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CONTINUITY WITH RESPECT TO DISORDER OF THE
INTEGRATED DENSITY OF STATES

PETER D. HISLOP, FRÉDÉRIC KLOPP, AND JEFFREY H. SCHENKER

Abstract. We prove that the integrated density of states (IDS) as-
sociated to a random Schrödinger operator is locally uniformly Hölder

continuous as a function of the disorder parameter λ. In particular, we
obtain convergence of the IDS, as λ→ 0, to the IDS for the unperturbed

operator at all energies for which the IDS for the unperturbed operator
is continuous in energy.

1. Introduction and results

In this article, we use the methods recently developed in [2], [4] to prove
that the integrated density of states (IDS) Nλ(E) for a random Schrödinger
operator Hω(λ) = H0 + λVω is a uniformly Hölder continuous function of
the disorder parameter λ at energies E for which the unperturbed operator
H0 has a continuous IDS N0(E), under fairly general conditions. Moreover,
the uniformity in λ implies that Nλ(E)−N0(E) is (Hölder) continuous in λ,
as λ → 0, at points E of (Hölder) continuity of N0(E). This result applies
to random Schrödinger operators on the lattice Zd and on the continuum
R
d, given as perturbations of a deterministic, background operator H0 =

(−i∇ − A0)2 + V0. We assume that the background operator is self-adjoint
with operator core C∞0 (X) (smooth, compactly supported functions on X)
for X = Z

d or X = R
d. For simplicity, we assume that H0 ≥ −M0 > −∞, for

some finite constant M0. In addition, we require that H0 is gauge invariant
under translations by elements of Zd. Specifically, this means that for every
m ∈ Zd, we have V0(x + m) = V0(x) and A0(x + m) = A0(x) + ∇φm(x)
for some function φm. For X = Z

d, the operator (−i∇ − A0)2 represents a
short-range, e.g., nearest neighbor, hopping matrix.

We consider Anderson-type random potentials Vω constructed from a fam-
ily of independent, identically distributed (iid) random variables {ωj | j ∈ Zd}.
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On the lattice Zd, the potential acts as

(1.1) (Vωf)(m) = ωmf(m), m ∈ Zd, f ∈ `2(Zd),

On Rd, the potential Vω(x) also depends on the single-site potential u, and is
a multiplication operator given by

(1.2) (Vωf)(x) =
∑
j∈Zd

ωju(x− j)f(x), f ∈ L2(Rd).

Precise hypotheses on the single-site potential u and the random variables
{ωj | j ∈ Zd} are given below.

The family of random Schrödinger operators is given by

(1.3) Hω(λ) = H0 + λVω.

The parameter λ > 0 is a measure of the disorder strength, and we consider
the other parameters entering into the construction of Vω, that is, the norm
‖u‖∞ and the distribution of ω0, as fixed. As we are interested in the explicit
dependence on λ, we will write Hλ for Hω(λ) and suppress ω in the notation.
Due to the assumed gauge invariance under shifts of H0, and the explicit form
of the random potential given in (1.1) and (1.2), the random operator Hω(λ),
for fixed λ, is ergodic with respect to the gauge twisted shifts

(1.4) ψ(x) 7→ eiφm(x)ψ(x−m) , ψ ∈ L2(X).

We mention that the results of this note are easily modified to apply to the
random operators describing acoustic and electromagnetic waves in disordered
media, and we refer the reader to [6], [8], [9].

Our result follows the investigation initiated in [2] where a proof of the
Hölder continuity in energy of the IDS is given that relies on the continuity of
the IDS for the unperturbed, background operator H0. As in the first part of
[2], we require that the IDS N0(E) for the background operator H0 exists and
that it is Hölder continuous in the energy. The proof is local in the energy and
applies at any energy E at which N0(E) is Hölder continuous. In particular,
it applies to Landau Hamiltonians away from the Landau levels, where N0(E)
is discontinuous.

Before stating our results, let us make precise the hypotheses on the random
potential.

Hypothesis (H1). The family of iid random variables {ωj | j ∈ Zd} is
distributed with a density h ∈ L∞(R) with compact support.

Hypothesis (H2). The single-site potential u ≥ 0 is bounded with com-
pact support. There exists an open subset O ⊂ suppu, and a positive constant
κ > 0, so that u|O > κ > 0.
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We first recall a result of [2], that Hölder continuity in energy of the IDS
for H0 implies continuity of the IDS for Hω(λ), with a constant and Hölder
exponent independent of λ.

Theorem 1.1. We assume that the Schrödinger operator H0 admits an
IDS N0(E) that is Hölder continuous on the interval I ⊂ R with Hölder
exponent 0 < q1 ≤ 1, that is

(1.5) |N0(E)−N0(E′)| ≤ C0(q1, I)|E − E′|q1 ,

for all E,E′ ∈ I, and some finite constant 0 < C0(q1, I) < ∞. We assume
hypotheses (H1) and (H2) on the random potential Vω. Then, for any constant
0 < q ≤ q1q

∗/(q1 + 2), where q∗ = 1 for `2(Zd) and 0 < q∗ < 1 for L2(Rd)
(see (2.10)), there exists a finite positive constant C(q, I), independent of λ,
so that for any λ 6= 0, and any E,E′ ∈ I, we have

(1.6) |Nλ(E)−Nλ(E′)| ≤ C(q, I)|E − E′|q.

Note that the exponent q obtained by this method is roughly 1/3 whereas
it is believed that it should hold with q = 1 (see Section 4). A similar result
was obtained recently by one of us [13], using a method quite different from
that in [2].

We now present the main result of this note.

Theorem 1.2. Under the hypotheses of Theorem 1.1, for any bounded
interval J ⊂ R, there exists a finite, positive constant C(q, I, J), such that if
λ, λ′ ∈ J , we have

(1.7) |Nλ(E)−Nλ′(E)| ≤ C(q, I, J)|λ− λ′|q2 ,

for any E ∈ I and 0 < q2 ≤ 2q/(q + 3), where 0 < q ≤ q1q
∗/(q1 + 2) is the

exponent in (1.6).

Until recently, it was not known that the IDS remained bounded in the weak
disorder limit λ → 0. In particular, result (1.7) was known only for closed
intervals J disjoint from zero. This result follows from the Helffer-Sjöstrand
formula (see Section 3 and also [10]). However, the constant C(q1, I, J) ob-
tained from that proof scales like [dist(J, 0)]−1.

Recall that control of the IDS comes from the Wegner estimate,

(1.8) P{dist(σ(HΛ), E) ≤ η} ≤ Cq(λ)|Λ|ηq,

for any 0 < q ≤ 1. Here HΛ is the restriction, with suitable boundary condi-
tions, of Hω(λ) to a bounded open set Λ of volume |Λ|. In the usual proof of
the Wegner estimate [4], [14], the constant Cq(λ) diverges as 1/λ as λ → 0.
In [2], a different proof of the Wegner estimate is given for which the constant
C(q, I) is uniformly bounded in λ. The only deficit of this proof is that the
Hölder exponent q for the IDS Nλ(E) must be taken sufficiently small (as
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stated in Theorem 1.1) relative to the assumed Hölder exponent 0 < q1 ≤ 1
of the IDS of N0(E) in (1.5). In particular, the bound gives no information
about the density of states (DOS) ρλ(E) ≡ dNλ(E)/dE (see Section 4 for a
further discussion of the DOS).

We have the following two corollaries of Theorems 1.1 and 1.2.

Corollary 1.3. Under the same assumptions as Theorem 1.1, let J ⊂ R
be any closed, bounded interval containing 0. Then, there exists a finite,
positive constant C(q, I, J), so that we have for any E ∈ I and λ ∈ J ,

(1.9) |Nλ(E)−N0(E)| ≤ C(q1, I, J)|λ|q2 ,

where 0 < q2 ≤ 2q/(q + 3), where 0 < q ≤ q1q
∗/(q1 + 2) is the exponent in

(1.6).

There is a version of Theorem 1.2 and Corollary 1.3 with the weaker hy-
pothesis of continuity for N0(E) and with a correspondingly weaker result.

Corollary 1.4. We assume that the Schrödinger operator H0 admits
an IDS N0(E) that is continuous at E. Then, under the same hypotheses
(H1) and (H2) as in Theorem 1.1, we have for any λ that the IDS Nλ is also
continuous at E and that

(1.10) lim
λ′→λ

Nλ′(E) = Nλ(E).

In general, as the IDS N0(E) is a monotone increasing function, this result
applies at all but a countable set of energies.

In Section 2, we recall the proof of Theorem 1.1. The proofs of Theorem
1.2, and Corollaries 1.3-1.4, are given in Section 3. We conclude with some
comments about the behavior of the density of states in Section 4. While
preparing this article, we learned that Germinet and Klein [10] have proved
a version of (1.7) for intervals J away from zero. We thank F. Germinet
(private communication) for showing us the use of (3.9) that improves our
original estimates on q2.

It is clear that there are various generalizations of our results. For example,
hypothesis (H1) can be weakened to allow unbounded random variables with
the first two moments bounded.

2. Sketch of the proof of Theorem 1.1

For completeness, let us sketch the proof of Theorem 1.1 that appears in
[2]. We assume hypotheses (H1)–(H2) and condition (1.5) on the IDS N0(E)
for the background operator H0. Let ∆ ⊂ I be a sufficiently small closed
interval, and let ∆̃ ⊃ ∆ be a bounded interval with |∆̃| = O(|∆|α), for some
α ∈ (0, 1). First, one proves that (1.5) implies that for all Λ sufficiently large,
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depending on ∆̃, there exists a finite constant C1(I, d) > 0 so that

(2.1) TrEΛ
0 (∆̃) ≤ C1(I, d)|∆̃|q1 |Λ|.

Next, we consider the local spectral projector EΛ(∆) for HΛ and write

(2.2) TrEΛ(∆) = TrEΛ(∆)EΛ
0 (∆̃) + TrEΛ(∆)EΛ

0 (Λ̃c),

where ∆̃c ≡ R\∆̃. The first term on the right in (2.2) is easily seen to be
bounded by

(2.3) TrEΛ(∆)EΛ
0 (∆̃) ≤ TrEΛ

0 (∆̃) ≤ C1(I, d)|∆|αq1 |Λ|,
and is already of order |∆|q, for any q ≤ αq1.

The second term on the right of (2.2) is estimated in second-order pertur-
bation theory. Let E ∈ ∆ be the center of the interval ∆, and write

TrEΛ(∆)EΛ
0 (Λ̃c) = TrEΛ(∆)(HΛ − E)EΛ

0 (Λ̃c)(HΛ
0 − E)−1(2.4)

− λTrEΛ(∆)VΛE
Λ
0 (Λ̃c)(HΛ

0 − E)−1

= (i) + (ii).

Since the distance from ∆̃c to E is of order |∆|α, we easily see that term (i)
of (2.4) is bounded as

(2.5) |(i)| ≤ |∆|1−α TrEΛ(∆),

so that as 0 < α < 1 and |∆| < 1, we can move this term to the left in (2.2).
Continuing with (ii), we repeat the calculation in (2.4), now to the left of
EΛ(∆), and obtain

(ii) = −λTr(HΛ − E)EΛ(∆)VΛE
Λ
0 (Λ̃c)(HΛ

0 − E)−2(2.6)

+ λ2 TrVΛEΛ(∆)VΛE
Λ
0 (Λ̃c)(HΛ

0 − E)−2

= (iii) + (iv).

Term (iii) is estimated as in (2.5) and we obtain

(2.7) |(iii)| ≤ λ|∆|1−2α‖ṼΛ‖TrEΛ(∆),

where Ṽλ is the potential obtained by replacing ωj by the maximal value of
|ωj |. Term (iv) in (2.6) can be bounded above by

(2.8) |(iv)| ≤ λ2|∆|−2α TrVΛEΛ(∆)VΛ.

Taking the expectation and replacing V 2
λ by the upper bound Ṽ 2

Λ , we find
that we must estimate

(2.9) E{Tr(Ṽ 2
ΛEΛ(∆))}.

This is done using estimates on the spectral shift function comparing the
two local Hamiltonians with one random variable fixed respectively at its
maximum and minimum values. For the lattice case, this is a rank one per-
turbation, so the corresponding spectral shift is bounded by one, the rank of
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the perturbation. For the continuous case, the perturbation is no longer of
finite rank, but we may use the local Lp-estimate on the spectral shift function
proved in [4]. In either case we obtain

(2.10) E{Tr(Ṽ 2
ΛEΛ(∆))} ≤ C4(I, q∗, u)λ−1|∆|q

∗
|Λ|,

where the exponent q∗ in (2.10) is (i) q∗ = 1 in the lattice case, (ii) 0 < q∗ < 1
in the continuum.

As a consequence, term (iv) in (2.6) can be bounded by

(2.11) E{|(iv)|} ≤ λ|∆|q
∗−2αC1(I, d)C4(I, q∗, u)|Λ|.

Putting together (2.3), (2.5), (2.7), and (2.11), we obtain

{1− |∆|1−α − λ|∆|1−2α‖ṼΛ‖}E{TrEΛ(∆)}(2.12)

≤ (λ|∆|q
∗−2αC1(u, d)C4(q∗, u) + C2|∆|αq1)|Λ|.

By choosing the optimal α < 1/2, it is clear from this expression that Theorem
1.1 holds with 0 < q ≤ q1q

∗/(q1 + 2). �

3. Proof of Theorem 1.2

The almost-sure existence of the IDS for random Hamiltonians of the type
considered here is well-known and we refer the reader to [1], [11], [12]. The
IDS Nλ(E) is given in terms of the spectral projector Pλ(E) associated with
Hω(λ) and the interval (−∞, E] ⊂ R. For the lattice case, with Hilbert space
`2(Zd), the IDS Nλ(E) is given by

Nλ(E) = E{Tr Π0Pλ(E)Π0}(3.1)

= E{〈0|Pλ(E)|0〉},

where Π0 is the projection onto the site at 0 and |x〉 is the state at site x ∈ Zd.
For the continuous case on Rd, the IDS N0(E) is given by

(3.2) Nλ(E) ≡ E{Trχ0Pλ(E)χ0},
with χ0 the characteristic function on the unit cube in Rd. To unify the
notation, we will write χ0 for the characteristic function on the unit cube as
in (3.2) in the continuous case, or for the projector Π0 as in (3.1) in the
lattice case.

Proof of Theorem 1.2. Fix λ, λ′ ∈ J and E ∈ I. Choose g ∈ C4(R), de-
pending on E, λ, and λ′, with 0 ≤ g ≤ 1 and

(3.3) g(s) =
{

1 s ≤ E,
0 s ≥ E + |λ− λ′|α,

where 0 < α ≤ 1 will be determined. The choice of g ∈ C4 obeying (3.3) is
basically arbitrary; however we require that

(3.4) ‖g(j)‖∞ ≤ C|λ− λ′|−jα (j = 1, 2, 4) ,
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with some constant independent of E, λ, and λ′ (this can be done).
We have

Nλ(E)−Nλ′(E) = Nλ(E)− E
{

Trχ0[g(Hλ)]2χ0

}
(3.5)

+ E
{

Trχ0[g(Hλ′)]2χ0

}
−Nλ′(E)

+ E
{

Trχ0([g(Hλ)]2 − [g(Hλ′)]2)χ0

}
.

The monotonicity of Nλ(E) with respect to energy and the properties of g
imply that

(3.6) E

{
Trχ0[g(Hλ)]2χ0

}
χ0 ≤ Nλ(E + |λ− λ′|α).

It follows from Theorem 1.1 that

E

{
Trχ0[g(Hλ)]2χ0

}
−Nλ(E) ≤ Nλ(E + |λ− λ′|α)−Nλ(E)(3.7)

≤ C(q1, I, J)|λ− λ′|αq,

for any 0 < q ≤ q1q
∗/(q1 + 2), and an identical estimate holds for the second

term on the right in (3.5).
It remains to estimate the last term on the right in (3.5). Using the identity

2(A2 − B2) = {A(A − B) + (A − B)A} + {B(A − B) + (A − B)B}, we can
write the last term in (3.5) as

(3.8) E

{
Trχ0([g(Hλ)]2 − [g(Hλ′)]2)χ0

}
= E {Trχ0g(Hλ)(g(Hλ)− g(Hλ′))χ0}

+ E {Trχ0g(Hλ′)(g(Hλ)− g(Hλ′))χ0} ,

where, to reduce the number of terms, we have made use of the following
identity: If Aω and Bω are Zd-ergodic operators such that χ0AωBωχ0 is trace
class, then we have

(3.9) E {Trχ0AωBωχ0} = E {Trχ0BωAωχ0} .

(We use this identity in a more crucial way below.) We note that the trace
norm ‖χ0g(Hλ)‖1 is bounded uniformly in λ ∈ J as well as in the random
couplings ωj . In the continuum, we use the fact that Hλ is bounded from
below.

We express the difference (g(Hλ)−g(Hλ′)) in terms of the resolvents using
the Helffer-Sjöstrand formula, which we now recall (see, for example, [7] for
details). Given f ∈ Ck+1

0 (R), we denote by f̃k an almost analytic extension
of f of order k, which is a function f̃k defined in a complex neighborhood of
the support of f having the property that f̃k(x+ i0) = f(x) and that

(3.10) |∂z̄ f̃k(x+ iy)| ∼ |f (k+1)(x)||y|k, as |y| → 0,

where ∂z̄ = ∂x + i∂y. For the construction of such a function, which is not
unique, we refer to [7]. Let Rλ(z) = (Hλ − z)−1 denote the resolvent of Hλ.
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For functions g as in (3.3), the functional calculus gives

(3.11) g(Hλ)− g(Hλ′) =
(λ− λ′)

π

∫
C

∂z̄ g̃(z)Rλ(z)VωRλ′(z)d2z,

with g̃ an extension of order 3 (recall that g ∈ C4).
Let us estimate the first term on the right in (3.8). The estimate for the

second term is similar. We substitute the Helffer-Sjöstrand formula (3.11) and
find

(3.12) Trχ0g(Hλ)(g(Hλ)− g(Hλ′))χ0

=
(λ− λ′)

π

∫
C

∂z g̃(z) Trχ0g(Hλ)Rλ(z)VωRλ′(z)χ0d
2z.

Using the second resolvent identity, we rewrite the operator involving resol-
vents as

Rλ(z)VωRλ′(z) = Rλ(z)Vω(Rλ′(z)−Rλ(z)) +Rλ(z)VωRλ(z)(3.13)

= (λ′ − λ)Rλ(z)VωRλ′(z)VωRλ(z)

+Rλ(z)VωRλ(z)

= (i) + (ii).

The integral in (3.12) involving the first term (i) in (3.13) is estimated as
follows. The resolvents are bounded by |=z|−1 as |=z| → 0, but this divergence
is canceled by the estimate (3.10) for ∂z̄ g̃ (since we take an extension of
order 3). Recalling the estimate (3.4) on the derivatives of g and noting
| supp g′| ∼ δ−1

1 , with δ1 = |λ− λ′|α, we find that

(3.14)
∫
C

|∂z̄ g̃(z)||=z|−3d2z ≤ C|λ− λ′|−3α,

since we obtain a factor of δ−4
1 from the derivatives and a factor of δ1 from

the size of the domain of integration. Consequently, we find

(3.15) E

{∣∣∣∣ (λ− λ′)2

π

∫
C

∂z g̃(z) Trχ0g(Hλ)Rλ(z)VωRλ′(z)VωRλ(z)
∣∣∣∣}

≤ CE
{
‖χ0g(Hλ)‖1‖Vω‖2∞

}
|λ− λ′|2−3α ≤ C0|λ− λ′|2−3α.

To evaluate the integral involving the second term (ii) of (3.13), we apply
(3.9) to the operator integrand in (ii) of (3.13). Inserting this into (3.12), we
obtain for the integrand

(3.16) E {Trχ0g(Hλ)(Rλ(z)VωRλ(z)χ0)} = E

{
Trχ0g(Hλ)Rλ(z)2Vωχ0

}
.

The integral becomes

(3.17)
∫
C

∂z g̃(z) Trχ0g(Hλ)Rλ(z)2Vωχ0d
2z = −πTrχ0g(Hλ)g′(Hλ)Vωχ0.
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As a result, we obtain the following estimate for the term involving (ii):

(3.18) |E{Trχ0g(Hλ)g′(Hλ)Vωχ0}| ≤ C1|λ− λ′|−α.

Combining the estimates (3.7), (3.15), and (3.18), we obtain the upper
bound for the right side of (3.5),

(3.19) |Nλ(E)−Nλ′(E)|
≤ 2C(q1, I)|λ− λ′|αq + C0|λ− λ′|2−3α + C1|λ− λ′|1−α.

Comparing the exponents of |λ− λ′| in (3.19), we can take 0 < α < 1 so that
αq = 2− 3α, giving the exponent 2q/(q + 3). �

The proof of Corollary 1.3 follows simply by taking λ′ = 0. The continuity
result of Corollary 1.4 is proved as follows.

Proof of Corollary 1.4. It suffices to note that the proof of Theorem 1.1 in
[2] can be extended to prove that if N0(E) continuous at E, then so is Nλ(E).
To see this, fix E ∈ R at which N0 is continuous. Following the argument of
[2], we see that the finite-volume estimate (2.1) becomes the following. For
any ε > 0, there exists η > 0 such that for ∆̃ = [E − η,E + η], and all Λ
sufficiently large, one has

(3.20) TrEΛ
0 (∆̃) ≤ ε|Λ|.

Without loss, we assume that η < ε, since the left side of (3.20) is non-
increasing in η. Choose a closed subinterval ∆ = [E− ηp, E+ ηp], with p > 1.
Following the argument in Section 2 with this choice of ∆̃ and ∆, the estimates
(2.5), (2.7), and (2.11) now have the form:

|(i)| ≤ ηp−1 TrEΛ(∆),(3.21)

|(iii)| ≤ C0λη
p−2 TrEΛ(∆),(3.22)

E{|(iv)|} ≤ C1λη
pq∗−2|Λ|,(3.23)

where the constants C0 and C1 are independent of Λ, η, and ε and the exponent
q∗ appears in (2.10). These imply that (2.12) has the form

(3.24) {1− ηp−1 − C0λη
p−2}E{TrEΛ(∆)} ≤ C(ληpq

∗−2 + ε)|Λ|.

If we pick p > 3/q∗, then for sufficiently small ε, we get for all Λ sufficiently
large

(3.25) E{TrEΛ(∆)} ≤ εC|Λ|,

for some finite constant C > 0 since η < ε. This shows that the IDS Nλ is
continuous at E.
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To complete the proof of Corollary 1.4, we return to equations (3.5) and
(3.7). We use the continuity of Nλ(E) to control the first and the last terms
on the right in (3.5). For example, we need to estimate

(3.26) Nλ(E)− E {Trχ0g(Hλ)χ0} .

The monotonicity of Nλ(E) with respect to energy, and the properties of g,
imply that

(3.27) E {Trχ0g(Hλ)χ0} ≤ Nλ(E + |λ− λ′|α).

It follows from the continuity and monotonicity in E of Nλ(E) that

0 ≤ E {Trχ0g(Hλ)χ0} −Nλ(E)(3.28)

≤ Nλ(E + |λ− λ′|α)−Nλ(E) λ′→λ−−−→ 0.

The estimate for the middle term of (3.5) remains the same. Consequently,
we have that

(3.29) lim
λ′→λ

Nλ′(E) = Nλ(E),

at any point E of continuity of N0, proving Corollary 1.4. �

Remark. This proof shows that in general one can control the modulus
of continuity for the IDS Nλ(E) of the random model using that of the free
model.

4. Additional comments and conjectures

In certain situations, we are able to obtain more information about the
density of states (DOS) ρλ(E) and its behavior as λ → 0. The DOS is the
derivative of the IDS Nλ(E) with respect to energy. Since the spectral shift
function is pointwise bounded for the lattice model, it follows from [2] that
the DOS is bounded except at possibly a countable set of energies. In this
case, the DOS is given by

(4.1) ρλ(E) ≡ dNλ
dE

(E) = lim
ε→0

E{=〈0|(Hλ − E − iε)−1|0〉}.

Let us suppose that the random variables ωj are Gaussian with mean zero.
In this case, the almost-sure spectrum of Hω(λ) is R, for λ 6= 0, and the
spectrum of H0 = ∆ is [−2d, 2d]. If E ∈ R\[−2d, 2d], the resolvent can be
expanded in a Neumann series,

(4.2) Rλ(E + iε) =
∞∑
k=0

R0(E + iε) [−λVωR0(E + iε)]k .

The matrix elements of the free resolvent decay exponentially by the Combes-
Thomas argument. Let d0(E) be the distance from the spectrum of H0 to E.
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We then have the bound,

(4.3) |〈x|R0(E)|y〉| ≤ C0

d0(E)
e−d0(E)|x−y|/2.

We take the expectation of the zero-zero matrix element in (4.2). We expand
the potentials Vω and use the estimate (4.3) to control the sum over sites. We
easily see that the power series converges absolutely provided

(4.4)
|λ|E{|ω0|}C1(d)

d0(E)d+1
< 1,

where the constant C1(d) depends on C0 in (4.3) and the dimension. For
example, for all λ < 1, we have the convergent expansion

(4.5) ρλ(E) = λ2ρ(2)(E) +
∞∑
k=3

λkρ(k)(E),

for all |E| > [C1(d)E{|ω0|}]1/(d+1) + 2d.
This result, and the results on the IDS in this article, are steps towards

proving the general conjecture concerning the regularity of the DOS. In par-
ticular, under the hypotheses (H1)–(H2), we expect that the IDS is Lipschitz
continuous, that is, we have q = 1 in (1.6), with a constant independent of λ.
Furthermore, if the unperturbed operator H0 has a Lipschitz continuous IDS,
then we expect that

(4.6) |ρλ(E)− ρ0(E)| ≤ Cq|λ|q,

for some constant 0 < Cq < ∞, independent of λ, and some 0 < q ≤ 1.
Finally, if the distribution function for the random variable ω0 is sufficiently
regular, we expect that the IDS is also regular.

Note added in proof. Recent results [3] show that we can take q∗ = 1
in Theorem 1.1 under (H1), and that we can extend Theorem 1.1 to include
Hölder continuous probability measures and take q∗ to be the Hölder expo-
nent.

References

[1] R. Carmona and J. Lacroix, Spectral theory of random Schrödinger operators, Proba-
bility and its Applications, Birkhäuser Boston Inc., Boston, MA, 1990. MR 1102675

(92k:47143)
[2] J.-M. Combes, P. D. Hislop, and F. Klopp, Hölder continuity of the integrated density
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