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A DEFECT RELATION FOR MEROMORPHIC MAPS ON
PARABOLIC MANIFOLDS INTERSECTING

HYPERSURFACES

YUANCHENG LIU AND MIN RU

Abstract. This paper establishes a defect relation for linearly nonde-
generate meromorphic mappings from parabolic manifolds into the pro-

jective space intersecting hypersurfaces, extending a result of H. Cartan
result and an earlier result of Min Ru.

0. Introduction

The purpose of this paper is to study the value distribution theory of
meromorphic maps f : M → P

n(C) intersecting hypersurfaces, where M is
an m-dimensional parabolic manifold and Pn(C) is the n-dimensional com-
plex projective space. In 1933, H. Cartan [Ca] established the Second Main
Theorem for linearly non-degenerate holomorphic curves f : C → P

n(C) in-
tersecting hyperplanes. Later L. Ahlfors [A] gave another ingenious geometric
proof. W. Stoll [S] generalized Ahlfors’ method and extended Cartan’s Second
Main Theorem to linearly non-degenerate meromorphic maps f : M → P

n(C),
where M is an m-dimensional parabolic manifold. In [WS], Wong and Stoll
carefully examined the error term appearing in Stoll’s inequality.

Recently, the second author [Ru] extended H. Cartan’s result to alge-
braically non-degenerate holomorphic curves f : C → P

n(C) intersecting
hypersurfaces and solved the following conjecture.

Conjecture (Shiffman). Let f : C → P
n(C) be an algebraically non-

degenerate holomorphic curve (here we say that f is algebraically non-dege-
nerate if the image of f is not contained in any proper algebraic subvarieties
of Pn(C)), and let D1, . . . , Dq be hypersurfaces in Pn(C) in general position.
Then

∑q
j=1 δf (Dj) ≤ n+ 1.
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The purpose of this paper is to extend this result to meromorphic maps on
parabolic manifolds.

Throughout this paper, we shall use the standard notations in the value
distribution theory of meromorphic maps on parabolic manifolds (see [WS] or
[S]). Some notations and definitions will be recalled in Section 1. To establish
the value distribution theory on parabolic manifolds M , similar to [S], we
make the following assumptions on M (cf. Section 1):

(i) M is a connected complex manifold of dimension m.
(ii) There exists a parabolic exhaustion function τ on M .
(iii) For every integer n and every linearly non-degenerate map f : M →

P
n(C), there is a holomorphic differential form B of degree (m− 1, 0)

on M such that f is general for B (cf. §1.3) and

mim−1B ∧ B̄ ≤ Y (r)υm−1

on M [r] for some real positive valued function Y (r) on M , which is
independent of f (Y is called a majorant for B, see §1.4), where, for
any positive integer m,

im =
(√
−1

2π

)m
(−1)

m(m−1)
2 m!.

A complex manifold M satisfying the assumptions (i)–(iii) is called an admis-
sible parabolic manifold. Throughout this paper, we shall work on admissible
parabolic manifolds. Hypersurfaces D1, . . . , Dq, q > n, in Pn(C) are said to
be in general position if

⋂n+1
k=1 supp(Djk) = ∅ for any distinct j1, . . . , jn+1. In

this paper, the following theorem is proved.

Main Theorem. Let M be an admissible parabolic manifold of dimension
m. Let f : M → P

n(C) be an algebraically non-degenerate meromorphic map
(i.e., the image of f is not contained in any proper algebraic subvarieties of
P
n(C)), and let D1, . . . , Dq be hypersurfaces in Pn(C) of degree dj in general

position. Fix s0 > 0. Then for every ε > 0, we have
q∑
j=1

d−1
j mf (r,Dj) � ≤ � (n+ 1 + ε)Tf (r, s0)

+ cε
(
Ricτ (r, s0) + log+ Tf (r, s0) + log+ Y (r) + log+ r

)
,

where cε > 0 is a constant depends on ε, Ricτ (r, s0) is the Ricci function of
M (cf. [S], or [WS]), and “ � ≤ � ” means that the inequality holds for all
r ∈ [s0,+∞) outside a union of intervals of finite total length.

We note that Ricτ (r, s0) is called the Ricci function, which depends only on
the geometry (topology) of the manifold M . An important class of admissible
parabolic manifolds are affine algebraic manifolds. In this case, there exists a
finite branched covering π : M → C

m. If we take τ = ‖π‖2, Stoll [S] showed
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that there exists a holomorphic differential form B of degree (m− 1, 0) on M
(cf. [S] or [WS]) such that

mim−1B ∧ B̄ ≤ (1 + |τ |)m−1(ddcτ)m−1.

Hence, we can take Y (r) = (1 + r2)m−1. Further, we can show (cf. [S] or
[WS]) that

dπ = lim
r→+∞

Ricτ (r, s0)
log r

exists and equals the degree of the branching divisor of π. The Main Theorem
thus implies the following corollary in the case that M is an affine algebraic
manifold.

Corollary. Let M be an affine algebraic manifold of complex dimension
m. Let π : M → C

m be a finite branched covering. Let D1, . . . , Dq be a finite
collection of hypersurfaces in Pn(C) in general position. Let f : M → P

n(C)
be an algebraically non-degenerate meromorphic map. Then, for every ε > 0,
we have

q∑
j=1

d−1
j mf (r,Dj) � ≤ � (n+ 1 + ε)Tf (r, s0) + cε

(
log+ Tf (r, s0) + log+ r

)
,

where cε > 0 is a constant depends on ε, and where “ � ≤ � ” means that the
inequality holds for all r ∈ [s0,+∞) outside a union of intervals of finite total
length.

1. The theory of meromorphic maps on parabolic manifolds

In this section, we recall some basic results in the theory of meromorphic
maps on parabolic manifolds. For references, see [S] or [WS].

1.1 Parabolic manifolds. Let M be a connected complex manifold of
dimension m. Let τ ≥ 0 be a non-negative, unbounded function of class C∞

on M . For 0 ≤ r ∈ R and A ⊆M define

A[r] = {x ∈ A | τ(x) ≤ r2},
A(r) = {x ∈ A | τ(x) < r2},
A〈r〉 = {x ∈ A | τ(x) = r2},
A∗ = {x ∈ A | τ(x) > 0},
υ = ddcτ, ω = ddc log τ, σ = dc log τ ∧ ωm−1.

If M [r] is compact for each r > 0, the function τ is then said to be an
exhaustion of M . The function τ is said to be parabolic if

ω ≥ 0, ωm ≡ 0, υm 6≡ 0
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on M∗. Note that this also implies that υ ≥ 0 on M . If τ is a parabolic
exhaustion, (M, τ) is said to be a parabolic manifold. Define

R̂τ = {r ∈ R+ | dτ(x) 6= 0 for all x ∈M〈r〉}.

Then R+\R̂τ has measure zero. If r ∈ R̂τ , then M〈r〉 is a compact, real,
(2m− 1)-dimensional submanifold of class C∞ of M , oriented to the exterior
of M〈r〉. By Stoll (cf. [S, p. 133]), for all r ∈ R̂τ ,

∫
M〈r〉 σ is a positive

constant, independent of r. Let

κ =
∫
M〈r〉

σ.(1.1.1)

For an affine algebraic manifold M , this number represents the sheet number
of the projection π : M → C

m if τ = ‖π‖2 (cf. [WS]).

1.2 Meromorphic maps, reduced representation. Let M be a com-
plex manifold with dimM = m. Let A 6= ∅ be an open subset of M such
that S = M − A is analytic. Then A is dense in M . Let f : A → P

n(C) be
a holomorphic map on A. The closure Γ of the graph {(x, f(x)) | x ∈ A} in
M×Pn(C) is called the closed graph of f . The map f is said to be meromorphic
on M if (i) Γ(f) is analytic in M×Pn(C) and (ii) Γ∩(K×Pn(C)) is compact for
each compact subset K ⊆M , i.e., the projection ρ : Γ(f)→M is proper. If f
is meromorphic, then the set of indeterminacy If = {x ∈ M | #ρ−1(x) > 1}
is analytic with dim If ≤ m− 2 and is contained in S. The holomorphic map
f : A → P

n(C) continues to a holomorphic map f : M − If → P
n(C) such

that we can assume, a posteriori, that S = If . If m = 1, If is necessarily
empty and f : M → P

n(C) is holomorphic.
Given M,A, S and a holomorphic map f : A→ P

n(C) as above, a holomor-
phic map f(6≡ 0) : U → C

n+1 on an open and connected subset U of M is said
to be a representation of f if f(x) = P(f(x)) for all x ∈ A ∩ U with f(x) 6= 0.
A representation f is said to be reduced if dim f−1(0) ≤ m − 2. The map f
is meromorphic if and only if for every point p ∈M , there is a representation
f : U → C

n+1 of f with p ∈ U . If so, a representation f is reduced if and only
if U ∩ If = f−1(0). For every meromorphic map f : M → P

n(C), there is a
reduced representation of f at every point of M .

1.3 The associated map. A distinguished differential operator, in gen-
eral, might be missing on a connected, complex manifold M of dimension
m > 1. Therefore, Stoll [S] assumed that a holomorphic form B of bidegree
(m−1, 0) is given on M . Let f be a holomorphic vector valued function on an
open subset U of M . If z = (z1, . . . , zm) is a chart with Uz ∩ U 6= ∅, then the
B-derivative f ′B,z = f ′ on U ∩Uz for z is defined by df ∧B = f ′dz1∧· · ·∧dzm.
The operation can be iterated so that the kth B−derivative f (k) is defined:
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f (k) = (f (k−1))′. Put f (0) = f . Abbreviate

fk = f ∧ f ′ ∧ · · · ∧ f (k) : U → ∧k+1
C
n+1.

Let f : M → P
n(C) be a meromorphic map. If fk 6≡ 0 for one choice of

a reduced representation f : U → C
n+1 on a chart Uz, then fk 6≡ 0 for all

possible choices and f is said to be general of order k for B. In this case, the
kth associated map fk : M → P(

∧k+1
C
n+1) is well-defined as a meromorphic

map by fk|U = P(fk) for all possible choices of f and charts z. We say that f
is general for B if f is general of order k for B for all k, 1 ≤ k ≤ n.

1.4 The majorant function. A positive real valued function Y (r) is said
to be a majorant for B if

mim−1B ∧ B̄ ≤ Y (r)υm−1

on M [r]. In the assumption (iii) for M , we assumed that such a function
exists. The majorant function Y (r) introduces an extra term in the Second
Main Theorem.

1.5 Projective distance. Denote by C∗n+1 the dual space of Cn+1. For
0 ≤ k ≤ n, let b:

(∧k+1
C
n+1
)
× C∗n+1 →

∧k
C
n+1 be the interior product

defined in the usual way. Let x ∈ P(
∧k+1

C
n+1) with representative ξ ∈

C
n+1 − {0} and let a ∈ P(C∗n+1) with representative α ∈ C∗n+1 − {0}, the

projective distance between x and a is defined by

0 ≤ ‖x; a‖ =
‖ξbα‖
‖ξ‖‖α‖

≤ 1,(1.5.1)

where the norm on
∧k
C
n+1 is induced by the standard norm on Cn+1. Note

that the above definition is independent of the choice of the representatives
α and ξ. Note that a hyperplane H in Pn(C) can also be regarded as a point
in Pn(C∗). Hence, for every meromorphic map f : M → P

n(C), ‖fk(z);H‖ is
defined for z ∈M . This defines a distance function (from fk(z) to H) on M .

1.6 The First Main Theorem. Let M be an admissible parabolic man-
ifold. Let f : M → P

n(C) be a meromorphic map which is linearly non-
degenerate; hence f is general for B. Let fk be the kth associated map of f .
Let Ωk be the Fubini-Study form on Pn(

∧k+1
C
n+1). Define the kth charac-

teristic function for 0 < s0 < r by

Tfk(r, s0) =
∫ r

s0

dt

t2m−1

∫
M [t]

f∗k (Ωk)υm−1.

It is known that Tfn(r, s0) ≡ 0. Set Tf−1(r, s0) ≡ 0.
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Let ν be a divisor on M with S = supp ν. The counting function of ν is
defined to be

Nν(r, s0) =
∫ r

s0

nν(t)
dt

t
,

where

nν(t) = t2−2m

∫
S[t]

νυm−1 =
∫
S∗[t]

νωm−1 + nν(0), if m > 1,

nν(t) =
∑
z∈S[t]

ν(z), if m = 1.

For a hyperplane H in Pn(C), define an H−divisor ν = µHfk as in Stoll [S].
Fix s0 > 0, let Nfk(r,H) = Nν(r, s0) and let

mfk(r,H) =
∫
M〈r〉

log
1

‖fk;H‖
σ,

where ‖fk;H‖ is defined as in (1.5.1) (here we regard H as a point in Pn(C∗),
the dual space of Pn(C)).

Theorem 1.6 (First Main Theorem) ([S, (8.21), p. 153]). Let f :
M → P

n(C) be a meromorphic map which is general for B. Then, for every
hyperplane H ∈ Pn(C) and for every 0 ≤ k ≤ n, s0, r ∈ R̂τ , 0 < s0 < r, we
have

Tfk(r, s0) ≥ Nfk(r,H) +mfk(r,H)−mfk(s0,H).

1.7 The Calculus Lemma. Let T be a nonnegative function defined on
an interval [s0,+∞) with s0 ≥ 0. Define the error functions E(T, r) and
Ẽ(T, r) by

Ẽ(T, r) = T (r) log1+ε(1 + T (r)) log1+ε[1 + r2m−1T (r) log1+t(1 + T (r))]
(1.7.1)

and

E(T, r) = log+ Ẽ(T, r).(1.7.2)

Theorem 1.7 (Calculus Lemma). Let h be a nonnegative measurable
function on M such that hυm is locally integrable. Let s0 be a positive real
number and let T be the function defined by

T (r) =
∫ r

s0

dt

t2m−1

∫
M [t]

hυm.

Then hσ is integrable over M〈r〉 for almost all r > 0 and

2m
∫
M〈r〉

hσ = r−(2m−1) d

dr

(
r2m−1 dT

dr

)
� ≤ � Ẽ(T, r),
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where � ≤ � means that the inequality holds for all r ∈ [s0,+∞) outside a
union of intervals of finite total length.

Proof. By Corollary 2.4 in [WS] with g(t) = log1+ε(1 + t). �

1.8 The Plücker formula. Let dk be the zero divisor of fk. When k = n,
we obtain the Wronskian divisor dn. The divisor lk = dk−1 − 2dk + dk+1 ≥ 0
is called the kth stationary index ; here we assume that d−1 = 0. Let Ik be
the indeterminacy of fk. On M − Ik define

ĥk = mim−1f
∗
k (Ωk) ∧B ∧ B̄,(1.8.1)

where Ωk is the Fubini-Study form on Pn(
∧k+1

C
n+1). Since im−1B ∧ B̄ ≥ 0,

we have ĥk ≥ 0 on M − Ik. Define

hk = ĥk/υ
m.(1.8.2)

For all r ∈ R̂τ , define

Sk(r) =
1
2

∫
M〈r〉

log hk σ.(1.8.3)

Theorem 1.8.1 (Plücker Formula) ([S, Theorem 7.6]). For almost
all s0, r ∈ R̂τ , 0 < s0 < r,

Nlk(r, s0) + Tfk−1(r, s0)− 2Tfk(r, s0) + Tfk+1(r, s0)

= Sk(r)− Sk(s0) + Ricτ (r, s0).

The Plücker formula implies the following result (see [S, (10.24), p. 164]).

Theorem 1.8.2. For 0 ≤ k ≤ n− 1,

Tfk(r, s0) ≤ 3kTf (r, s0) +
1
2

(3k − 1)(κ log Y (r) + Ricτ (r, s0) + εκ log r)

holds for r ∈ [s0,∞) outside a union of intervals of finite total length.

1.9 The Ahlfors Estimate.

Theorem 1.9.1 (Ahlfors Estimate) ([S, Theorem 10.3]). Let H be a
hyperplane in Pn(C). Then for any 0 < λ < 1, 0 < s0 < r, and any integer
0 ≤ k ≤ n− 1, we have∫ r

s0

dt

t2m−1

∫
M [t]

‖fk+1;H‖2

‖fk;H‖2−2λ
hkυ

m ≤ Y (r)
(

4 + 4λ
λ

Tfk(r, s0) +
2κ
λ2

log 2
)
,

where hk is defined in (1.8.2), and κ is the constant defined in (1.1.1).



244 YUANCHENG LIU AND MIN RU

Theorem 1.9.2. Let H be a hyperplane in Pn(C). Let Λ(r) = mink{1/(1+
Tk(r, s0))}. Then, for every 0 ≤ k ≤ n− 1,

log+

∫
M〈r〉

‖fk+1;H‖2

‖fk;H‖2−2Λ(r)
hkσ

� ≤ � 2 log+ Tf (r, s0) + 2(2 + ε) log+ log+ Tf (r, s0)

+ 2 log+ Y (r) + 3 log+ Ricτ (r, s0) + 5 log+ log+ r +O(1),

where “ � ≤ � ” means that the inequality holds for all r ∈ [s0,+∞) outside
a union of intervals of finite total length, and where the constant O(1) is
independent of r.

Proof. Let 0 < Λ(r) < 1 be a decreasing function of r ≥ 0. Define

Kk(r, s0) =
∫ r

s0

dt

t2m−1

∫
M [t]

‖fk+1;H‖2

‖fk;H‖2−2Λ∗
hkυ

m,

where Λ∗ = Λ ◦ τ1/2. By Theorem 1.7 (Calculus Lemma), we have∫
M〈r〉

‖fk+1;H‖2

‖fk;H‖2−2Λ(r)
hkσ � ≤ � Ẽ(Kk, r).(1.9.1)

On the other hand, noticing that Λ is a decreasing function, we have ‖fk;H‖Λ∗

≤ ‖fk;H‖Λ(r). Hence, by Theorem 1.9.1 (Ahlfors Estimate) with λ = Λ(r),
we have

Kk(r, s0) =
∫ r

s0

dt

t2m−1

∫
M [t]

‖fk+1;H‖2

‖fk;H‖2−2Λ∗
hkυ

m

≤ Y (r)
(

8
Λ(r)

Tfk(r, s0) +
2κ log 2
Λ(r)2

)
.

Since Λ(r) = mink{1/(1 + Tfk(r, s0))},

Kk(r, s0) ≤ Y (r)(b1T 2
fk

(r, s0) + b2),

where b1 and b2 are constants depending only on κ. By choosing a larger
constant b3, we have

Ẽ(Kk, r) ≤ Ẽ(b3Y (r)T 2
fk

(r, s0), r).(1.9.2)

Combining (1.9.1) and (1.9.2) yields∫
M〈r〉

‖fk+1;H‖2

‖fk;H‖2−2Λ(r)
hkσ � ≤ � Ẽ(b3Y (r)T 2

fk
(r, s0), r).

Hence

log+

∫
M〈r〉

‖fk+1;H‖2

‖fk;H‖2−2Λ(r)
hkσ � ≤ �E(b3Y (r)T 2

fk
(r, s0), r).(1.9.3)
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By the definition, we have (see [WS, (2.8), p. 1046])

E(b3Y (r)T 2
fk

(r, s0), r)

≤ log+[b3Y (r)T 2
fk

(r, s0)] + 2(1 + ε) log+ log+[b3Y (r)T 2
k (r, s0)]

+ (1 + ε) log+ log+ log+(b3Y (r)T 2
fk

(r, s0)) + (1 + ε) log+ log+ r +O(1)

≤ 2 log+ Tfk(r, s0) + 2(1 + ε) log+ log+ Tfk(r, s0)

+ (1 + ε) log+ log+ log+ Tfk(r, s0) + 2 log+ Y (r) + 2 log+ log+ r +O(1).

By Theorem 1.8.2,

Tfk(r, s0) � ≤ � 3kTf (r, s0) +
1
2

(3k − 1)(κ log Y (r) + Ricτ (r, s0) + εκ log r).

Hence

E(b3Y (r)T 2
fk

(r, s0), r)

� ≤ � 2 log+ Tf (r, s0) + 2(2 + ε) log+ log+ Tf (r, s0)

+ 2 log+ Y (r) + 3 log+ Ricτ (r, s0) + 5 log+ log+ r +O(1).

This, together with (1.9.3), concludes the proof. �

2 A slight generalization of Wong-Stoll’s theorem

In this section, we extend the Second Main Theorem of Wong-Stoll (cf.
[WS]) with good error term to the case when the given hyperplanes H1, . . . ,Hq

in Pn(C) are not necessarily in general position. This formulation is crucial
in the proof of our Main Theorem.

Theorem 2.1. Let M be an admissible parabolic manifold. Let H1, . . . ,Hq

be arbitrary hyperplanes in Pn(C) (also regarded as linear forms). Let f :
M → P

n(C) be a meromorphic map which is linearly non-degenerate. Fix
s0 > 0. Then, for ε > 0,∫

M〈r〉max
K

∑
j∈K

log
1

‖f(z);Hj‖
σ

� ≤ � (n+ 1)Tf (r, s0) +
n(n+ 1)

2
Ricτ (r, s0)

+ κ
n(n+ 1)

2

[
log+ Tf (r, s0) + (2 + ε) log+ log+ Tf (r, s0) + log+ Y (r)

+ 2 log+ Ricτ (r, s0) + 3 log+ log+ r +O(1)
]
,

where “ � ≤ � ” means that the inequality holds for all r ∈ [s0,+∞) outside a
union of intervals of finite total length, and the max is taken over all subsets
K of {1, . . . , q} such that the linear forms Hi, i ∈ K, are linearly independent.
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Proof. Let K ⊂ {1, . . . , q} be such that the linear forms {Hk, k ∈ K},
are linearly independent. Without loss of generality, we may assume q ≥
n + 1 and that #K = n + 1. Let T be the set of all the injective maps µ :
{0, 1, . . . , n} → {1, . . . , q} such that Hµ(0), . . . ,Hµ(n) are linearly independent.
Set Γ = max1≤j≤q{

∑n−1
k=0 mfk(s0,Hj)} and Λ(r) = mink{1/(1 + Tfk(r, s0))}.

For any µ ∈ T, z 6∈ If , the Product to Sum Estimate (cf. [WS, Lemma 1.12]),
with λ = Λ(r), reads

n∏
j=0

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)
≤ ck

 n∑
j=0

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)

n−k

,

where ck > 1 is a constant. Since ‖fn;Hµ(j)‖ is a constant for any 0 ≤ j ≤ n,
we have

n∏
j=0

1
‖f(z);Hµ(j)‖2

=
n−1∏
k=0

n∏
j=0

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)
·
n−1∏
k=0

n∏
j=0

1
‖fk(z);Hµ(j)‖2Λ(r)

≤ c
n−1∏
k=0

 n∑
j=0

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)

n−k

·
n−1∏
k=0

n∏
j=0

1
‖fk(z);Hµ(j)‖2Λ(r)

,

where c > 1 is a constant. Therefore, for r > s0, we have∫
M〈r〉

max
K

∑
j∈K

log
1

‖f(z);Hj‖2
σ(2.1)

=
∫
M〈r〉

max
µ∈T

log

 n∏
j=0

1
‖f(z);Hµ(j)‖2

 σ

≤
n−1∑
k=0

∫
M〈r〉

max
µ∈T

log

 n∑
j=0

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)

n−k

σ

+
n−1∑
k=0

n∑
j=0

∫
M〈r〉

max
µ∈T

log
1

‖fk(z);Hµ(j)‖2Λ(r)
σ +O(1).

We now estimate each term appearing in the above inequality. First,
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n−1∑
k=0

∫
M〈r〉

max
µ∈T

log

 n∑
j=0

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)

n−k

σ(2.2)

=
n−1∑
k=0

∫
M〈r〉

log max
µ∈T

 n∑
j=0

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)
hk

n−k

σ

− 2
n−1∑
k=0

(n− k)Sk(r),

where hk is defined by (1.8.2), and Sk(r) is defined by (1.8.3). However, we
have

∫
M〈r〉

log max
µ∈T

 n∑
j=0

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)
hk

n−k

σ(2.3)

= κ(n− k)
∫
M〈r〉

log max
µ∈T

 n∑
j=0

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)
hk

 σ

κ

≤ κ(n− k) log
∫
M〈r〉

max
µ∈T

 n∑
j=0

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)
hk

 σ

κ

≤ (n− k)κ max
0≤j≤n

log+

∫
M〈r〉

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)
hkσ

+ (n− k)κ log q + C ′,

where C ′ is a constant. By Theorem 1.9.2,

max
0≤j≤n

log+

∫
M〈r〉

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)
hkσ

� ≤ � 2
[
log+ Tf (r, s0) + (2 + ε) log+ log+ Tf (r, s0)

+ log+ Y (r) + 2 log+ Ricτ (r, s0) + 3 log+ log+ r +O(1)
]
.

Hence,
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∫
M〈r〉

log max
µ∈T

 n∑
j=0

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)
hk

n−k

σ(2.4)

� ≤ �n(n+ 1)κ
[
log+ Tf (r)

+ (2 + ε) log+ log+ Tf (r) + log+ Y (r)

+ 2 log+ Ricτ (r, s0) + 3 log+ log+ r +O(1)
]
.

Next, using Theorem 1.8.1 (the Plücker formula), we have

Nlk(r, s0) + Tfk−1(r, s0)− 2Tfk(r, s0) + Tfk+1(r, s0)

= Sk(r)− Sk(s0) + Ricτ (r, s0).

Noticing that Tfn(r, s0) = 0, we get

n−1∑
k=0

(n− k)Sk(r) = Ndn(r, s0)− (n+ 1)Tf (r, s0)(2.5)

− n(n+ 1)
2

Ricτ (r, s0) +O(1).

Combining (2.2), (2.3), (2.4) and (2.5), we obtain

n−1∑
k=0

∫
M〈r〉

max
µ∈T

log

 n∑
j=0

‖fk+1(z);Hµ(j)‖2

‖fk(z);Hµ(j)‖2−2Λ(r)

n−k

σ(2.6)

� ≤ � (n+ 1)Tf (r) +
n(n+ 1)

2
Ricτ (r, s0)−Ndn(r, s0)

+ κ
n(n+ 1)

2
[log+ Tf (r) + (2 + ε) log+ log+ Tf (r)

+ log+ Y (r) + 2 log+ Ricτ (r, s0) + 3 log+ log+ r +O(1)].

Finally, by the First Main Theorem,
n−1∑
k=0

n∑
j=0

∫
M〈r〉

max
µ∈T

log
1

‖fk(z);Hµ(j)‖2Λ(r)
σ(2.7)

≤
∑
µ∈T

n−1∑
k=0

n∑
j=0

∫
M〈r〉

2Λ(r) log
1

‖fk(z);Hµ(j)‖
σ +O(1)

=
∑
µ∈T

n−1∑
k=0

n∑
j=0

2Λ(r)mfk(r,Hµ(j)) +O(1)

≤
n−1∑
k=0

n∑
j=0

2q!Λ(r)(Tfk(r, s0) +mfk(s0,Hµ(j))) +O(1)

≤ O(1).
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Combining (2.1), (2.6), and (2.7) yields∫
M〈r〉

max
K

∑
j∈K

log
1

‖f(z);Hj‖
σ

� ≤ � (n+ 1)Tf (r) +
n(n+ 1)

2
Ricτ (r, s0)−Ndn(r, s0)

+ κ
n(n+ 1)

2
[log+ Tf (r) + (2 + ε) log+ log+ Tf (r)

+ log+ Y (r) + 2 log+ Ricτ (r, s0) + 3 log+ log+ r +O(1)]. �

3. Proof of the Main Theorem

Let M be an admissible parabolic manifold of dimension m. Let f : M →
P
n(C) be a meromorphic map. Choose a reduced representation f : U → C

n+1

on a chart Uz. Let D be a hypersurface in Pn(C) of degree d. Assume that
f(M) 6⊂ D. Let Q be the homogeneous polynomial (form) of degree d defining
D. The proximity function mf (r,D) is defined as

mf (r,D) =
∫
M〈r〉

log
‖f(z)‖d‖Q‖
|Q(f)(z)|

σ,

where ‖Q‖ is the maximum norm of the coefficients appearing in Q. We
note that, although f depends on the choice of representations, the function
‖f(z)‖d‖Q‖/|Q(f)(z)| in fact is a (globally defined) function on M . Also, the
zeros of Q(f) are independent of the choice of representations. We define the
divisor µDf on M by µDf |U = µ0

Q(f), where µ0
Q(f) is the zero divisor of Q(f).

Let S = suppµDf , and define

nf (r,D) =
1

r2m−2

∫
S[r]

µDf υ
m−1, if m > 1,

nf (r,D) =
∑
z∈S[r]

µDf (z), if m = 1.

Fix s0 > 0. The counting function is defined by

Nf (r,D) =
∫ r

s0

nf (t,D)
t

dt.

Green’s formula (see [S]) implies the following First Main Theorem:

Theorem 3.1 (First Main Theorem). Let f : M → P
n(C) be a holo-

morphic map, and let D be a hypersurface in Pn(C) of degree d. Fix s0 > 0.
If f(M) 6⊂ D, then for every real number r with s0 < r <∞

mf (r,D) +Nf (r,D) = dTf (r, s0) +O(1),

where O(1) is a constant independent of r.
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We now prove the Main Theorem:

Proof of the Main Theorem. Let D1, . . . , Dq be hypersurfaces in Pn(C), lo-
cated in general position. Let Qj , 1 ≤ j ≤ q, be the homogeneous polynomials
in C[X0, . . . , Xn] of degree dj defining Dj . Replacing Qj by Qd/djj if necessary,
where d is the l.c.m of the d′js, we can assume that Q1, . . . , Qq have the same
degree of d. Choose a reduced representation f = (f0, . . . , fn) : U → C

n+1

on a chart Uz. Given z ∈ U , there exists a renumbering {i1, . . . , iq} of the
indices {1, . . . , q} such that

|Qi1 ◦ f(z)| ≤ |Qi2 ◦ f(z)| ≤ · · · ≤ |Qiq ◦ f(z)|.(3.1)

Since Q1, . . . , Qq are in general position, by Hilbert’s Nullstellensatz (cf. [W]),
for any integer k, 0 ≤ k ≤ n, there is an integer mk ≥ d such that

xmkk =
n+1∑
j=1

bjk(x0, . . . , xn)Qij (x0, . . . , xn),

where bjk, 1 ≤ j ≤ n+ 1, 0 ≤ k ≤ n, are homogeneous forms with coefficients
in C of degree mk − d. So

|fk(z)|mk ≤ c1‖f(z)‖mk−d max{|Qi1(f)(z)|, . . . , |Qin+1(f)(z)|},

where c1 is a positive constant that depends only on the coefficients of bik, 1 ≤
i ≤ n+ 1, 0 ≤ k ≤ n, and thus depends only on the coefficients of Qi, 1 ≤ i ≤
n+ 1. Therefore,

‖f(z)‖d ≤ c1 max{|Qi1(f)(z)|, . . . , |Qin+1(f)(z)|}.(3.2)

By (3.1) and (3.2),
q∏
j=1

‖f(z)‖d

|Qj(f)(z)|
≤ cq−n1

n∏
k=1

‖f(z)‖d

|Qik(f)(z)|
.

Hence, by the definition,
q∑
j=1

mf (r,Dj)(3.3)

≤
∫
M〈r〉

max
{i1,...,in}

{
log

n∏
k=1

‖f(z)‖d

|Qik(f)(z)|

}
σ + (q − n) log c1.

Now pick n distinct polynomials γ1, . . . , γn ∈ {Q1, . . . , Qq}. By the “in gen-
eral position” assumption, they define a subvariety of Pn(C) of dimension 0.
For a fixed large integer N , which will be chosen later, denote by VN the
space of homogeneous polynomials in C[X0, . . . , Xn] of degree N . Arrange,
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in lexicographic order, the n-tuples (i) = (i1, . . . , in) of non-negative integers
such that σ(i) :=

∑
j ij ≤ N/d. Define the spaces W(i) = WN,(i) by

W(i) =
∑

(e)≥(i)

γe11 · · · γenn VN−dσ(e).

Plainly W(0,...,0) = VN and W(i) ⊃W(i′) if (i′) ≥ (i), so the W(i) in fact define
a filtration of VN .

Our next step is to investigate quotients between consecutive spaces in the
filtration. Suppose that (i′) follows (i) in the ordering. We recall the following
lemma in [Ru]:

Lemma 3.2. There exists an integer N0 dependent only on γ1, . . . , γn such
that, in the above notation,

∆(i) := dim
W(i)

W(i′)
= dn,

provided dσ(i) < N−N0. Also, for the remaining n-tuples (i), dimW(i)/W(i′)

is bounded (by dimVN0).

For the proof see Lemma 3.3 in [Ru].
Set u = uN := dimVN . We choose a suitable basis {ψ1, . . . , ψu} for VN in

the following way. We start with the last nonzero W(i) and pick any basis of it.
Then we continue inductively as follows: Suppose (i′) > (i) are consecutive n-
tuples such that dσ(i), dσ(i′) ≤ N and assume that we have chosen a basis of
W(i′). It follows directly from the definition that we may pick representatives
in W(i) for the quotient space W(i)/W(i′), of the form γi11 · · · γinn γ, where γ ∈
VN−dσ(i). We extend the previously constructed basis in W(i′) by adding these
representatives. In particular, we obtain a basis for W(i) and our inductive
procedure can be continued until W(i) = VN , in which case we stop. In this
way, we obtain a basis {ψ1, . . . , ψu} for VN .

Let {Uλ, λ ∈ Λ} be an open covering of M , and let fλ : Uλ → C
n+1 be a

reduced representation of f on Uλ. We now estimate log
∏u
t=1 |ψt(fλ)(z)| on

Uλ. Let ψ be an element of the basis, constructed with respect to W(i)/W(i′).
Thus we may write ψ = γi11 · · · γinn γ, where γ ∈ VN−dσ(i). Then we have a
bound

|ψ(fλ)(z)| ≤ |γ1(fλ)(z)|i1 · · · |γn(fλ)(z)|in |γ(fλ)(z)|

≤ c2|γ1(fλ)(z)|i1 · · · |γn(fλ)(z)|in‖fλ(z)‖N−dσ(i)

= c2

(
|γ1(fλ)(z)|
‖fλ(z)‖d

)i1
· · ·
(
|γn(fλ)(z)|
‖fλ(z)‖d

)in
· ‖fλ(z)‖N ,

where c2 is a positive constant that depends only on ψ, but not on f and z.
Observe that there are precisely ∆(i) such functions ψ in our basis. Hence,
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taking the product over all functions in the basis, we get, after taking loga-
rithms,

log
u∏
t=1

|ψt(fλ)(z)| ≤
∑
(i)

∆(i)

(
i1 log

|γ1(fλ)(z)|
‖fλ(z)‖d

+ · · ·+ in log
|γn(fλ)(z)|
‖fλ(z)‖d

)(3.4)

+ uN log ‖fλ(z)‖+ c3,

where c3 depends only on the ψ’s, but not on f and z. Here the summation
is taken over the n-tuples with σ(i) ≤ N/d. We now estimate the sums. First,

u =
(N + n)!
N !n!

=
Nn

n!
+O(Nn−1).(3.5)

Second, since the number of non-negative integer m-tuples with sum ≤ T is
equal to the number of non-negative integer (m+ 1)-tuples with sum exactly
T ∈ Z, which is

(
T+m
m

)
, and since the sum below is independent of j, we have

that, for N divisible by d and for every j,∑
(i)

ij =
1

n+ 1

∑
(̂i)

n+1∑
j=1

ij =
1

n+ 1

∑
(̂i)

N

d
(3.6)

=
1

n+ 1

(
N/d+ n

n

)
N

d
=

Nn+1

dn+1(n+ 1)!
+O(Nn),

where the sum
∑

(̂i) is taken over the non-negative integer (n + 1)-tuples
with sum exactly N/d. Combining (3.6) and Lemma 3.2, we have, for every
1 ≤ j ≤ n, ∑

(i)

ij∆(i) =
Nn+1

d(n+ 1)!
+O(Nn),(3.7)

where again the summations are taken over the n-tuples with sum ≤ N/d
and the various constants in the “O” terms depend only on the original data,
γ1, . . . , γn, and hence only on Q1, . . . , Qq, but not on f and z. (3.4) and (3.7)
yield

log
u∏
t=1

|ψt(fλ)(z)| ≤

log
n∏
j=1

|γj(fλ)(z)|
‖fλ‖d

 Nn+1

d(n+ 1)!
(1 +O(N−1))(3.8)

+ uN log ‖fλ(z)‖+ c3,

where c3 and the various constants in the “O” terms depend only on Q1,
. . . , Qq, but not on f and z.

Now let φ1, . . . , φu be a fixed basis of VN . Let Fλ = (φ1(fλ), . . . , φu(fλ)).
Then F = P(Fλ) is independent of λ. Hence it defines a meromorphic map
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F : M → P
u−1(C), where P is the projection. Write {ψ1, . . . , ψu} as lin-

ear forms L1, . . . , Lu in φ1, . . . , φu, so that ψt(fλ) = Lt(Fλ), t = 1, . . . , u.
The linear forms L1, . . . , Lu are linearly independent, and we know, by the
assumption of algebraical non-degeneracy of f , that F : M → P

u−1(C) is
linearly nondegenerate. From (3.8),

log
u∏
t=1

|Lt(Fλ)(z)| ≤

log
n∏
j=1

|γj(fλ)(z)|
‖fλ‖d

 Nn+1

d(n+ 1)!
(1 +O(N−1))(3.9)

+ uN log ‖fλ(z)‖+ c3.

This implies that

log
n∏
j=1

‖fλ(z)‖d

|γj(fλ)(z)|

≤ d(n+ 1)!
Nn+1(1 +O(N−1))

[
log

u∏
t=1

‖Fλ(z)‖
|Lt(Fλ)(z)|

− u log ‖Fλ(z)‖+ uN log ‖fλ(z)‖+ c3

]
.

By the definition of F , we have C1‖fλ(z)‖N ≤ ‖Fλ(z)‖ ≤ C2‖fλ(z)‖N , where
C1 and C2 are positive constants independent of λ. Hence

log
n∏
j=1

‖fλ(z)‖d

|γj(fλ)(z)|
(3.10)

≤ d(n+ 1)!
Nn+1(1 +O(N−1))

[
log

u∏
t=1

‖Fλ(z)‖
|Lt(Fλ)(z)|

+ c3 + uc4

]
,

where c3, c4 and the various constants in the “O” terms depend only on
Q1, . . . , Qq, but not on f and z. Note that the expressions ‖fλ(z)‖d/|γj(fλ)(z)|
and ‖Fλ(z)‖/|Lt(Fλ)(z)| are independent of λ. Hence they are globally de-
fined functions on M . Note that the linear forms L1, . . . , Lu depend on the set
{γ1, . . . , γn}. Setting Γ = {γ1, . . . , γn}, we write LΓ,1, . . . , LΓ,u for the linear
forms L1, . . . , Lu to indicate this dependency. (3.10) thus implies that

∫
M〈r〉

max
{i1,...,in}

{
log

n∏
k=1

‖f(z)‖d

|Qik(f)(z)|

}
σ

(3.11)

≤ d(n+ 1)!
Nn+1(1 +O(N−1))

∫
M〈r〉

max
Γ

log
u∏
j=1

‖Fλ(z))‖‖LΓ,j‖
|LΓ,j(Fλ)(z)|

σ + κ(c3 + uc4)

 .
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Applying Theorem 2.1 with ε = 1 to the holomorphic map F gives∫
M〈r〉

max
Γ

log
u∏
j=1

‖Fλ(z))‖‖LΓ,j‖
|LΓ,j(Fλ)(z)|

σ(3.12)

≤ (u+ 1)TF (r, s0) + cu[log+ TF (r, s0)

+ Ricτ (r, s0) + log+ Y (r) + log+ r]

for all r outside of a set E with finite Lebesgue measure, where cu > 0 is a
constant depending on u. Combining (3.3), (3.11) and (3.12) yields

q∑
j=1

mf (r,Dj) ≤
d(n+ 1)!

Nn+1(1 +O(N−1))

[
(u+ 1)TF (r, s0)(3.13)

+ cu(log+ TF (r, s0) + Ricτ (r, s0)

+ log+ Y (r) + log+ r) + κ(c3 + uc4)
]

We now compare TF (r, s0) and Tf (r, s0). To do so, we need to introduce
the concept of a reduced representation section of f (see [S]) to overcome the
difficulty that there is, in general, no goal reduced representation of f on M .
Let {Uλ, λ ∈ Λ} be an open covering of M , and let fλ : Uλ → C

n+1 be a
reduced representation of f on Uλ. Then there is a holomorphic function
gλµ : Uλ ∩ Uµ → C∗ such that

fλ = gλµfµ on Uλ ∩ Uµ.(3.14)

It is easy to check that {gλµ} is a basic cocycle (cf. [S]). Therefore there
exists a holomorphic line bundle Hf on M with a holomorphic frame atlas
{Uλ, sλ}λ∈Λ such that

sλ = gµλvµ on Uλ ∩ Uµ.(3.15)

The line bundle Hf is called the hyperplane section bundle of f . Also define
f̃λ ∈ Γ(Uλ,M ×Cn+1) by f̃λ(z) = (z, fλ(z)) for z ∈ Uλ. Notice that f̃λ ⊗ sλ =
gλµf̃µ ⊗ sλ = f̃µ ⊗ gλµsλ = f̃µ ⊗ sµ on Uλ ∩ Uµ. Therefore there exists a
holomorphic section Γf of (M ×Cn+1)⊗Hf such that Γf |Uλ = f̃λ⊗ sλ. Γf is
called the standard reduced representation section of f . Let ` be the standard
hermitian metric along the fibers of the trivial bundle M ×Cn+1 and let κ be
a hermitian metric along the fibers of Hf . Then

ddc log ‖Γf‖2`⊗κ = ddc log ‖fλ‖2 + ddc log ‖sλ‖2κ = f∗ΩFS − c1(Hf , κ),
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where ΩFS is the Fubini-Study form on Pn(C). Hence, by Green’s formula
(cf. [S]), we have

Tf (r, s0) =
∫ r

s0

dt

t2m−1

∫
M [t]

f∗c1(Hf , κ) ∧ υm−1 +
∫
M〈r〉

log ‖Γf‖`⊗κσ(3.16)

−
∫
M<s0>

log ‖Γf‖`⊗κσ.

Let

T (Hf , r) =
∫ r

s0

dt

t2m−1

∫
M [t]

f∗c1(Hf , κ) ∧ υm−1.(3.17)

Then

Tf (r, s0) =
∫
M〈r〉

log ‖Γf‖`⊗κσ + T (Hf , r) +O(1).(3.18)

Similarly, we have

TF (r, s0) =
∫
M〈r〉

log ‖ΓF ‖`⊗κσ + T (HF , r) +O(1).(3.19)

By comparing the transition functions of Hf and HF , it is clear that HF =
HN
f , so we have T (HF , r) = NT (Hf , r) and

‖ΓF ‖`⊗κ
‖Γf‖N`⊗κ

=
‖Fλ(z)‖
‖fλ(z)‖N

≤ O(1).

These estimates, together with (3.18) and (3.19), imply that TF (r, s0) ≤
NTf (r, s0) +O(1). Therefore, (3.13) becomes

q∑
j=1

mf (r,Dj) ≤
d(n+ 1)!

Nn+1(1 +O(N−1))

[
(u+ 1)NTf (r, s0)(3.20)

+ cu(log+ Tf (r, s0) + Ricτ (r, s0)

+ log+ Y (r) + log+ r +O(1)) + κ(c3 + uc4)
]
.

Since, by (3.5),

u =
(N + n)!
N !n!

=
Nn

n!
+O(Nn−1),(3.5)

and the various constants in the “O” term above depend only on Q1, . . . , Qq,
but not on f and z, we can take N large enough such that

d(n+ 1)!Nu
Nn+1(1 +O(N−1))

=
d(n+ 1)(1 +O(N−1)

(1 +O(N−1))
< d(n+ 1) + ε/2.
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Then we have, for N large enough,
q∑
j=1

mf (r,Dj) ≤ (d(n+ 1) + ε)Tf (r, s0) + cε(log+ Tf (r, s0)

+ Ricτ (r, s0) + log+ Y (r) + log+ r),

where the inequality holds for all r outside of a set E with finite Lebesgue
measure and cε > 0 is a constant depends on ε. We note that the exceptional
set E appearing here may be different each time, but still has finite Lebesgue
measure. This finishes the proof of the Main Theorem. �

For a hypersurface D of degree d, define the defect

δf (D) = lim inf
r→+∞

mf (r,D)
dTf (r)

.

Then we have the following defect relation.

Corollary (Defect Relation). Let M be an admissible parabolic man-
ifold. Let f : M → P

n(C) be an algebraically non-degenerate meromorphic
map, and let D1, . . . , Dq be hypersurfaces in Pn(C) in general position. As-
sume that

lim sup
r→+∞

Ricτ (r, s0)
Tf (r)

= 0, lim sup
r→+∞

log Y (r)
Tf (r)

= 0.

Then we have
q∑
j=1

δf (Dj) ≤ n+ 1.
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