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A DEFECT RELATION FOR MEROMORPHIC MAPS ON
PARABOLIC MANIFOLDS INTERSECTING
HYPERSURFACES

YUANCHENG LIU AND MIN RU

ABSTRACT. This paper establishes a defect relation for linearly nonde-
generate meromorphic mappings from parabolic manifolds into the pro-
jective space intersecting hypersurfaces, extending a result of H. Cartan
result and an earlier result of Min Ru.

0. Introduction

The purpose of this paper is to study the value distribution theory of
meromorphic maps f : M — P?(C) intersecting hypersurfaces, where M is
an m-dimensional parabolic manifold and P™(C) is the n-dimensional com-
plex projective space. In 1933, H. Cartan [Ca] established the Second Main
Theorem for linearly non-degenerate holomorphic curves f : C — P*(C) in-
tersecting hyperplanes. Later L. Ahlfors [A] gave another ingenious geometric
proof. W. Stoll [S] generalized Ahlfors’ method and extended Cartan’s Second
Main Theorem to linearly non-degenerate meromorphic maps f : M — P*(C),
where M is an m-dimensional parabolic manifold. In [WS], Wong and Stoll
carefully examined the error term appearing in Stoll’s inequality.

Recently, the second author [Ru] extended H. Cartan’s result to alge-
braically non-degenerate holomorphic curves f : C — P"(C) intersecting
hypersurfaces and solved the following conjecture.

CONJECTURE (SHIFFMAN). Let f : C — P*(C) be an algebraically non-
degenerate holomorphic curve (here we say that f is algebraically non-dege-
nerate if the image of f is not contained in any proper algebraic subvarieties
of P*(C)), and let D1, ..., D, be hypersurfaces in P™(C) in general position.
Then 377_, 0p(Dj) <n+ 1.
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The purpose of this paper is to extend this result to meromorphic maps on
parabolic manifolds.

Throughout this paper, we shall use the standard notations in the value
distribution theory of meromorphic maps on parabolic manifolds (see [WS] or
[S]). Some notations and definitions will be recalled in Section 1. To establish
the value distribution theory on parabolic manifolds M, similar to [S], we
make the following assumptions on M (cf. Section 1):

(i) M is a connected complex manifold of dimension m.
(ii) There exists a parabolic exhaustion function 7 on M.
(iii) For every integer n and every linearly non-degenerate map f : M —
P™(C), there is a holomorphic differential form B of degree (m —1,0)
on M such that f is general for B (cf. §1.3) and

My 1BAB <Y (r)o™ !

on M[r] for some real positive valued function Y (r) on M, which is
independent of f (Y is called a majorant for B, see §1.4), where, for
any positive integer m,

i = <\/__1)m(—1)m“3”m!.

27
A complex manifold M satisfying the assumptions (i)—(iii) is called an admis-
sible parabolic manifold. Throughout this paper, we shall work on admissible
parabolic manifolds. Hypersurfaces Ds,..., Dy, g > n, in P*(C) are said to
be in general position if ﬂZii supp(Dj, ) = 0 for any distinct ji,...,Jn41. In
this paper, the following theorem is proved.

MAIN THEOREM. Let M be an admissible parabolic manifold of dimension
m. Let f: M — P"(C) be an algebraically non-degenerate meromorphic map
(i.e., the image of f is not contained in any proper algebraic subvarieties of
P*(C)), and let D1,...,D, be hypersurfaces in P"(C) of degree d; in general
position. Fix sg > 0. Then for every e > 0, we have

q
Zd;lmf(r, Dj) <. (n +1+ G)Tf(T’ 80)
j=1

+ ce (Ric (1, s0) + log™ Ty (r, s0) +1log* Y (r) +log™ r),

where ce > 0 is a constant depends on €, Ric,(r, so) is the Ricci function of
M (cf. [S], or [WS]), and “. < .” means that the inequality holds for all
r € [80,+00) outside a union of intervals of finite total length.

We note that Ric,(r, so) is called the Ricci function, which depends only on
the geometry (topology) of the manifold M. An important class of admissible
parabolic manifolds are affine algebraic manifolds. In this case, there exists a
finite branched covering 7 : M — C™. If we take 7 = ||7||?, Stoll [S] showed
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that there exists a holomorphic differential form B of degree (m —1,0) on M
(cf. [S] or [WS]) such that
Miy_ 1B AB < (1+ |7))™ Y (dd*r)™ .
Hence, we can take Y (r) = (1 + r2)™~!. Further, we can show (cf. [S] or
[WS]) that
d — lim Ric,(r, so)
r—+oo  logr

exists and equals the degree of the branching divisor of 7. The Main Theorem
thus implies the following corollary in the case that M is an affine algebraic
manifold.

COROLLARY. Let M be an affine algebraic manifold of complex dimension
m. Let m: M — C™ be a finite branched covering. Let Dq,...,Dg be a finite
collection of hypersurfaces in P™(C) in general position. Let f : M — P"(C)
be an algebraically non-degenerate meromorphic map. Then, for every ¢ > 0,
we have

q
Zd;lmf(r, D). <.(n+1+¢)Ty(r,s0) + ce (logJr Ty(r, s0) + log™t ),
j=1

”»

where c. > 0 is a constant depends on €, and where “. < .” means that the
inequality holds for all v € [sp, +00) outside a union of intervals of finite total
length.

1. The theory of meromorphic maps on parabolic manifolds
In this section, we recall some basic results in the theory of meromorphic

maps on parabolic manifolds. For references, see [S] or [WS].

1.1 Parabolic manifolds. Let M be a connected complex manifold of
dimension m. Let 7 > 0 be a non-negative, unbounded function of class C'*°
on M. For 0<r R and A C M define

Alr] ={z € A| 1(x) <r?},
Alry={z e A|1(z) < r?},
Alry ={z e A|7(x) =r?},
A, ={z € A|7(z) > 0},
v=ddr, w=ddlogT, o =d%logT Aw™ L.

If M[r] is compact for each r > 0, the function 7 is then said to be an
erhaustion of M. The function 7 is said to be parabolic if

w>0, w'= v # 0

)
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on M,. Note that this also implies that v > 0 on M. If 7 is a parabolic
exhaustion, (M, 1) is said to be a parabolic manifold. Define

R, = {r e R | dr(z) #0 forall ze M(r)}.

Then RJF\RT has measure zero. If r € R;, then M({r) is a compact, real,
(2m — 1)-dimensional submanifold of class C*° of M, oriented to the exterior
of M(r). By Stoll (cf. [S, p. 133]), for all 7 € R, fM<T>O' is a positive
constant, independent of r. Let

(1.1.1) K :/ 0.
M{(r)

For an affine algebraic manifold M, this number represents the sheet number
of the projection 7 : M — C™ if 7 = ||z||? (cf. [WS]).

1.2 Meromorphic maps, reduced representation. Let M be a com-
plex manifold with dim M = m. Let A # () be an open subset of M such
that S = M — A is analytic. Then A is dense in M. Let f : A — P™*(C) be
a holomorphic map on A. The closure I" of the graph {(z, f(z)) | z € A} in
M xP™(C) is called the closed graph of f. The map f is said to be meromorphic
on M if (i) I'(f) is analytic in M xP"(C) and (ii) I'N(K xP™(C)) is compact for
each compact subset K C M, i.e., the projection p : I'(f) — M is proper. If f
is meromorphic, then the set of indeterminacy Iy = {x € M | #p~'(z) > 1}
is analytic with dim /¢ < m — 2 and is contained in S. The holomorphic map
f:+A— P*(C) continues to a holomorphic map f : M — I; — P"(C) such
that we can assume, a posteriori, that S = Iy. If m = 1, Iy is necessarily
empty and f : M — P"(C) is holomorphic.

Given M, A, S and a holomorphic map f : A — P"(C) as above, a holomor-
phic map f(# 0) : U — C"*! on an open and connected subset U of M is said
to be a representation of f if f(x) =P(f(x)) for all z € ANU with f(z) # 0.
A representation f is said to be reduced if dimf~*(0) < m — 2. The map f
is meromorphic if and only if for every point p € M, there is a representation
f:U — C"! of f with p € U. If so, a representation f is reduced if and only
if Un1; =f£7*(0). For every meromorphic map f : M — P"(C), there is a
reduced representation of f at every point of M.

1.3 The associated map. A distinguished differential operator, in gen-
eral, might be missing on a connected, complex manifold M of dimension
m > 1. Therefore, Stoll [S] assumed that a holomorphic form B of bidegree
(m—1,0) is given on M. Let f be a holomorphic vector valued function on an
open subset U of M. If z = (21,...,2y) is a chart with U, NU # (, then the
B-derivative fl,?,z =f"on UNU, for z is defined by df AB = f'dz1 A - Adzy,.
The operation can be iterated so that the kth B—derivative £*) is defined:
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£f() = (fk=1))"  pPut £(O) = f. Abbreviate
fk:f/\f//\“'/\f(k)IU—>/\k+1Cn+1.

Let f : M — P"(C) be a meromorphic map. If fi # 0 for one choice of
a reduced representation f : U — C"*! on a chart U,, then f;, # 0 for all
possible choices and f is said to be general of order k for B. In this case, the
kth associated map fj, : M — P(A"™ C"*1) is well-defined as a meromorphic
map by fi|U = P(f}) for all possible choices of f and charts z. We say that f
is general for B if f is general of order k for B for all k, 1 < k <n.

1.4 The majorant function. A positive real valued function Y (r) is said
to be a majorant for B if

My 1BAB <Y (r)o™ !

on M(r]. In the assumption (iii) for M, we assumed that such a function
exists. The majorant function Y (r) introduces an extra term in the Second
Main Theorem.

1.5 Projective distance. Denote by C*" " the dual space of C"*!. For
0<k<n,let |: (/\’H_1 cr) x ¢ — A" €L be the interior product
defined in the usual way. Let z € P(A"T C"*!) with representative ¢ €
C™*tt — {0} and let a € P(C*"™!) with representative o € C*"*' — {0}, the
projective distance between x and a is defined by

€l
1,
lellall =

where the norm on A* C"*! is induced by the standard norm on C™*1. Note
that the above definition is independent of the choice of the representatives
a and €. Note that a hyperplane H in P"(C) can also be regarded as a point
in P*(C*). Hence, for every meromorphic map f : M — P"(C), || frx(2); H| is
defined for z € M. This defines a distance function (from fx(z) to H) on M.

(L5.1) 0< asal =

1.6 The First Main Theorem. Let M be an admissible parabolic man-
ifold. Let f : M — P"(C) be a meromorphic map which is linearly non-
degenerate; hence f is general for B. Let fi be the kth associated map of f.
Let € be the Fubini-Study form on P"(A*"' C"*+!). Define the kth charac-
teristic function for 0 < sy < r by

Todt . .
Tylroso) = [ s [ @
S0 M[t]

It is known that T, (r,s9) = 0. Set Ty_, (r,s9) = 0.
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Let v be a divisor on M with S = suppv. The counting function of v is
defined to be

Ny(r,s0) = /T nu(t)@

)
S0 t

where

n,(t) = t2*2m/ vl = / vw™ 40, (0), if m>1,
S[t] S.[t]

n,(t) = Z v(z), if m=1.

z€S[t]
For a hyperplane H in P"(C), define an H—divisor v = puf as in Stoll [S].
Fix so > 0, let Ny, (r,H) = N,(r,s0) and let
1
my, (r, H) :/ log ————o0,
a iy i H

where || fi; H|| is defined as in (1.5.1) (here we regard H as a point in P™(C*),
the dual space of P*(C)).

THEOREM 1.6 (FIRST MAIN THEOREM) ([S, (8.21), p. 153]). Let f :
M — P™(C) be a meromorphic map which is general for B. Then, for every
hyperplane H € P*(C) and for every 0 < k < n,sg,r € R.,0 < sy <r, we
have

Ty, (T, 50) > ka(ra H) +mfk(7" H) —mp (SovH)'

1.7 The Calculus Lemma. Let T be a nonnegative function defined on
an interval [sg,+00) with so > 0. Define the error functions E(T,r) and

E(T,r) by
(1.7.1)
E(T,r) = T(r)log" (1 + T(r)) log" T*[1 + 72~ 2T(r) log" t* (1 + T(r))]
and
(1.7.2) E(T,r) =log* E(T,r).
THEOREM 1.7 (CALCULUS LEMMA). Let h be a nonnegative measurable

function on M such that hv™ 1is locally integrable. Let sq be a positive real
number and let T be the function defined by

Todt .
so M{t]

Then ho is integrable over M(r) for almost all r > 0 and

d ar ~
2m/ ho =~ @m=1) — <r2m1> .<.E(T,r),
M(r) dr dr
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where « < . means that the inequality holds for all r € [sg,+00) outside a
union of intervals of finite total length.

Proof. By Corollary 2.4 in [WS] with g(t) = log' (1 + ). d

1.8 The Pliicker formula. Let dy be the zero divisor of fi. When k = n,
we obtain the Wronskian divisor d,,. The divisor Iy = di—1 — 2dg + dg+1 >0
is called the kth stationary index; here we assume that d_; = 0. Let I be
the indeterminacy of fr. On M — I}, define

(1.8.1) Ry = Mip_1 £ (Qx) A B A B,

where €2, is the Fubini-Study form on ]Pm(/\l€+1 Cntl). Since i, 1BAB >0,
we have hy, > 0 on M — I;,. Define

(1.8.2) hi, = hy /o™,

For all r € R, define

1
(1.8.3) Sk(r) = 7/ log hy o.
2 Jau)

THEOREM 1.8.1 (PLUCKER FORMULA) ([S, Theorem 7.6]). For almost
all s, 7 € R;,0<so <,

le (Ta 50) + Tfk—l (Tv 50) - 2Tfk (Tv 50) =+ Tfk-+1 (Tv 50)
= Si(r) — Sk(so) + Ric,(r, so)-

The Pliicker formula implies the following result (see [S, (10.24), p. 164]).

THEOREM 1.8.2. For0<k<n-—1,

Ty, (7, 50) < 35T (r, 50) + %(3’“ — 1)(klogY (r) + Ric,(r, so) + exlogr)
holds for r € [sg,00) outside a union of intervals of finite total length.

1.9 The Ahlfors Estimate.

THEOREM 1.9.1 (AHLFORS ESTIMATE) ([S, Theorem 10.3]). Let H be a

hyperplane in P*(C). Then for any 0 < A <1, 0 < sg < r, and any integer
0<k<n-—1, we have

Tt | fra1; H|? 444X 2K
hpo™ <Y Ty — log2
= /Mm o HE=2 w0 = YO 3 Tl s0) £ 55 loe2 )

where hy, is defined in (1.8.2), and K is the constant defined in (1.1.1).
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THEOREM 1.9.2.  Let H be a hyperplane in P*(C). Let A(r) = ming{1/(1+
Ti(r,80))}. Then, for every 0 <k <n-—1,

| fret1; H|)?
log+/ e hyo
My [ s H|272A0)

. <. 2logt Ty(r,s0) +2(2 + €) log™ log™t T (r, 50)
+2log™ Y (r) 4+ 3log™ Ric,(r, s0) + 5logT logt r + O(1),

where “. < .7 means that the inequality holds for all r € [sg,+00) outside
a union of intervals of finite total length, and where the constant O(1) is
independent of r.

Proof. Let 0 < A(r) < 1 be a decreasing function of > 0. Define

"odt | fros1; H|)?
Kk r,Ss :/ / *hkvmv
(7. 20) so 27N Sy I fws HI2—2A

where A* = A o 7'/2. By Theorem 1.7 (Calculus Lemma), we have

[ frt 15 H | 2
(191) /M<r> W}Lkd- S -E(Kk,’l").

On the other hand, noticing that A is a decreasing function, we have || fi; H||*"
< || fx; H|A"). Hence, by Theorem 1.9.1 (Ahlfors Estimate) with A = A(r),
we have

T dt || fit; H|?
Kk T, S0 :/ / = hk’l}m
( ) s t2m71 M[t] ||fk;H||272A

Since A(r) = ming{1/(1 + T¥,(r,s0))},
Ky (r,s0) < Y(r)(blek (r,80) + ba),

where b; and by are constants depending only on k. By choosing a larger
constant bz, we have

(1.9.2) E(Kp,r) < E(bsY (r)T7 (1, 50), 7).
Combining (1.9.1) and (1.9.2) yields

| fos1; H|? h (b 2
iy T HE2@ 140 + <« BOY (T, (7, 50),7).

Hence

1.9.3 log™ M H® hio« < E(bsY (r)T? .
( ) o8 /M<r> ka§H||2_2A(T) KT (bs¥(r) fk(r, 0):)
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By the definition, we have (see [WS, (2.8), p. 1046])
E(ng(r)T?k (r,80),7)
< log™*[b3Y (r)T7, (r, 50)] + 2(1 + €) log™ log™ [b3Y (r) T (1, 50)]
+ (14 €)log™ log™* log™ (b3 (r)T7, (r,50)) + (1 + €)log™ log™ r + O(1)
< 2logt Ty, (7, 50) + 2(1 + €) log™ log™ T, (7, s0)
+ (14 €)log™ log™ log™ T}, (7, 50) + 2logt Y (r) + 2log™ log™ r + O(1).
By Theorem 1.8.2,
Ty, (7,50) « < 35T (1, 50) + %(3’“ —1)(klog Y (r) + Ric,(r, s9) + exlogr).
Hence
E(ng(r)TJ?k (r,80),7)
. <. 2logt Ty (r,50) +2(2 + €) log™ log™ T4 (r, 50)
+ 2log™ Y (r) + 3log™ Ric,(r, s9) + 5log™t log™ r 4+ O(1).
This, together with (1.9.3), concludes the proof. O

2 A slight generalization of Wong-Stoll’s theorem

In this section, we extend the Second Main Theorem of Wong-Stoll (cf.
[WS]) with good error term to the case when the given hyperplanes Hy, ..., H,
in P*(C) are not necessarily in general position. This formulation is crucial
in the proof of our Main Theorem.

THEOREM 2.1. Let M be an admissible parabolic manifold. Let Hy, ..., H,
be arbitrary hyperplanes in P™*(C) (also regarded as linear forms). Let f :
M — P*(C) be a meromorphic map which is linearly non-degenerate. Fix

so > 0. Then, for e >0,

1
M () Max log —————0
Jserm 2 T
1
<l T s0) + D
n(n—+1)
T

+ 2log™ Ric,(r, s9) + 3logt log™ r + O(1),

Ric,(r, o)
[long Ty (r, 80) + (2 +€) logt log™ Ty (r, s0) + log™* Y (r)
where “. < .” means that the inequality holds for all r € [sg,+00) outside a

union of intervals of finite total length, and the max is taken over all subsets
K of {1,...,q} such that the linear forms H;,i € K, are linearly independent.
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Proof. Let K C {1,...,q} be such that the linear forms {Hy,k € K},
are linearly independent. Without loss of generality, we may assume ¢ >
n + 1 and that #K = n + 1. Let T be the set of all the injective maps p :
{0,1,...,n} — {1,...,q} such that H ), ..., Hy) are linearly independent.
Set T' = maxi < j<o{>5—g my, (s0, H;)} and A(r) = ming{1/(1 + Ty, (r, 50))}.
For any p € T,z ¢ Iy, the Product to Sum Estimate (cf. [WS, Lemma 1.12]),
with A = A(r), reads

n—~k
n n

H |fk+1 H,|I? ” Z |fk+1 H,»|?
L k(= u(J)HQ 200 = < || fx(z #(J)HQ 2A(r) 7

k

where ¢, > 1 is a constant. Since || f,,; H,,(;)| is a constant for any 0 < j < n,
we have

Hllf

m)HQ
n—1 n ||fk+1 M(J ||2 n—1 n
~I e, e 11 ﬂo TP
B k=0 ||fk H(J)||2 2A() =0 j=0 [ (2 u(])H2A(T)
where ¢ > 1 is a constant. Therefore, for r > sy, we have
(2.1) / max Z log __r o
I RS e TIC A
= max log o
/M( neT H ”f u(])”2
n—k
< ”Zl/ max log i kaH #(j)”2
T = My pET « || fx(2 u(y)”2 2A(r)
n—1 n 1
+ / max log o+ O(1).
,;)JZO y T 7 ([ fi(2); Hyg 22

We now estimate each term appearing in the above inequality. First,
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n—~k
I

n—1 n
ka+1 ()
(2.2) / max log o
> e 20 | 2 T 20

>

n—1 n
||fk+1 s Hu) 12
= log max k g
> S 35 | S A s
n—1
—2) (n—k)Si(r)
k=0
where hy, is defined by (1.8.2), and Si(r) is defined by (1.8.3). However, we

have

n—k

n 2
(2.3) / log max ZH ”fk“ )l
ZVI

2 2A(r
HeT Hyll ")

= ||fk+1 M(])||2 o

— k(n—k 1 h | 2
s(n )/M o ma ZM |
e (2); Hupyll? o

< k(n—k) log/ max hi | —
M(ry HET j;o | fr(2); Hygj|[2~2A0) K

IN

(n — k)x max log™ / L frt1(2)s Hup 12 hro
0<j<n wgry 15 (2); Hyg 2240

+(n—k)xlogq+ C',

where C’ is a constant. By Theorem 1.9.2,

2
max log / | fr1(2); Hyuiy l heo

0<j<n My | fi(2); Hygg 27200

L<.2 {1og+ Ti(r,s0) + (2+¢€) log™ log™ Ty(r, s0)

+log™ Y (r) 4+ 2log™ Ric,(r, so) + 3logT log™ r + O(1)]|.

Hence,
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n—=k

- ||fk+1 Hyi?
(24) /M 10%1;12% ZH 2 2 ()

#(J)‘
<.n(n+ 1)k [log+ Ty (r)
+ (2 + €)log™ log™ Ty (r) + log® Y (r)
+ 2log™ Ric, (1, 50) + 3log™ logt r 4+ O(1)|.
Next, using Theorem 1.8.1 (the Pliicker formula), we have

le (’I“7 So) + Tf,%1 (7“, 30) — 2Tfk (’I“7 80) + Tfk+1 (7", So)
= Si(r) — Sk(so) + Ric,(r, so).

Noticing that T%, (r, s0) = 0, we get

n—1
(2.5) > (n = k)Sk(r) = N, (r,s0) — (n+ 1)Ts(r, s0)
k=0
1
M Ric, (r, s0) + O(1).
Combining (2.2), (2.4) and (2.5), we obtain
) n—=k
||fk+1 Hy)l
2.6 / max log
( ) Z " el ka /t(J)HQ 2A(r)
<.(n+1)T¢(r)+ n;— D) Ric,(r, s0) — Na,, (1, s0)
+ H@ log™® Ty (r) + (2 + €) log™ log™ Ty (r)

+1logT Y (r) + 2log™ Ric,(r, so) + 3log™ log™ r + O(1)].
Finally, by the First Main Theorem,

n—1 n
1
(2.7) / max log
kzo] = Jaagry €T (| (2); Hyy 1220
n—=1 n
1
< / 2A(r)log ———— o + O(1)
L;T,;O; M(r) 1 fk(2); Hu)
n—1 n
= ZQA(r)mfk (’I“, Hu(j)) + 0(1)
pET k=0 j=0
n—1 n
<Y > 2¢IA(r) (T, (1, 50) + g, (50, Hyg) + O(1)
k=0 j=0

<o

~—
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Combining (2.1), (2.6), and (2.7) yields

1
max log ————0
/IVI(T> K g;( £ (2); Hyll

.S.(n+1)Tf(r)+w
n(n+1)
T

+1logT Y (r) + 2log™ Ric,(r,s0) + 3logTlogtr + O(1)]. O

RiCT (Ta 50) - Ndn (T7 SO)

log™ T¢(r) + (2 + €) log™ log™ T (r)

3. Proof of the Main Theorem

Let M be an admissible parabolic manifold of dimension m. Let f: M —
P"*(C) be a meromorphic map. Choose a reduced representation f : U — Cn*1
on a chart U,. Let D be a hypersurface in P*(C) of degree d. Assume that
f(M) ¢ D. Let Q be the homogeneous polynomial (form) of degree d defining
D. The proximity function my(r, D) is defined as

[ el
my(r, D) = /Mml TGO

where ||@Q]| is the maximum norm of the coefficients appearing in Q. We
note that, although f depends on the choice of representations, the function
I1£(2)]14]1QlI/|Q(f)(2)| in fact is a (globally defined) function on M. Also, the
zeros of Q(f) are independent of the choice of representations. We define the
divisor u? on M by H?|U = u%(f), where u%(f) is the zero divisor of Q(f).
Let S = supp uj’?, and define

1 o
nf(T’D):sz—_Q/S[T]M?U Loif m>1,

ny(r,D) = Z u?(z), if m=1.
z€S|r]
Fix so > 0. The counting function is defined by
"ng(t,D
Ny(r, D) = / ns(6.D) gy

So t

Green’s formula (see [S]) implies the following First Main Theorem:

THEOREM 3.1 (FIRST MAIN THEOREM). Let f: M — P*(C) be a holo-
morphic map, and let D be a hypersurface in P*(C) of degree d. Fix sg > 0.
If f(M) ¢ D, then for every real number r with sy < r < oo

myg(r,D) 4+ N¢(r, D) = dTs(r,s0) + O(1),

where O(1) is a constant independent of r.
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We now prove the Main Theorem:

Proof of the Main Theorem. Let Dy, ..., Dy be hypersurfaces in P"(C), lo-
cated in general position. Let @;,1 < j < g, be the homogeneous polynomials

in C[Xo, ..., X,] of degree d; defining D;. Replacing Q; by Qj/dj if necessary,

where d is the l.c.m of the al;-s7 we can assume that Q1,...,Q, have the same
degree of d. Choose a reduced representation f = (fy,..., fn) : U — C"F!
on a chart U,. Given z € U, there exists a renumbering {i1,...,i,} of the
indices {1,..., ¢} such that

(3.1) Qi 0 ()] < Qi 0 E(2)] < -+ < Qs 0 £(2)]

Since @1, ..., Qq are in general position, by Hilbert’s Nullstellensatz (cf. [W]),
for any integer k,0 < k < n, there is an integer mj > d such that

n+1

't = ijk (o, .., 20) Qs (T0, - . ., Tp),

where bji,1 < j <n+1,0 <k <n, are homogeneous forms with coefficients
in C of degree my — d. So

()™ < eall F)™ ™ max{|Qu, (f) (), -+, Qs (F) ()]},

where c; is a positive constant that depends only on the coefficients of b;;, 1 <
1<n+1,0 <k <n,and thus depends only on the coefficients of Q;,1 <1i <
n + 1. Therefore,

(3.2) IE(2)[| < ex max{|Qs, (£)(2)] -+ Qi (E)(2)]}-
By (3.1) and (3.2),
EEIT < o lIEG))
H 1 1Q; f 1l Qi (£)(2)]
Hence, by the definition,

(3.3) me(r, D;)

EE ||d
< max log o+ (¢ —n)loge.
/M<’I‘> {il,...,in} { H |Q'“c

Now pick n distinct polynomials v1,...,v, € {@1,...,Qq}. By the “in gen-
eral position” assumption, they define a subvariety of P"(C) of dimension 0.
For a fixed large integer N, which will be chosen later, denote by Vy the
space of homogeneous polynomials in C[Xj,...,X,] of degree N. Arrange,
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in lexicographic order, the n-tuples (i) = (41,...,4,) of non-negative integers
such that o(i) := >_,i; < N/d. Define the spaces W) = Wy ) by

We) = Z Y VN —do(e)-
(e)>(i)

Plainly W(o,... o) = Vv and W) D Wiy if (i') > (i), so the W(;) in fact define
a filtration of V.

Our next step is to investigate quotients between consecutive spaces in the
filtration. Suppose that (i') follows (i) in the ordering. We recall the following
lemma in [Ru]:

LEMMA 3.2.  There exists an integer Ng dependent only on 1, ..., vVn such
that, in the above motation,

W
Ay = dim —0L — gn,
(@ i dim 77
provided do(i) < N — Ny. Also, for the remaining n-tuples (i), dim W) /W)
is bounded (by dim Vi, ).

For the proof see Lemma 3.3 in [Ru].

Set u = uy := dim V. We choose a suitable basis {¢1,...,1,} for Vy in
the following way. We start with the last nonzero W;y and pick any basis of it.
Then we continue inductively as follows: Suppose (i) > (i) are consecutive n-
tuples such that do(i),do(i’) < N and assume that we have chosen a basis of
Wiy. It follows directly from the definition that we may pick representatives
in W) for the quotient space W) /W4y, of the form %1 <o qyiney where v €
VN_do(i)- We extend the previously constructed basis in Wy by adding these
representatives. In particular, we obtain a basis for W;) and our inductive
procedure can be continued until W;) = Vi, in which case we stop. In this
way, we obtain a basis {¢1,...,¥,} for Vy.

Let {Ux, A € A} be an open covering of M, and let fy : Uy — C"*! be a
reduced representation of f on Uy. We now estimate log [T, [¢¢(f2)(2)| on
Ux. Let ¢ be an element of the basis, constructed with respect to W) /Wiy .
Thus we may write ¢ = 7? <ooqyingy where v € VN_do(i)- Then we have a
bound

EE] < P EEI - (B ) E)E)]
< eaP (B[ - (B (2) 1 [ ) [ ¥ o)
_ o (mEEN (@RI e
- ( ||fA<z>|d> (fmz)nd) I

where ¢s is a positive constant that depends only on v, but not on f and z.
Observe that there are precisely A;) such functions ¢ in our basis. Hence,

in
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taking the product over all functions in the basis, we get, after taking loga-
rithms,

(3.4)

! gtl;11|1/)t(fk)( )| S(ZI)A(I) ( 1log ||f)\(z)||d + + iy, log Hf,\(Z)Hd >
+ ulN log ||£x(2)|| + cs,

where c3 depends only on the v’s, but not on f and z. Here the summation
is taken over the n-tuples with o (i ) < N/d. We now estimate the sums. First,

N+n N™ e
= O = + O™

Second, since the number of non-negative integer m-tuples with sum < T is
equal to the number of non-negative integer (m -+ 1)-tuples with sum exactly

(3.5)

T € Z, which is (T;m), and since the sum below is independent of j, we have
that, for IV divisible by d and for every j,

n+1
(3.6) Zﬂ:n+ Z):;J:nHZd
1 (N/d+n\N Nt
= e N
n—|—1( n ) d drtli(n+1)! + O,

where the sum )’ is taken over the non-negative integer (n + 1)-tuples

with sum exactly N/d. Combining (3.6) and Lemma 3.2, we have, for every
1<j<n,

n+1
(37) i )= o O,

where again the summations are taken over the n-tuples with sum < N/d
and the various constants in the “O” terms depend only on the original data,
Y1,---,Vn, and hence only on @Q1,...,Qq, but not on f and z. (3.4) and (3.7)
yield

Nn+1
(n+1)!

+ uNlog IEx(2)]| + s,

(1+O0(N™)

where c3 and the various constants in the “O” terms depend only on @1,
.., Qq, but not on f and z.

Now let ¢1,..., ¢, be a fixed basis of Vy. Let Fx = (¢1(£)), ..., du(f))).

Then F = P(F,) is independent of X\. Hence it defines a meromorphic map
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F : M — P“1(C), where P is the projection. Write {t1,...,1,} as lin-
ear forms Li,..., L, in ¢1,...,¢,, so that ¥ (f\) = Li(Fy),t = 1,...,u
The linear forms L4, ..., L, are linearly independent, and we know, by the
assumption of algebraical non-degeneracy of f, that F' : M — P*"1(C) is
linearly nondegenerate. From (3.8),

Nn+1

Ay TONT)

(39) 1ogH|Lt F)) ()| < logH '%H )l

+ uN log [|£x(2)[| + cs.
This implies that

SR 2)]?

e 117 e
d(n+ ||FA
= Nn+L(1 +O [ H T ILe( F)\

— ulog [[Fx(2)[| + ul log [[fx(2)[| + 3|

By the definition of F', we have Cy||fx(2)|[Y < [Fa(2)]| < Callfs(2)[|¥, where
C4 and C5y are positive constants independent of A. Hence

[I£x(
(3.10)  log H 7| )\f)\
el 071

d(n +1)! T _FAG)]
S N+ o) 1ogH’\7

where c3,c4 and the various constants in the “O” terms depend only on
Q1,...,Qq, but not on f and z. Note that the expressions ||\ (2)[|?/]v; (£1)(2)]
and [|[F(2)||/|L:(F)(z)| are independent of A. Hence they are globally de-
fined functions on M. Note that the linear forms L4, ..., L, depend on the set
{71,y }. Setting I’ = {71,...,vn}, we write Lr1,..., Lp, for the linear
forms Lq,..., L, to indicate this dependency. (3.10) thus implies that

(3.11)
F@I
1
/M<T> {lfla,}’b(n} { °8 H |Qlk f }0

d(n+1)! / [ F IIHLrg|
< ma lo : + k(es + ue
= NI+ O D) | Jary " gH G + wles e
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Applying Theorem 2.1 with € = 1 to the holomorphic map F' gives

IFEA )L,
3.12 / maxlo N
(8.12) . gH |LF,J F2)()]

< (u+ l)TF(r, s50) 4 cullog™ Tr(r, s0)
+ Ric, (1, 50) 4 log™ Y (r) + log™ 7]

for all r outside of a set E with finite Lebesgue measure, where ¢, > 0 is a
constant depending on w. Combining (3.3), (3.11) and (3.12) yields

(3.13) Z_} #(r,D;) < N"H(z(lnj—ol() > (u+ 1)Tr (7, s0)

+ cu(log™t Tr(r, 50) + Ric, (7, 50)
+1log™ Y (r) +log™ 7) + k(cs + uc4)]

We now compare Tr(r,sg) and Ty (r,s9). To do so, we need to introduce
the concept of a reduced representation section of f (see [S]) to overcome the
difficulty that there is, in general, no goal reduced representation of f on M.
Let {Ux,\ € A} be an open covering of M, and let fy : Uy — C"*! be a
reduced representation of f on Uy. Then there is a holomorphic function
grau : UxNU, — C, such that

(3.14) fA:gkufu on U)\ﬂUu.

It is easy to check that {g,} is a basic cocycle (cf. [S]). Therefore there
exists a holomorphic line bundle H¢ on M with a holomorphic frame atlas
{U)\, SA}AEA such that

(3.15) sx=guwv, on UxNU,.

The line bundle Hy is called the hyperplane section bundle of f. Also define
£\ € D(Ux, M x C"t1) by fy(2) = (2,£r(2)) for z € Uy. Notice that f\ ® sy =
g,\uf‘u ® s\ = f‘u ® GrusSr = fu ® s, on Uy NUy,. Therefore there exists a
holomorphic section T'y of (M x C"*') @ H; such that Tf|y, = f\ ®sy. Ty is
called the standard reduced representation section of f. Let £ be the standard
hermitian metric along the fibers of the trivial bundle M x C™*! and let x be
a hermitian metric along the fibers of Hy. Then

dd°log [Tt |75, = dd°log ||fx]|* + dd°log ||sx [ = f*Qps — c1(Hy, 1),
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where Qpg is the Fubini-Study form on P"(C). Hence, by Green’s formula
(cf. [9]), we have

Tt . .
(3.16) Ty(r, so0) :/ t27n——1/ ffea(Hyp k) Av 1—|—/ log | s || ewro
S0 IV[[t] M<'r'>

—/ log [T [|egw o
M<sg>

Let
" dt * m—1
(3.17) T(Hy,r) = om—T [fei(Hp, k) ANo™ 0
S0 M[t]
Then
(3.18) Ty(r, s0) = / log |Tfllegno + T (Hy,r) + O(1).
M{(r)
Similarly, we have
(3.19) T (r, 50) = / 108 leono + T(Hr,7) + O()
M(r

By comparing the transition functions of Hy and Hp, it is clear that Hp =
H}V, so we have T'(Hp,r) = NT(Hy,r) and
ICrllees _ [EAC)
= < O(1).
T 105, IEXCIY
These estimates, together with (3.18) and (3.19), imply that Tr(r,sp) <
NTy(r,s0) + O(1). Therefore, (3.13) becomes

(3.20) ;mf(r, D;) < Nn+1c(l(1n++01<)]!v—1)) (u+1)NTy(r, s0)

+ cu(log™ Ty (r, s0) + Ric, (, 50)
+1logT Y (r) +log™ r+ O(1)) + k(cs + UC4)} .
Since, by (3.5),

_ (N+n)! N7
(3.5) YETN T

and the various constants in the “O” term above depend only on Q1,...,Qq,
but not on f and z, we can take N large enough such that
d(n+1)!Nu din+1)(1+O(N™1)

NATON ) T (dromy | SdmthEe

+O(N™1),
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Then we have, for N large enough,
q
> myg(r, D;) < (d(n+ 1) + €)Ty(r, s0) + cc(log™ Ty (r, s0)
j=1

+ Ric, (1, s0) + log™ Y (r) + log™ r),

where the inequality holds for all r outside of a set E with finite Lebesgue
measure and c. > 0 is a constant depends on €. We note that the exceptional
set ' appearing here may be different each time, but still has finite Lebesgue
measure. This finishes the proof of the Main Theorem. O

For a hypersurface D of degree d, define the defect
f (T’ D ) )

. ..M
05(D) = lim inf Ty (r)

Then we have the following defect relation.

COROLLARY (DEFECT RELATION). Let M be an admissible parabolic man-
ifold. Let f : M — P"(C) be an algebraically non-degenerate meromorphic
map, and let Dy,..., D, be hypersurfaces in P*(C) in general position. As-
sume that

Ric- (7, s0)

limsup————= =0, limsup—=——= =
reto Ty(r) oo T5(r)

Then we have
q
> 6p(Dj) <n+1.
j=1
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