by Robinson ([11], Theorem 9.3.1) since O, (G) =1,
a contradiction. Thus, we have proven that G = PQ).

(4) Final contradiction.

If O,(G)N®(G) # 1, then we pick a minimal normal subgroup L of G with
L <0,(G)N®(G). By Lemma 2.1(3), we have L < ®(P) and, furthermore,
G/L satisfies the condition of the theorem by Lemma 2.1(4), the minimal
choice of G implies that G/L is p-nilpotent. Since the class of all p-nilpotent
groups is a saturated formation, we obtain that G is p-nilpotent, a contradic-
tion.

So we may assume O,(G) N ®(G) =1. Let L be any minimal normal
subgroup of G contained in O,(G). Clearly, L £ ®(P). By Lemma 2.1(5),
we have |L| =p. Thus, O,(G) is the direct product of some minimal normal
subgroups of order p of G by Lemma 2.3. If p < ¢, then L@ is p-nilpotent by
Lemma 2.5 and therefore Q < Cg(0,(G)), which contradicts to Ca(O,(G)) =
Op(G). On the other hand, if ¢ < p, since O,(G) is the direct product of some
minimal normal subgroup of order p, we have G/Cq(O,(G)) is supersolvable
by [6, Lemma 6.9.8] and hence G/O,(G) is supersolvable.

Since G/O,(G) is supersolvable and ¢ < p, we know that G/O,(G) is ¢-
nilpotent and then P/O,(G) is normal in G/O,(G). Therefore, P is normal
in G. Hence, Ng(P) =G is p-nilpotent, a contradiction.

The final contradiction completes our proof. O

THEOREM 3.2. Let F be a saturated formation containing U, H a nor-
mal subgroup of G such that G/H € F. Suppose that every noncyclic Sylow
subgroup of H is M-permutable in G, then G € F.

Proof. Assume that the assertion is false and choose G to be a counterex-
ample of minimal order.

By hypotheses and Lemma 2.1, we know that every noncyclic Sylow sub-
group of H is M-permutable in H, and hence H has a supersolvable type
Sylow tower by Lemma 2.6. Let P be a Sylow p-subgroup of H where p is the
largest prime divisor of |H|. Then P char H and hence P < G. Moreover, we
have the following.

CrAamM 1. G/P € F and P £ ®(G), furthermore, P is not cyclic.

First, we check that (G/P,H/P) satisfies the hypotheses for (G,H). We
know that H/P < G/P and (G/P)/(H/P) = G/H € F. We may assume
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that H;/P is the noncyclic Sylow g-subgroup of H/P where p # q, clearly,
Hy, = PQ and @ is a noncyclic Sylow g-subgroup of H. By hypotheses, @ is
M-permutable in G, there exists a subgroup B of G such that G = QB and
Q;B < G for any Q; of M;(Q) where [ is the smallest generator number of Q.
Therefore, G/P = (QP/P)(B/P) and (Q;P/P)(B/P)=Q;B/P < G/P for
any Q;P/P of M;(QP/P). So G/P satisfies the condition of the theorem.
The minimal choice of G implies that G/P € F. Since F is a saturated
formation, we know that P £ ®(G). If P is cyclic, then G € F by Lemma 2.10,
a contradiction.

Cramm 2. PN®(G) =1, in particular, P = Ry X --+ X R; with minimal
normal subgroups Ry,...,R; of G.

If PN®(G) #1, then we may choose a minimal normal subgroup L of G
contained in PN®(G). On the other hand, by hypotheses, P is M-permutable
in G, i.e., there exists a subgroup B of G such that G = PB and P;B < G for
any P; of M4(P). By Lemma 2.1, |G: P;B|=p and PNB=P,NB < ®(P)
for any P; of M4(P). Clearly, P;B is the maximal subgroup of G for any P;
of Mg(P). Since L is a minimal normal subgroup of G, we have G = LP;B
or L< P;B. If G=LP;B for some P; of My(P), we have G = P,B since L
is contained in P N ®(G), a contradiction. Therefore, L < P;B for any P; of
M4(P). Moreover, if L £ P; for some P; of M4(P), then P = LP; and hence
P;B=LP;B=PB=_, acontradiction. Therefore, we have L < P; for any P;
of M4(P). According to the choice of My4(P), we have L < ﬂ?:l P, =®(P).
Hence, G/ L satisfies the condition of the theorem by Lemma 2.1. The minimal
choice of G implies that G/L € F. Since F is a saturated formation, it follows
from G/L € F that we have G € F, a contradiction.

So we may assume that PN ®(G) =1 and then P is the direct product of
minimal normal subgroups of G contained in P by Lemma 2.3. We denote that
P =Ry x---x Ry, where R; is a minimal normal subgroup of G, j =1,2,...,t.
By hypotheses, P is M-permutable in G, i.e., there exists a subgroup B of
G such that G = PB and P;B < G for any P; of M4(P). By Lemma 2.1, we
have |G : P;B|=pand PNB = P,NB < ®(P) for any P; of M4(P). Without
loss of generality, choose any minimal normal subgroup L of G contained in P.
Since P;B is the maximal subgroup of G for any P; of My(P), we know that
there exists some P; of My(P) such that L £ P;B. Otherwise, if L < P, B for
any P; of My(P), then L < P, and hence L <?_, P, = ®(P). If not so, there
exists P; of My(P) such that P = LP;, so we have P,B=LP,B=PB =G,
a contradiction. Therefore, L < ®(P). With the similar discussion as above,
we have that G/L satisfies the condition of the theorem. The minimal choice
of G implies that G/L € F. Since F is a saturated formation and L < ®(G),
we have G € F, a contradiction. Consequently, there exist at least a P; of
My(P) such that L £ P;B. Since |G : P,B|=p, we know that |L|=p. Thus,
P is the direct product of some minimal normal subgroup of order p of G.
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Then for any maximal subgroup M of G, if P < M, then P < ®(G), a con-
tradiction. If P £ M, then there exist at least a minimal normal subgroup
R; of G contained in P such that R; £ M. Since G = R;M and |R;| = p,
we get that M have a prime index in G, and hence G € F by Lemma 2.2,
a contradiction.

The final contradiction completes our proof. O

COROLLARY 3.3. Let G be a finite group. If every noncyclic Sylow subgroup
of G is M-permutable in G, then G is supersolvable.

THEOREM 3.4. Let F be a saturated formation containing U. Suppose that
G is a finite group with a solvable normal subgroup H such that G/H € F. If
every noncyclic Sylow subgroup of F(H) is M-permutable in G, then G € F.

Proof. Suppose that the theorem is false and choose G to be a counter-
example of minimal order. The proof is divided into two cases.

Case 1. Suppose that ®(G) N H # 1.

Since ®(G) N H # 1, there exists a minimal normal subgroup L of G con-
tained in ®(G) N H. Clearly, L < O,(H). Note that F(H/L)= F(H)/L by
Lemma 2.8. If O,(H) is cyclic, then G/L satisfies the hypotheses of the
theorem; therefore G/L € F by the minimal choice of G. Now Lemma 2.10
implies G € F, a contradiction. We have shown that O, (H) is not cyclic. By
hypotheses, O,(H) is M-permutable in G. There exists a subgroup B of G
such that G = O,(H)B and P,B < G for any P; of M4(O,(H)). Firstly, we
have that L < P;B for any P; of M4(O,(H)). Otherwise, there exists some
P; of My4(O,(H)) such that L £ P,B. By Lemma 2.1, |G: P,B| =p and
Op,(H)NB=P,NB<®(0,(H)) for any P; of M4(O,(H)). Obviously, P,B
is the maximal subgroup of G and L < ®(G), so L < P;B, a contradiction.
Moreover, next we will prove L < P, for any P; of M4(O,(H)). If not so, there
exist some P; such that L f P;. Since P; is the maximal subgroup of O, (H),
we have Op(H) = LP;. Furthermore, P,B=LP,B=0O,(H)B =G, a con-
tradiction. Therefore, 1 # L < ﬂle P, = ®(0,(H)). Clearly, G/®(0,(H))
satisfies the hypotheses of the theorem by Lemma 2.8. The minimal choice
of G implies that G/®(O,(H)) € F and hence G € F since F is a saturated
formation, a contradiction.

Case 2. Suppose that ®(G)NH =1.

If H =1, nothing need to prove, so we may assume that H # 1. The
solvability of H implies that F(H) # 1. By Lemma 2.3, F(H) is the direct
product of minimal normal subgroups of G contained in H. There exists a
noncyclic Sylow p-subgroup of F(H) by Lemma 2.12 for some prime p € 7(G).
Denote P = O,(H). Then P is the direct product of some minimal normal
subgroup of G. Denote P = Ry X --- X Ry, where Ry,..., R; is minimal normal
subgroup of G contained in P. By hypotheses, P is M-permutable in G.
There exists a subgroup B of G such that G = PB and P;B < G for any P; of
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M4(P). By Lemma 2.1, we have |G : P;B|=p and PN B=PFP,NB<®(P).
Let L be any minimal normal subgroup of G contained in P. Next, we will
prove that there exist at least some P; such that L f P,B. Otherwise, if
L < P;B for any P; of My(P), then we claim that L < P, and hence L <
ﬂ?zl P; = ®(P). If not so, there exists P; of My(P) such that L # P;, so we
have P,B = LP,B = PB = G, a contradiction. Therefore, L < ®(P). With the
similar discussion, we have that G/L satisfies the condition of the theorem.
The minimal choice of G implies that G/L € F. Since F is a saturated
formation and L < ®(G), we have G € F, a contradiction. Consequently,
there exist at least a P; of Mgy(P) such that L £ P;B. Since |G : P;B| =p,
we know that |L| =p. Thus, P is the direct product of some minimal normal
subgroup of order p of G, so is F'(H).

Denote F(H)= Hy x Hy X -+- X H,, where H; is a minimal normal sub-
group of prime order of G, then G/Cg(H;) is Abelian, i =1,2,...,r. Since
Co(F(H))=i—; Ca(H;), F is a saturated formation, G/Cq(F(H)) € F.
By assumption, G/H € F and hence G/(HNCq(F(H))=G/Cy(F(H)) € F.
Since H is solvable, we have Cy (F(H)) < F(H). Then G/F(H) is an epimor-
phic image of G/Cy(F(H)), thus G/F(H) € F. Now applying Theorem 3.2
for (G,F(H)), we get G € F, a contradiction.

The final contradiction completes our proof. O

COROLLARY 3.5. Let H be a solvable mormal subgroup of G such that
G/H e U. If every noncyclic Sylow subgroup of F(H) is M-permutable in G,
then G €U.

THEOREM 3.6. Let F be a saturated formation containing all supersolvable
groups. Suppose that G is a finite group with a normal subgroup H such that
G/H € F. If every noncyclic Sylow subgroup of F*(H) is M-permutable in G,
then G € F.

Proof. Suppose that the theorem is false and choose G to be a counter-
example of minimal order. We consider the following two cases.

Case 1. F=U.

(1) F*(H)=F(H) #1.

By hypotheses and Lemma 2.1, every noncyclic Sylow subgroup of F*(H) is
M-permutable in G and hence is M-permutable in F*(H). By Corollary 3.3,
F*(H) is supersolvable. In particular, F*(H) is solvable and hence F*(H) =
F(H)# 1 by Lemma 2.8.

(2) H=G, F*(G)=F(GQ) #1.

Since H satisfies the hypotheses of the theorem, the minimal choice of G
implies that H is supersolvable if H < G. It follows that G € F by Corol-
lary 3.5.
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(3) Every proper normal subgroup N of G containing F*(G) is supersolv-
able.

By Lemma 2.8, F*(G)= F*(F*(G)) < F*(N) < F*(G), so F*(N) =
F*(G). And every noncyclic Sylow subgroup of F*(N) is M-permutable
in N by Lemma 2.1. Hence, N is supersolvable by the minimal choice of G.

(4) ®(G) < F(G).

If every Sylow subgroup of F(G) is cyclic, then we denote that F(G) =
Hy x ---x H, and hence G/Cg(H;) is Abelian for any i € {1---7}. Moreover,
we have G/(,_, Ca(H;) = G/F(G) is Abelian. Therefore, G is supersolvable
by Lemma 2.12, a contradiction. Let Op,(G) be a noncyclic Sylow subgroup of
F(G). By hypotheses, O,(G) is M-permutable in G, and there exists a sub-
group B of G such that G = 0,(G)B and P,B < G for any P; of My4(O,(QG)).
If ®(G)=F(G), then O,(G) < ®(G) and hence G = O,(G)B = B, a contra-
diction.

(5) Final contradiction.

By (4), there exists some Sylow p-subgroup O,(G) of F(G) and the maxi-
mal subgroup M of G with O,(G) £ M and G = 0,(G)M.

If |0, (G)| = p, then set C = Cq(0,(G)). Clearly, F(G) <C<G. If C <G,
then C' is solvable by (3). On the other hand, since G/C is cyclic, we have
G is solvable and hence G is supersolvable by Corollary 3.5, a contradic-
tion. So we may assume C' =G. Now we have O,(G) < Z(G). Then we
consider factor group G/O,(G). By Lemma 2.8, we have F*(G/O,(G)) =
F*(G)/0,(G) = F(G)/Op(G). In fact, every noncyclic Sylow subgroup of
F*(G/O,(G)) are M-permutable in G/O,(G). Therefore, the minimal choice
of G implies that G/O,(G) € U and hence G is supersolvable by Lemma 2.10,
a contradiction.

So we may assume that |O,(G)| >p. If ®(0,(G)) # 1, then it is easy to
obtain that factor group G/®(0,(G)) satisfies the condition of the theorem
by Lemma 2.8. The minimal choice of G implies that G/®(0,(G)) is su-
persolvable and hence GG is supersolvable since the class of all supersolvable
groups is a saturated formation, a contradiction. Therefore, ®(0,(G)) =1
and O,(G) is an elementary Abelian p-group. By hypotheses, O,(G) is M-
permutable in G, there exists a subgroup B of G such that G = O,(G)B
and P,B < G for any P; of M4(Op(G)). By Lemma 2.1, |G: P,B|=p
and O,(G) N B =P, N B < ®(0,(@)) =1 for any P; of My(O,(G)). In
this case, O,(G) N P,B = P;(0,(G) N B) = P; is normal in G since G =
Op(G)B and Op(G) is an elementary Abelian p-group. Therefore, we have
that any P; of Mg(Op(G)) is normal in G. By Lemma 2.7, there exist
minimal normal subgroup X; of G of order p where X; = ﬂ#jPZ- and i =
1,...,d, such that O,(G) = (X1,...,Xy). For any X, of O,(G), with the
similar discussion, we may consider Cg(X;). Clearly, F(G) < Cg(X;) <
G. If Ce(X;) < G, then Cg(X;) is solvable by (3). On the other hand,
since G/Cqg(X;) is cyclic, then we have G is solvable, a contradiction. So
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we may assume Cg(X;) = G. Since X; < Z(G) for any minimal normal
subgroup X; in O,(G), we have O,(G) < Z(G). Then we consider factor
group G/O,(G). By Lemma 2.8, we have F*(G/O,(G)) = F*(G)/0,(G) =
F(GQ)/0,(G). In fact, every noncyclic Sylow subgroup of F*(G/O,(G)) are
M-permutable in G/O,(G) by Lemma 2.1. Therefore, the minimal choice
of G implies that G/O,(G) € U and hence G is supersolvable, a contradic-
tion.

Case 2. F#U.

By case 1, H is supersolvable. Particularly, H is solvable and F(H) =
F*(H). By Lemma 2.2 and Theorem 3.4, we may get G € F, a contradiction.
The final contradiction completes our proof. O

COROLLARY 3.7. Let H be a normal subgroup of G such that G/H e U. If
every noncyclic Sylow subgroup of F*(H) is M-permutable in G, then G € U.
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