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CAPACITY IN SUBANALYTIC GEOMETRY

TOBIAS KAISER

Abstract. In this article we study the capacity of subanalytic sets.

First, we show that a subanalytic set and its closure have the same
capacity. Using this, we then prove that for subanalytic sets in R2 the
capacity density exists, and for arbitrary dimension we give connections

to certain volume densities. Finally, we connect volume densities with
fine limit points of subanalytic sets.

Introduction

In this article we begin to show that capacity and energy are tame concepts
in subanalytic geometry.

It is well known that the volume of subanalytic sets exhibits a nice be-
haviour. For example, it was proved by Kurdyka and Raby (see [12]) that
the volume density exists for subanalytic sets, and due to the work of Comte,
Lion and Rolin (see [3], [4] and [15]), this density is continuous along certain
strata and is even definable in the o-minimal structure of bounded analytic
functions expanded by the exponential function. Similar nice properties are
shared by other “measure quantities”. As examples we mention the geodesic
distance (see [11]) or the entropy (see [5]). In this paper we begin to develop
a similar theory for capacity and energy. These are important concepts from
potential theory, inspired by electrostatics, and related to classical boundary
problems such as the Dirichlet problem.

Capacity density was introduced in potential theory (see [16] and [19]).
There the relation to (Hausdorff) measure is also investigated; see also [18]
and [11]. We show that the capacity density exists for subanalytic sets in
dimension 2, and in arbitrary dimensions we give connections between the
lower, resp. upper, capacity density and the volume density. Moreover, we
establish connections between the volume density and the fine topology in the
subanalytic case; see [1] for general aspects of the fine topology.
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The paper is organized as follows: We begin by describing (rather briefly)
the definition and basic properties of subanalytic sets and (in greater detail)
those of capacity. In Section 1 we prove that the capacity of a subanalytic
set equals the capacity of its closure. In Section 2, we use this result to show
that the capacity density exists for subanalytic sets in dimension 2. The
capacity density is defined analogously to the volume density, and as in the
case of volume density we reduce the problem to a set with conical structure
by considering the tangent cone. This also enables us to show in Section 3
how the lower, resp. upper, capacity density and a certain volume density in
codimension 1 are related in arbitrary dimensions. In the final section we use
the author’s results on the Dirichlet problem in subanalytic geometry (see [8]
and [9]) to establish a connection between the volume density in codimension 2
and fine limit points, for which capacity also plays a role via Wiener’s criterion.

The author thanks the referee for his very useful comments on the first
version of the paper.

0. Basic definitions

Subanalytic sets. A semianalytic set is locally given by a finite number
of equalities and inequalities of analytic functions. A subanalytic set is locally
given by a projection of a relatively compact semianalytic set. Subanalytic sets
have nice geometric properties; see [2], [10] and [14] for the basic definitions
and concepts in subanalytic geometry. For example, subanalytic sets allow a
good stratification, a fact we will be using throughout this article.

Good stratification (see [10]). Let A ⊂ Rn be a bounded subanalytic set
and let (Bj | j ∈ J) be a decomposition of A into finitely many subanalytic
sets. Then there is a decomposition (Γi | i ∈ I) of A into finitely many
subanalytic C1-manifolds, compatible with the decomposition (Bj | j ∈ J),
with the following properties:

(i) For each i ∈ I, after a suitable orthogonal coordinate transformation,
there is a subanalytic domain Ui ⊂ Rdim Γi and a subanalytic con-
tinuously differentiable Lipschitz function fi : Ui → R

n−dim Γi such
that

Γi = Graph(fi).

(ii) For each i ∈ I we have

Γi ∩A =
⋃
{Γj | Γi ∩ Γj 6= ∅}.

Moreover, given the bounded subanalytic set and its decomposition, we
can find a good stratification such that the Lipschitz constants of the involved
Lipschitz functions fi are arbitrarily small.
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Energy and capacity. These basic concepts can be found in any book
about potential theory, for example, in [1] or [7].

Let ν be a non-trivial positive Borel measure in Rn, n ≥ 2, with compact
support. Then the Newton potential of ν is defined as follows:

Uν : Rn −→

{
]−∞,∞] if n = 2,
]0,∞] if n ≥ 3,

x 7−→


−
∫
R2

log |x− y|dν(y) if n = 2,∫
Rn

dν(y)
|x− y|n−2

if n ≥ 3.

A Newton potential Uν is superharmonic on Rn and harmonic outside supp(ν),
the support of ν. The energy

I(ν) ∈

{
]−∞,∞] if n = 2,
]0,∞] if n ≥ 3,

of ν is defined as

I(ν) : =


−
∫
R2

∫
R2

log |x− y|dν(y)dν(x) if n = 2,∫
Rn

∫
Rn

dν(y)dν(x)
|x− y|n−2

if n ≥ 3.

Now let K be a compact subset of Rn, n ≥ 2, and let P(K) be the set of all
positive Borel measures with support contained in K and with mass 1. Then
there is exactly one measure µ ∈ P(K) with

I(µ) = inf{I(ν) | ν ∈ P(K)}.

µ is called the equilibrium measure of K. The capacity c(K) ∈ [0,∞[ is then
defined as

c(K) =

e
−I(µ) if n = 2,
1

I(µ)
if n ≥ 3.

The equilibrium measure µ of a compact set K of positive capacity has the
property that its Newton potential is constant on supp(µ) outside a set of
capacity 0. (On this exceptional set the Newton potential can be smaller
than this constant.) The capacity of a compact set K can be also described
in the following way:

• If n ≥ 3, then

c(K) = sup
{
ν(K) | ν positive Borel measure with support

contained in K and Uν ≤ 1 on K
}
.
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• If n = 2 and diamK < 1, where diam is the diameter, then

c(K) = sup
{
e−1/ν(K)|ν positive Borel measure with support

contained in K and Uν ≤ 1 on K
}
.

Now for a Borel set E ⊂ Rn, n ≥ 2, the capacity of E is defined as

c(E) = sup{c(K) | K ⊂ E compact}.

Example. We denote the open unit ball in Rn, n ≥ 2, by B1(0) and the
closed unit ball in Rn, n ≥ 2, by B1(0). Then c(B1(0)) = c(B1(0)) = 1.

We list some basic facts about the measure quantity capacity:

• Monotonicity: If E1 ⊂ E2 are Borel sets, then c(E1) ≤ c(E2).
• Subadditivity: If Em,m ∈ N, are Borel sets in Rn, n ≥ 3, then

c

( ⋃
m∈N

Em

)
≤
∑
m∈N

c(Em).

• Continuity from below: If (Em | m ∈ N) is an increasing sequence
of Borel sets, then

c

( ⋃
m∈N

Em

)
= lim
m→∞

c(Em).

For compact sets more is true:

• Continuity from above: If (Km | m ∈ N) is a decreasing sequence
of compact sets, then

c

( ⋂
m∈N

Km

)
= lim
m→∞

c(Km).

• “Capacity lives on the boundary”: If K is compact, then c(K) =

c(∂K) where ∂K : = K\
◦
K.

Finally, we quote the behaviour of capacity under elementary maps:

• Capacity is invariant under translations and orthogonal coordinate
transformations.
• Dilatation with a factor r > 0 has the following consequences: If
E ⊂ Rn, n ≥ 2, is a Borel set, then

c(rE) =

{
rc(E) if n = 2,
rn−2c(E) if n ≥ 3.
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1. Capacity of the closure of a subanalytic set

In general it is not true that the capacity of a (bounded) set and the
capacity of its closure are the same. A counterexample is E : = Q∩[0, 1] ⊂ R2.
Here c(E) = 0 since E is countable, whereas c([0, 1]) = 1/4. Analogous
examples can obviously be found in any dimension. But such phenomena do
not occur in subanalytic geometry:

Theorem 1. The capacity of a subanalytic set in R
n, n ≥ 2, and the

capacity of its closure are the same.

Before proving this theorem we make the following definition.

Definition 1. Let A ⊂ Rn be a set and let δ > 0. Then we define

Aδ : = {x ∈ Rn | dist(x,A) < δ}.

Proof of Theorem 1. Let E ⊂ Rn, n ≥ 2, be a subanalytic set. By “con-
tinuity from below” it is enough to consider the case when E is bounded.
(Otherwise we consider the intersection of E with arbitrarily large balls.) Us-
ing a dilatation we may also assume that diamE < 1. We have to show:

(a) c(E) ≤ c(E): This is clear from the previous section.
(b) c(E) ≥ c(E): If E is polar, i.e., c(E) = 0, then this is obviously true,

so we may assume c(E) > 0. Since diamE < 1, we have c(E) < 1. Let µ be
the equilibrium measure of E. We define

ν : =

−
1

log c(E)
µ if n = 2,

c(E) µ if n ≥ 3.

Then Uν ≤ 1 on E (on Rn) and supp ν ⊂ E\
◦
E. Let ((Ci)i∈I , (Dj)j∈J) be a

good stratification of E such that E =
⋃
j∈J Dj . We choose a stratification

such that the Lipschitz constants of the involved functions are bounded by 1/2.
We set I ′ : = {i ∈ I | dimCi = n− 1} and J ′ : = {j ∈ J | dimDj ≤ n− 1}.
For Λ: =

⋃
i 6∈I′ Ci we have c(Λ) = 0 (see [1]), and hence for each ε > 0 there

is a δ > 0 such that

(∗) ν(E \ Λδ) ≥ ν(E)− ε =

−
1

log c(E)
− ε if n = 2,

c(E) − ε if n ≥ 3.

We set νδ : = ν
∣∣
E\Λδ

and we choose some 0 < ε′ < ε such that

(i) for each i ∈ I ′ there is a translation τi of length 1
2 (ε′)2 with τi(Ci \

Λδ) ⊂ E,
(ii) for each i1 6= i2 ∈ I ′ we have dist(Ci1 \ Λδ, Ci2 \ Λδ) ≥ ε′,
(iii) for each i ∈ I ′, j ∈ J ′ we have dist(Ci \ Λδ, Dj) ≥ ε′.
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(i) can be seen as follows: Let i′ ∈ I ′ be fixed. Since ((Ci)i∈I , (Dj)j∈J) is a
good stratification of E, there is, after a suitable orthogonal coordinate trans-
formation, a subanalytic domain U ⊂ Rn−1 and a subanalytic continuously
differentiable Lipschitz function f : U → R with Lipschitz constant bounded
by 1/2 such that

Ci′ = graph(f).

Moreover, there is some j ∈ J with Ci′ ⊂ Dj \Dj . The stratum Dj ⊂ E is
open, and we may assume that Dj lies “above” Ci′ . For each x ∈ U let

σx : = sup{σ > 0 | (x, f(x) + σ) ∈ Dj}.

Given x ∈ U we show that there is some r > 0 such that σy ≥ (σx + r)/2
for y ∈ Br(x)∩U : We have (x, f(x) + σx/2) ∈ Dj . Since Dj is open, there is
some r > 0 with{

(x′, x′′) ∈ Rn−1 × R | |x′ − x| ≤ r, |x′′ − (f(x) +
σx
2

)| ≤ r
}
⊂ Dj .

Let σ̂ : = (σx + r)/2. We have for y ∈ Br(x) ∩ U

|f(y) + σ̂ − (f(x) +
σx
2

) | ≤ |f(y)− f(x)|+ |σ̂ − σx
2
|

≤ 1
2
|y − x|+ r

2
≤ r,

and hence (y, f(y) + σ̂) ∈ Dj . Let now K : = {x ∈ U | (x, f(x)) 6∈ Λδ}. Then
K is compact. With the previous claim we see that there is some σ > 0 such
that (x, f(x) + σ) ∈ Dj for all x ∈ U . Hence we obtain (i).

Next, we define

σδ : = νδ
∣∣
E

+
∑
i∈I′

νδ
∣∣
Ci\Λδ

◦ τ−1
i ,

which is a positive Borel measure with supp(σδ) ⊂ E. Potentials are harmonic
outside the support of the measure. Thus, applying Harnack’s inequality to
a ball of radius ε′ (see [1, p. 13]), we get using (i)–(iii) that for x ∈ supp(σδ)

Uσδ(x) ≤ 1 + ε′

(1− ε′)n−1
,

and hence by (∗) and the characterization of capacity in Section 0 that

c(E) ≥


(
c(E)

) 1
1+ε log c(E)

· 1+ε′

(1−ε′)n−1 if n = 2,(
c(E)− ε

)
· (1− ε′)n−1

1 + ε′
if n ≥ 3.

Letting ε↘ 0 gives now the theorem. �
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2. Capacity density of a subanalytic set

Using Theorem 1 we prove in Theorem 2 below that the capacity density
exists for subanalytic sets in dimension 2.

Definition 2. Let E ⊂ Rn, n ≥ 2, be a Borel set. We define for x ∈ Rn
the lower capacity density of E at x by

γ∗(E, x) : = lim
r→0

c (E ∩Br(x))
c (Br(x))

=


lim
r→0

c (E ∩Br(x))
r

if n = 2,

lim
r→0

c (E ∩Br(x))
rn−2

if n ≥ 3.

and the upper capacity density of E at x by

γ∗(E, x) : = lim
r→0

c (E ∩Br(x))
c (Br(x))

=


lim
r→0

c (E ∩Br(x))
r

if n = 2,

lim
r→0

c (E ∩Br(x))
rn−2

if n ≥ 3.

If γ∗(E, x) = γ∗(E, x), then we define the capacity density of E at x as
γ(E, x) : = γ∗(E, x) = γ∗(E, x).

Example 1. Let E ⊂ Rn be a Borel set with conical structure at 0; that
is, for every y ∈ E and t > 0 also ty ∈ E. Then γ(E, 0) exists and we have
γ(E, 0) = c(E ∩B1(0)).

Proof. This is clear because

c(E ∩Br(0)) =

{
r c(E ∩B1(0)) if n = 2,
rn−2 c(E ∩Br(0)) if n ≥ 3.

�

We can now state the following result in dimension 2, which is analogous
to the existence of the volume density proved in [12]. We use the ideas of the
proof given there, but the situation here is much more complicated, mainly
because capacity is not continuous for decreasing sequences of open subsets.
We intend to extend this result to any dimension in a subsequent paper.

Theorem 2. Let E ⊂ R2 be a subanalytic set. Then for each x ∈ R2 the
capacity density γ(E, x) exists.

We prove Theorem 2 by reducing the problem to a set with conical struc-
ture, the tangent cone; compare [12].
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Definition 3. Let E ⊂ Rn, n ≥ 1, be a set and let x ∈ Rn. Then the
tangent cone of E at x is defined by

Cx(E) : =
{
y ∈ Rn | ∀ ε > 0 ∃ z ∈ E ∃λ > 0

|z − x| < ε ∧ |λ(z − x)− y| < ε
}
.

Remark 1. Let E ⊂ Rn, n ≥ 1, and x ∈ E. Then Cx(E) is a set with
conical structure and Cx(E) = Cx(E).

Remark 2. If E ⊂ Rn, n ≥ 1, is subanalytic, then for each x ∈ Rn Cx(E)
is subanalytic and dimCx(E) ≤ dimxE.

Proof of Theorem 2. We show for each x ∈ R2 that γ(E, x) = γ(Cx(E), x).
Since capacity is invariant under translations we may assume that x = 0.
First we show that γ∗(E, 0) ≤ γ(C0(E), 0). For r > 0 let Cr be the conical
set generated by E ∩Br(0), i.e.,

Cr : = {y ∈ Rn | ∃λ > 0 λy ∈ E ∩Br(0)}.
The function r 7→ c (Cr ∩ B1(0)) is decreasing, so limr→0 c (Cr ∩ B1(0))
exists. Hence we get by Theorem 1, Example 1 and the properties of capacity
from Section 0 that

γ∗(E, 0) = lim
r→0

c(E ∩Br(0))
r

≤ lim
r→0

c(Cr ∩Br(0))
r

= lim
r→0

c (Cr ∩B1(0)) = lim
r→0

c (Cr ∩B1(0))

= c

(⋂
r>0

Cr ∩B1(0)

)
= c (C0(E) ∩B1(0))

= γ (C0(E), 0).

Thus, to prove the theorem, we have to show that γ∗(E, 0) ≥ γ (C0(E), 0).
By Theorem 1 we may assume that E is closed. There is a small δ > 0

with δ < 1 such that ∂E ∩ Bδ(0) consists of N half-branches Γi, 1 ≤ i ≤ N ,
with Γi ∩ Γj = {0}, i 6= j. By shrinking δ if necessary we can assume that
each Γi, 1 ≤ i ≤ N , can be parametrized in the distance from the origin.
Let λi : [0, δ[→ R

2, 1 ≤ i ≤ N , be the parametrizations. For 0 < r < δ
we order ∂Br(0) counterclockwise with starting point λ1(r), i.e., we define
argr λ1(r) = 0. (This is not the usual order on ∂Br(0), and the order argr
depends on r.) By renumbering the indices we can assume that

0 = argr λ1(r) < argr λ2(r) < · · · < argr λN (r) < 2π for 0 < r < δ.

For i ∈ {1, . . . , N} let i− : = i − 1 mod N and i+ : = i + 1 mod N . For
i ∈ {1, . . . , N} we set

A+
i : =

{
x ∈ Bδ(0) \ {0} | arg|x| λi(|x|) < arg|x|(x) < arg|x| λi+(|x|)

}
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and

A−i : =
{
x ∈ Bδ(0) \ {0} | arg|x| λi−(|x|) < arg|x|(x) < arg|x| λi(|x|)

}
.

Note that A+
i = A−i+ and A−i = A+

i−
. By shrinking δ if necessary we can

assume that A∗i ⊂ E or A∗i ∩E = ∅, 1 ≤ i ≤ N , with ∗ ∈ {+,−}. Finally, for
i ∈ {1, . . . , N} we define

α+
i : =<) (λ̇i(0), λ̇i+(0)),

α−i : =<) (λ̇i−(0), λ̇i(0)).

All angles are computed counterclockwise. Now we are making the following

Reductions I. Let i ∈ {1, . . . , N}.
(1) If A−i 6⊂ E and A+

i 6⊂ E and α−i = 0 or α+
i = 0, then we can cancel

λi.
(2) If α+

i = 0 and A+
i ⊂ E, then we can cancel λi and A+

i .
The subanalytic set obtained after the cancellation is contained in the orig-

inal one and has the same tangent cone, so it is enough to consider the “re-
duced” situation, where E allows no cancellations as described in Reductions I.

Next, we straighten the “isolated half-branches”. Let

I ′ : =
{
i ∈ {1, . . . , N} | dimλi(r) E = 1 for 0 < r < δ

}
.

For i ∈ I ′ we replace λi(r) by r λ̇i(0) and thus obtain a subanalytic set E1,
in which the half-branches Γi are replaced by the tangent half-lines Gi : =
{r λ̇i(0) | 0 ≤ r ≤ δ}, i ∈ I ′. We show that γ∗(E, 0) ≥ γ∗(E1, 0).

Proof. For 0 < r < δ let µr be the equilibrium measure of E1 ∩Br(0). We
define

νr : = − 1
log c (E1 ∩Br(0))

· µr.

Then Ur ≤ 1 on E1 ∩Br(0) and

νr(E1 ∩Br(0)) = − 1
log c (E1 ∩Br(0))

.

For i ∈ I ′ we define the subanalytic function fi : Gi → Γi as follows: Let
x ∈ Gi. Then fi(x) is the unique y ∈ Γi with |y| = |x|. We have the following
situation at E (after Reductions I): If i ∈ I ′, then Γi is an isolated half-branch
by definition and αi+ , αi− are not zero. Since Γi is tangent to Gi at 0, for
i ∈ I ′, we obtain (after shrinking δ if necessary) a subanalytic function

L : ]0, δ[−→ R>0 with lim
r→0

L(r) = 1

such that for 0 < r < δ

(α) |fi(x)− fj(y)| ≥ L(r)|x− y| for x ∈ Gi ∩ Br(0), y ∈ Gj ∩ Br(0) and
i, j ∈ I ′ with i 6= j.
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(β) |fi(x) − y| ≥ L(r)|x − y| for x ∈ Gi ∩ Br(0), y ∈ E1 \
⋃
i∈I′ Gi and

i ∈ I ′.
We define for 0 < r < δ the measure

σr : = νr
∣∣
E1\

⋃
i∈I′ Gi

+
∑
i∈I′

νr
∣∣
Gi
◦ f−1

i .

Then supp(σr) ⊂ E ∩Br(0) and

σr(E ∩Br(0)) = − 1
log c (E1 ∩Br(0))

.

Now we want to estimate Uσr on E ∩Br(0). Let x ∈ E ∩Br(0).

Case 1: x ∈ Γi for some i ∈ I ′. Let y ∈ Gi ∩ Br(0) with x = fi(y). We
get

Uσr (x) =
∫
R2

log
1

|x− z|
dσr(z)

=
∫
E1\

⋃
j∈I′ Gj

log
1

|fi(y)− z|
dνr(z)

+
∑
j∈I′

∫
Gj

log
1

|fi(y)− fj(w)|
dνr(w)

(α),(β)

≤
∫
E′

log
1

|y − z|
dνr(z)− logL(r) · νr(R2)

= Uσr (y) +
logL(r)

log c (E1 ∩Br(0))

≤ 1 +
logL(r)

log c (E1 ∩Br(0))
.

Case 2: x 6∈
⋃
i∈I′ Γi. With a similar computation we get the same result.

Uσr (x) ≤ 1 +
logL(r)

log c (E1 ∩Br(0))
.

Using the characterization of capacity from Section 0 we get

c (E ∩Br(0)) ≥ elog c (E1∩Br(0))
(

1+
logL(r)

log c (E1∩Br(0))

)
= c (E1 ∩Br(0))L(r).

Finally we conclude that

γ∗(E, 0) ≥ γ∗(E1, 0) lim
r→0

L(r) = γ∗(E1, 0).

Hence, since C0(E) = C0(E1), we can assume that the “isolated half-branches”
of E are half-lines.
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Reductions II. If 0 < α+
i < 2π and A+

i ⊂ E, we replace A+
i by A+

i ∩
C0(A+

i ).
The subanalytic set obtained after the cancellation is contained in the orig-

inal one and has the same tangent cone, so it is enough to give a proof in this
reduced situation: If Γi ⊂ E, i ∈ I, is an isolated half-branch, then Γi is a half-
line, and if for i ∈ I with 0 < αi+ < 2π and Ai+ ⊂ E, then Ai+ ⊂ C0(Ai+).
Now for 0 < r < δ we define Fr as the convex hull of the set

{0} ∪ {λi(r) | i ∈ I} ∪
{
x ∈ ∂Br(0) | ∃ i ∈ I with A+

i ⊂ E

and argr λi(r) < argr(x) < argr λi+(r)
}
.

Then by the “reduced” situation we have Fr ⊂ E ∩ Br(0), after shrinking δ
if necessary. Let ρt : R2 → R

2, x 7→ tx, be the dilatation with factor t > 0.
Then we have by construction⋃

r>0

ρ1/r(Fr) = C0(E).

Finally, using Theorem 1, Example 1 and the basic properties of capacity from
Section 0, we conclude that

γ∗(E, 0) = lim
r→0

c (E ∩Br(0))
r

≥ lim
r→0

c (Fr)
r

= lim
r→0

c (ρ1/r(Fr)) = c

(⋃
r>0

ρ1/r(Fr)

)

= c

(⋃
r>0

ρ1/r(Fr)

)
= c (C0(E))

= γ(C0(E), 0). �

3. Capacity density and volume density

In the previous section we proved that for a subanalytic set in R2 the
capacity density exists at every point. We followed there the ideas of the proof
for the existence of the volume density in [12], i.e., we reduced the problem to
the tangent cone. There are in general connections between the two densities
based on the fact that the capacity “lives” on the boundary. These connections
are special for the subanalytic case; for the general connections in potential
theory see, for example, [6] and [8].
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Theorem 3. Let E ⊂ Rn, n ≥ 2, be a subanalytic set. Then we have for
x ∈ Rn

γ∗(E, x) > 0 =⇒ sup
Γ suban.

dim Γ=n−1

Θn−1(E ∩ Γ) > 0,

γ∗(E, x) > 0⇐= sup
Γ suban.

dim Γ=n−1

Θn−1(E ∩ Γ) > 0.

Thereby, given a subanalytic set E ⊂ Rn, n ≥ 2, and x ∈ Rn, we have

Θk(E, x) = lim
r→0

volk(E ∩Br(x))
volk(Br(0))

,

with volk(−) the k-dimensional Hausdorff measure.

Proof. “=⇒:” Suppose that γ∗(E, x) > 0. Then, as in the previous section
we get γ(Cx(E), x) > 0. Hence dimCx(E) ≥ n − 1 and, as a consequence
dimxE ≥ n− 1.

Case 1: dimxE = n−1. Choose r > 0 such that dim(E ∩Br(x)) = n−1.
Take Γ: = E ∩Br. Then Cx(E) = Cx(Γ) and so

Θn−1(Γ, x) ≥ Θn−1(Cx(E), x) > 0.

Case 2: dimxE = n. If dimCx(E\
◦
E) ≥ n − 1, we can apply the

first case to the set E \ E0 since dimxE \ E0 = n − 1. Otherwise we have

dimCx(
◦
E) ≥ n − 1 and therefore may assume that E is open. Moreover, we

may assume by restriction to a half-space that E is contained in a half-space
with x on the boundary. Then dim ∂Cx(E) = n−1. We then define for σ > 0

U : = {y ∈ E | dist(y,E \ E) ≥ |y − x|σ}.

For large enough σ > 0 we have Cx(U) = Cx(E). With Γ: = U\(U∪{x}) ⊂ E
we get because of Cx(Γ) = ∂Cx(E) that

Θn−1(Γ, x) = Θn−1(Cx(Γ), x) = Θn−1(∂Cx(E), x) > 0.

“⇐=:” Suppose that there is a subanalytic set Γ ⊂ E with dim Γ = n− 1
and Θn−1(Γ, x) > 0. Because of the translation invariance of capacity and
volume we may assume that x = 0. Then by our good stratification we
get, after an appropriate orthogonal coordinate transformation, the following
situation: There is a subanalytic domain U ⊂ R

n−1 containing a cone K
with vertex in 0 and a subanalytic Lipschitz function f : U → R such that
Graph(f) ⊂ E. The existence of such a cone follows from the inequality
Θn−1(Γ, 0) > 0 (see [12]). Here a cone is defined as follows.
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Definition 4. A cone K ⊂ Rn, n ≥ 1, with vertex in x ∈ Rn and central
vector v ∈ Rn \ {0} is a set

K : =
{
y ∈ Rn \ {x}

∣∣ 〈y − x, v〉
|y − x| |v|

> α

}
∩Br(x)

with some α > 0 and some r > 0.

By the same argument as in the proof of Theorem 2 there are C,C ′ > 0
such that for small r > 0

c (Graph(f) ∩Br(0)) ≥ C c (K ∩Br(0))

≥ C ′ ·

{
r if n = 2,
rn−2 if n ≥ 3.

This shows that γ∗(E, 0) > 0. �

In dimension n− 1 we have the following nice correspondence.

Corollary 4. Let E ⊂ Rn, n ≥ 2, be a subanalytic set. Let x ∈ Rn with
dimxE = n− 1. Then we have

γ∗(E, x) > 0 =⇒ Θn−1(E, x) > 0,

γ∗(E, x) > 0⇐= Θn−1(E, x) > 0.

The connection with the volume density in dimension n, however, works
only in one direction:

Remark 3. Let E ⊂ Rn, n ≥ 2, be a subanalytic set. For x ∈ Rn we have

Θn(E, x) > 0 =⇒ γ∗(E, x) > 0.

The implication γ∗(E, x) > 0 ⇒ Θn(E, x) > 0 is false, in general; a coun-
terexample is obtained by taking

E : =
{

(x1, . . . , xn) ∈ Rn | xn ≤ |(x1, . . . , xn−1)|2
}

and letting x be the origin. In this case, γ∗(E, 0) > 0 since dimC0(E) = n−1,
but for the same reason Θn(E, 0) = 0.

Remark 4. In contrast to the case of volume density, the multiplicity
plays no role for the capacity density. For example, if

E = {(x1, x2) ∈ R2 | x3
1 = x2

2},
then

γ(E, 0) = γ(C0(E), 0),
whereas

Θ1(E, 0) = 2 Θ1(C0(E), 0).
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Here C0(E) = {(x1, x2) ∈ R2 | x2 = 0, x1 ≥ 0} and 2 is the multiplicity of E
along C0(E).

4. Fine topology and volume density

The class of superharmonic (resp. subharmonic) functions forms a natu-
ral generalization of the class of harmonic functions. For example, Newton
potentials are only harmonic outside the support of the measure, but they
are superharmonic on Rn. In contrast to harmonic functions, superharmonic
functions need not to be continuous. Therefore in potential theory there is the
well known fine topology, the coarsest topology on Rn, n ≥ 2, such that every
superharmonic function in Rn is continuous with respect to the topology. The
fine topology is (obviously) finer than the Euclidean topology. A limit point
in the fine topology is called a fine limit point.

In this section we characterize fine limit points of subanalytic sets by a cer-
tain volume density in codimension 2, using the author’s work on the Dirichlet
problem for subanalytic domains (see [8] and [9]) and the following facts (see
[1]).

The theorem below states classical equivalent conditions (including the
capacity) for a boundary point to be not a fine limit point of a given Borel
set.

Theorem 5. Let E ⊂ Rn, n ≥ 2, be a Borel set. Let x ∈ E \ E. Then
the following are equivalent:

(a) E is thin at x, i.e., x is not a fine limit point of E.
(b) There is some r > 0 and some superharmonic function u on Br(x)

such that
lim
y∈E
y→x

u(y) > u(x).

(c) There is some r > 0 and some superharmonic function u on Br(x)
such that

lim
y∈E
y→x

u(y) =∞ and u(x) <∞.

(d) If n = 2, then∫ 1/2

0

− 1
log c (E ∩Br(x))

· 1
r
dr =∞,

and if n ≥ 3, then∫ 1

0

c (E ∩Br(x))
rn−1

dr =∞.

The last condition is known as Wiener’s criterion (see [1]). Using our results
about the capacity of subanalytic sets we can show the following:
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Corollary 6. Let E ⊂ Rn, n ≥ 2, be a subanalytic set. Let x ∈ E \ E.
Then x is a fine limit point of E if and only if it is a fine limit point of E\{x}.

Proof. This is a simple consequence of Wiener’s criterion and Theorem 1,
using the fact that for a subanalytic set E and x ∈ Rn

E ∩Br(x) = E ∩Br(x)

for all small r > 0. �

Therefore we can concentrate on closed subanalytic sets; for closed sets
there is another nice description of thinness (see [1]):

Theorem 7. Let E be a closed subset of Rn, n ≥ 2. Let x ∈ ∂E. Then
the following are equivalent:

(a) x is a fine limit point of E \ {x}.
(b) x is a regular boundary point of the open set Ω: = R

n \ E. Here
regular means regular with respect to the Dirichlet problem.

In the author’s thesis [8], resp. in his article [9], the regular boundary points
of a subanalytic domain were investigated. With the above equivalence we
can now establish a geometric description of the limit points of a (closed)
subanalytic set. We have to distinguish the cases n = 2 and n ≥ 3.

Case n = 2. We use the following theorem.

Theorem 8. Let E ⊂ R2 be a subanalytic set. Let x ∈ E \ E. Then x is
a fine limit point of E.

Proof. See [8, p. 22]. �

Corollary 9. Let E ⊂ R2 be a subanalytic set. Then E = E
fine

.

Case n ≥ 3. In this case the situation is more complicated. We start with
a notation:

Notation. Let E ⊂ Rn be subanalytic. We set

E′ : = {x ∈ E | dimxE ≥ n− 1}.

For the purpose of investigating fine limit points the sets E and E′ are
equivalent:

Lemma 10. Let E be a subanalytic subset of Rn, n ≥ 2. Let x ∈ E \ E.
Then x is a fine limit point of E if and only if x is a fine limit point of E′.

Proof. This is an immediate consequence of Wiener’s criterion and the fact
that an embedded submanifold of codimension greater than one has capac-
ity 0. �
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Using Theorem 7 and the results of [9] we get:

Theorem 11. Let E be a subanalytic subset of Rn, n ≥ 3. Let x ∈ E \E.
Then the following are equivalent:

(a) x is a fine limit point of E.
(b) There is a cone K with vertex in x and an affine space L of codi-

mension 2, containing x and the central vector of K, such that the
projection of E′ ∩K onto L contains a cone (in L) with vertex in x.

With this theorem limit points can also be expressed in terms of a certain
volume density in codimension 2:

Theorem 12. Let E be a subanalytic subset of Rn, n ≥ 3. Let x ∈ E \E.
Then the following are equivalent:

(a) x is a fine limit point of E.
(b) sup

Γ⊂E suban.
dim Γ=n−2

Θn−2 (E′ ∩ Γ, x) > 0.

Proof. We show that condition (b) of Theorem 11 and condition (b) of The-
orem 12 are equivalent. The equivalence follows from the “good stratification”
property and the following fact:

Let U ⊂ Rn be an open subanalytic set and let x ∈ U . Then

Θn(U, x) > 0⇐⇒ U contains a cone with vertex in x.

This relation can be deduced from the proof of the existence of the volume
density in [12]. �

The above geometric description also gives information about definability
of the set of fine limit points:

Corollary 13. Let E ⊂ Rn, n ≥ 3, be a subanalytic set. Then we have:

(a) E
fine

is again subanalytic.
(b) dim(E \ Efine

) ≤ n− 3.

Proof. (a) This follows since condition (b) of Theorem 11 is a “definable”
condition.

(b) We obtain from Corollary 6 and Theorem 7 with Ω: = R
n \ E that

E \ Efine
= {x ∈ E \ E | x is not a regular boundary point of Ω}. But by [9]

the dimension of this set is smaller than or equal to n− 3. �
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