CHARACTERIZATION OF BANACH FUNCTION SPACES THAT PRESERVE THE BURKHOLDER SQUARE-FUNCTION INEQUALITY

MASATO KIKUCHI

Dedicated to Professor Tamotsu Tsuchikura on his eightieth birthday

ABSTRACT. Let $(X, \|\cdot\|_X)$ be a Banach function space over a nonatomic probability space. We give a necessary and sufficient condition on X for the inequalities $c\|f_\infty\|_X \leq \|S(f)\|_X \leq C\|f_\infty\|_X$ to hold for all uniformly integrable martingales $f=(f_n)_{n\geq 0}$, where $f_\infty=\lim_n f_n$ a.s. and $S(f)=\left\{f_0^2+\sum_{n=1}^\infty (f_n-f_{n-1})^2\right\}^{1/2}$.

1. Introduction

In 1966 Burkholder [4] proved that if $1 , then there are positive constants <math>c_p$ and C_p such that

(1)
$$c_p \|f_{\infty}\|_p \le \|S(f)\|_p \le C_p \|f_{\infty}\|_p$$

for all uniformly integrable martingales $f=(f_n)_{n\geq 0}$, where $f_\infty=\lim_n f_n$ almost surely (a.s.) and $S(f)=\left\{f_0^2+\sum_{n=1}^\infty (f_n-f_{n-1})^2\right\}^{1/2}$. Recall that (1) holds neither for p=1 nor for $p=\infty$. Here we consider this inequality for Banach function spaces (see Definition 1 below). Our main result is that if such a space X satisfies the inequality

$$c \| f_{\infty} \|_{X} \le \| S(f) \|_{X} \le C \| f_{\infty} \|_{X}$$

for all uniformly integrable martingales $f=(f_n)$, then X is rearrangement-invariant and its norm is equivalent to a rearrangement-invariant norm for which the Boyd indices satisfy $0 < \alpha_X \le \beta_X < 1$.

Both the Doob maximal inequality and the Burkholder-Davis-Gundy inequality, in which the maximal function of f replaces the limit function f_{∞} , have already been studied for rearrangement-invariant spaces (see Antipa [1]

Received August 29, 2002; received in final form October 9, 2002.

 $^{2000\} Mathematics\ Subject\ Classification.\ 60{\rm G}42,\,60{\rm G}46,\,46{\rm E}30.$

This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research, No. 14540164, 2002.

and the closely related and independent work of Johnson and Schechtman [7], Kikuchi [8], and Novikov [13]). This work shows that the converse of our main result is true (see Proposition 3).

2. Notation and terminology

Let $(\Omega, \Sigma, \mathbb{P})$ be a *nonatomic* probability space*.

2.1. Banach function spaces. If X and Y are Banach spaces of random variables, we write $X \hookrightarrow Y$ to mean that X is continuously embedded in Y, i.e., that $X \subset Y$ and $\|x\|_Y \le c \|x\|_X$ for all $x \in X$ with some constant c > 0.

DEFINITION 1. A real Banach space $(X, \|\cdot\|_X)$ of (equivalence classes of) random variables on Ω is called a *Banach function space* if it satisfies the following conditions:

- (B1) $L_{\infty} \hookrightarrow X \hookrightarrow L_1$;
- (B2) if $x \in X$ and $|y| \le |x|$ a.s., then $y \in X$ and $||y||_X \le ||x||_X$;
- (B3) if $x_n \in X$, $0 \le x_n \uparrow x$ a.s. and $\sup_n \|x_n\|_X < \infty$, then $x \in X$ and $\|x\|_X = \sup_n \|x_n\|_X$.

We adopt the convention that $||x||_X = \infty$ unless $x \in X$.

Let x and y be random variables. We write $x \simeq_d y$ if they are equimeasurable, or in other words, they are identically distributed.

DEFINITION 2. (i) A Banach function space X is said to be rearrangement-invariant (or simply r.i.) if it satisfies the following condition:

- (R1) if $x \in X$ and $x \simeq_d y$, then $y \in X$.
- (ii) The norm of a Banach function space X is said to be rearrangement-invariant (or simply r.i.) if it satisfies the following condition:
 - (R2) if $x, y \in X$ and $x \simeq_d y$, then $||x||_X = ||y||_X$.

Note that if the norm of a Banach function space X is r.i., then the space X is r.i. To see this, suppose that $x \simeq_d y$ and $x \in X$. Then, for all integers $n \geq 1$, we have $|x| \wedge n \simeq_d |y| \wedge n$ and hence $\||y| \wedge n\|_X = \||x| \wedge n\|_X \leq \|x\|_X$ by (R2) and (B2). This, together with (B3), implies that $y \in X$. As for the converse, the norm of an r.i. space X is not always r.i. (see [11, p. 114] or [5, p. 99]). There is, however, an r.i. norm $\| \cdot \|_X$ on X such that $\| \cdot \|_X \approx \| \cdot \|_X$ (see [11, p. 138] or [5, p. 106]). Here we write $\| \cdot \|_X \approx \| \cdot \|_X$ if these norms are equivalent.

Now let I = (0, 1] and let μ be Lebesgue measure on the σ -algebra \mathfrak{M} of Lebesgue measurable subsets of I. The nonincreasing rearrangement of a

^{*} In essence, we may assume that Ω is the unit interval (0, 1] with Lebesgue measure on the σ -algebra of Lebesgue measurable sets.

 $^{^\}dagger$ By an r.i. space X, we mean a rearrangement-invariant Banach function space X.

random variable x on Ω , which is denoted by x^* , is the function on I defined as

$$x^*(t) = \inf\{\lambda > 0 \mid \mathbb{P}(|x| > \lambda) \le t\} \quad (t \in I),$$

where we follow the convention that $\inf \emptyset = \infty$. Note that x^* and |x| are equimeasurable, i.e.,

$$\mu(x^* > \lambda) = \mathbb{P}(|x| > \lambda)$$
 for all $\lambda > 0$.

The nonincreasing rearrangement φ^* of a measurable function $\varphi \colon I \to \mathbb{R}$ is defined in the same way. If φ and ψ are measurable functions on I, then

(2)
$$\int_{I} |\varphi(s)\psi(s)| \, ds \le \int_{I} \varphi^{*}(s)\psi^{*}(s) \, ds.$$

This is called the *Hardy-Littlewood inequality* (see, e.g., [2, p. 44]). In particular,

(3)
$$\int_{E} |\varphi(s)| \, ds \le \int_{0}^{\mu(E)} \varphi^{*}(s) \, ds \quad (E \in \mathfrak{M}).$$

Following [2], we write $\varphi \prec \psi$ to mean that

$$\int_0^t \varphi^*(s) \, ds \le \int_0^t \psi^*(s) \, ds \quad \text{ for all } t \in I.$$

It is then clear that $\varphi \prec \psi$ if and only if $\varphi^* \prec \psi^*$. Moreover, if x and y are random variables on Ω , then we write $x \prec y$ to mean that $x^* \prec y^*$.

Note that if $(X, \|\cdot\|_X)$ is endowed with an r.i. norm, then (R2) can be replaced by the following condition (cf. [2, p. 90]):

$$(\mathbf{R2'}) \text{ if } x \in X \text{ and } y \prec x \text{, then } y \in X \text{ and } \|y\|_X \leq \|x\|_X.$$

We now recall the Luxemburg representation theorem. If $(X, \|\cdot\|_X)$ is an r.i. space over Ω endowed with an r.i. norm, then there exists an r.i. space $(\widehat{X}, \|\cdot\|_{\widehat{X}})$ over I endowed with an r.i. norm such that

- (L1) $x \in X$ if and only if $x^* \in \widehat{X}$;
- (L2) $||x||_{X} = ||x^*||_{\widehat{X}}$ for all $x \in X$.

See [2, pp. 62–64] for a proof. Such a space $(\widehat{X}, \|\cdot\|_{\widehat{X}})$ is unique; we call $(\widehat{X}, \|\cdot\|_{\widehat{X}})$ the Luxemburg representation of X.

In order to state our results, we need the notion of the Boyd indices. For each $s \in (0, \infty)$, the dilation operator D_s , acting on the space of measurable functions on I, is defined by

$$(D_s \varphi)(t) = \begin{cases} \varphi(st), & \text{if } st \in I, \\ 0, & \text{otherwise,} \end{cases} (t \in I).$$

If $(Y, \|\cdot\|_Y)$ is an r.i. space over I, then each D_s is a bounded linear operator from Y into Y, and $\|D_s\|_{B(Y)} \leq 1 \vee s^{-1}$, where $\|\cdot\|_{B(Y)}$ denotes the operator norm. The lower and upper Boyd indices are defined by

$$\alpha_Y = \sup_{0 < s < 1} \frac{\log \|D_{s^{-1}}\|_{B(Y)}}{\log s} = \lim_{s \to 0+} \frac{\log \|D_{s^{-1}}\|_{B(Y)}}{\log s}$$

and

$$\beta_Y = \inf_{1 < s < \infty} \frac{\log \|D_{s^{-1}}\|_{B(Y)}}{\log s} = \lim_{s \to \infty} \frac{\log \|D_{s^{-1}}\|_{B(Y)}}{\log s},$$

respectively. If $(X, \|\cdot\|_X)$ is an r.i. space over Ω endowed with an r.i. norm, then the Boyd indices of $(X, \|\cdot\|_X)$ are defined by $\alpha_X = \alpha_{\widehat{X}}$ and $\beta_X = \beta_{\widehat{X}}$, where \widehat{X} is the Luxemburg representation of X. Moreover, if $(X, \|\cdot\|_X)$ is an arbitrary r.i. space and if $\|\cdot\|_X$ is an r.i. norm on X such that $\|\cdot\|_X \approx \|\cdot\|_X$, then the Boyd indices of $(X, \|\cdot\|_X)$ are defined to be those of $(X, \|\cdot\|_X)$. In any case, we have $0 \le \alpha_X \le \beta_X \le 1$ (see [3] or [2, p. 149]).

2.2. Martingales. By a filtration we mean a nondecreasing sequence $\mathcal{F} = (\mathcal{F}_n)_{n\geq 0}$ of sub- σ -algebras of Σ . Given a filtration $\mathcal{F} = (\mathcal{F}_n)$, we denote by $\mathcal{M}_{\mathcal{F}}$, the collection of all uniformly integrable martingales with respect to \mathcal{F} . As is well known, every $f \in \mathcal{M}_{\mathcal{F}}$ converges almost surely (a.s.) to some $f_{\infty} \in L_1(\Omega)$ and $f_n = \mathbb{E}[f_{\infty} | \mathcal{F}_n]$ (n = 1, 2, ...) (see, e.g., [6, p. 26]).

In what follows, we will consider martingales with respect to various filtrations, and accordingly we let $\mathcal{M} = \bigcup_{\mathcal{F}} \mathcal{M}_{\mathcal{F}}$, where the union is over all filtrations \mathcal{F} . We will use the following notation for $f = (f_n)_{n \geq 0} \in \mathcal{M}$:

- $\Delta_0 f := f_0$; $\Delta_n f := f_n f_{n-1}$ (n = 1, 2, ...),
- $S_n(f) := \left\{ \sum_{j=0}^n (\Delta_j f)^2 \right\}^{1/2}$ $(n = 0, 1, 2, \ldots),$
- $S(f) := \lim_{n \to \infty} S_n(f),$
- $M_n(f) := \max_{0 \le j \le n} |f_j|$ $(n = 0, 1, 2, \ldots),$
- $M(f) := \lim_{n \to \infty} M_n(f),$
- $f_{\infty} := \lim_{n \to \infty} f_n$ a.s.

3. Main results

Given a Banach function space $(X, \|\cdot\|_X)$ over Ω , we let

(4)
$$\mathcal{M}(X) = \{ f = (f_n) \in \mathcal{M} \mid f_{\infty} \in X \};$$

(5)
$$\mathcal{H}(X) = \{ f = (f_n) \in \mathcal{M} \mid S(f) \in X \}.$$

Our main result is as follows:

THEOREM 1. Let $(X, \|\cdot\|_X)$ be a Banach function space over Ω . Then the following are equivalent:

- (i) there are constants c and C, depending only on X, such that
- (4) $c \|f_{\infty}\|_{X} \le \|S(f)\|_{X} \le C \|f_{\infty}\|_{X} \quad (f \in \mathcal{M});$
 - (ii) $\mathcal{M}(X) = \mathcal{H}(X)$;
 - (iii) X is rearrangement-invariant and can be renormed with an equivalent rearrangement-invariant norm for which the Boyd indices satisfy $0 < \alpha_X \le \beta_X < 1$.

Note that except for possible changes in the constants, inequality (4) holds for a norm if and only if it holds for every equivalent norm.

Recall the convention that $||x||_X = \infty$ unless $x \in X$. This shows that (i) implies (ii). That (ii) implies (iii) follows from Propositions 1 and 2 below, and that (iii) implies (i) is just the assertion of Proposition 3 below.

PROPOSITION 1. Let $(X, \|\cdot\|_X)$ be a Banach function space over Ω . If $\mathcal{M}(X) \subset \mathcal{H}(X)$, then:

- (i) X is rearrangement-invariant;
- (ii) $\beta_X < 1$.

PROPOSITION 2. Let $(X, \|\cdot\|_X)$ be a rearrangement-invariant space over Ω . If $\beta_X < 1$ and if $\mathcal{H}(X) \subset \mathcal{M}(X)$, then $\alpha_X > 0$.

PROPOSITION 3. Let $(X, \|\cdot\|_X)$ be as in Proposition 2. If $0 < \alpha_X \le \beta_X < 1$, then there are constants c and C, depending only on X, such that (4) holds.

Proposition 3 follows from the results of Antipa [1]; however, we will give an alternative proof of Proposition 3 via Shimogaki's Theorem.

In order to prove Propositions 1 and 2, we need the following lemmas.

LEMMA 1. Let $(X, \|\cdot\|_X)$ be a Banach function space. Then X is rearrangement-invariant if and only if it satisfies the following condition:

(R1') if $x, y \ge 0$ a.s., $\{x > 0\} \cap \{y > 0\} = \emptyset$, $x \simeq_d y$, and $x \in X$, then $y \in X$.

Proof. It suffices to show that (R1') implies (R1). Suppose that $x \simeq_d y$ and $x \in X$. To prove that $y \in X$, we may assume $y \notin L_{\infty}$ (cf. (B1)). Choose $\lambda > 0$ so large that $\mathbb{P}(|x| > \lambda) < 1/3$. Clearly $x' := |x| 1_{\{|x| > \lambda\}}$ and $y' := |y| 1_{\{|y| > \lambda\}}$ are equimeasurable and $x' \in X$. Since the set $\{x' = 0, y' = 0\}$ contains no atom and $\mathbb{P}(x' = 0, y' = 0) > 1/3$, there is a random variable $z \geq 0$ such that $\{z > 0\} \subset \{x' = 0, y' = 0\}$ and $z \simeq_d x'$ (cf. [5, p. 44]). Then condition (R1') yields that $z \in X$, since $\{z > 0\} \cap \{x' > 0\} = \emptyset$ and $x' \in X$. Now the same

reasoning shows that $y' \in X$. Therefore $|y| \leq y' + \lambda \in X$, and thus $y \in X$ as desired.

LEMMA 2 ([2, p. 46]). Suppose that $x \in L_1(\Omega)$ is nonnegative. Then there is a family $\{A(t) | t \in I\}$ of measurable subsets of Ω satisfying the following conditions:

- (i) $A(s) \subset A(t)$ whenever $0 < s \le t \le 1$;
- (ii) $\mathbb{P}(A(t)) = t \text{ for all } t \in I;$
- (iii) $\int_{A(t)} x d\mathbb{P} = \int_0^t x^*(s) ds \text{ for all } t \in I;$
- (iv) $\{\omega \in \Omega \mid x(\omega) > x^*(t)\} \subset A(t) \subset \{\omega \in \Omega \mid x(\omega) \geq x^*(t)\} \text{ for all } t \in I.$ In particular, if $\mathbb{P}(x=s) = 0$ for all s > 0 and if $t_0 = \mathbb{P}(x>0)$, then A(t) may be taken to be the set $\{\omega \in \Omega \mid x(\omega) > x^*(t)\}$ for each $t \in (0, t_0]$.

We now consider an averaging operator \mathcal{P} and its adjoint \mathcal{Q} : for $\varphi \in L_1(I)$ define

$$(\mathcal{P}\varphi)(t) = \frac{1}{t} \int_0^t \varphi(s) \, ds \qquad (t \in I),$$

and for $\varphi \in \bigcap_{0 < t < 1} L_1(t, 1)$ define

$$(\mathcal{Q}\varphi)(t) = \int_{t}^{1} \frac{\varphi(s)}{s} ds \qquad (t \in I).$$

Then it is easy to derive the following formulae:

(6a)
$$\mathcal{P}\mathcal{Q}\varphi = \mathcal{P}\varphi + \mathcal{Q}\varphi \qquad \qquad (\varphi \in L_1(I));$$

(6b)
$$\mathcal{Q}\mathcal{P}\varphi = \mathcal{P}\varphi + \mathcal{Q}\varphi - \int_{I} \varphi \, d\mu \qquad (\varphi \in L_{1}(I)).$$

We recall Shimogaki's Theorem on the boundedness of \mathcal{P} and \mathcal{Q} . In terms of Boyd indices, it can be expressed as follows:

Shimogaki's Theorem ([14]). Let $(Y, \|\cdot\|_Y)$ be a rearrangement-invariant space over I endowed with a rearrangement-invariant norm. Then:

- (i) $\beta_Y < 1$ if and only if \mathcal{P} is a bounded operator from Y into Y;
- (ii) $\alpha_Y > 0$ if and only if Q is a bounded operator from Y into Y.

For a proof of (an extension of) this theorem see [2, p. 150] or [3]. Note that \mathcal{P} (resp. \mathcal{Q}) is a bounded linear operator from Y into Y if and only if $\mathcal{P}(Y) \subset Y$ (resp. $\mathcal{Q}(Y) \subset Y$). This is an immediate consequence of the closed graph theorem, since $Y \hookrightarrow L_1(I)$. Thus:

- $\beta_Y < 1$ if and only if $\mathcal{P}(Y) \subset Y$;
- $\alpha_Y > 0$ if and only if $\mathcal{Q}(Y) \subset Y$.

The next lemma is a variant of Shimogaki's Theorem. Before stating it, we must introduce some notation.

NOTATION. Let $(Y, \|\cdot\|_{V})$ be a Banach function space over I.

- (i) We denote by \mathcal{D}_Y the collection of all nonnegative nonincreasing functions in Y.
- (ii) We denote by \mathcal{D}'_Y the collection of functions $\varphi \in \mathcal{D}_Y$ such that $\mu(\varphi > 0) \le 1/2$.

LEMMA 3. Let $(Y, \|\cdot\|_Y)$ be as in Shimogaki's Theorem. Then:

- (i) $\beta_V < 1$ if and only if $\mathcal{P}(\mathcal{D}_V') \subset Y$;
- (ii) $\alpha_Y > 0$ if and only if $\mathcal{Q}(\mathcal{D}_Y) \subset Y$.

Furthermore \mathcal{D}'_{Y} may be replaced by $\mathcal{D}'_{Y} \setminus L_{\infty}(I)$ in (i).

Proof. The last statement is clear, since $\mathcal{P}\varphi \in L_{\infty}$ for any $\varphi \in L_{\infty}$. To prove (i) and (ii), it suffices to show that:

- (i') if $\mathcal{P}(\mathcal{D}_{V}') \subset Y$, then $\mathcal{P}(Y) \subset Y$;
- (ii') if $\mathcal{Q}(\mathcal{D}_Y) \subset Y$, then $\mathcal{Q}(Y) \subset Y$.

To prove (i'), assume that $\mathcal{P}\varphi \in Y$ whenever $\varphi \in \mathcal{D}'_Y$. Let $\psi \in Y$ and choose $\lambda > 0$ so that $\mu(|\psi| > \lambda) \le 1/2$. If we let $\varphi = \psi^* 1_{\{\psi^* > \lambda\}}$, then $\varphi \in \mathcal{D}'_Y$ and hence $\mathcal{P}\varphi \in Y$. By inequality (3) and the inequality $\psi^* \le \varphi + \lambda$ we have

$$|(\mathcal{P}\psi)(t)| \le (\mathcal{P}\psi^*)(t) \le (\mathcal{P}\varphi)(t) + \lambda \qquad (t \in I).$$

Hence $\mathcal{P}\psi \in Y$, as desired.

To prove (ii'), assume that $\mathcal{Q}\varphi \in Y$ whenever $\varphi \in \mathcal{D}_Y$. Let $\psi \in Y$, or equivalently, let $\psi^* \in \mathcal{D}_Y$; then $\mathcal{Q}\psi^* \in Y$. It suffices to show that $\mathcal{Q}|\psi| \in Y$, since $|\mathcal{Q}\psi| \leq \mathcal{Q}|\psi|$ (cf. (B2)). Using inequality (2), we find that

$$\int_{0}^{t} (\mathcal{Q}|\psi|)(s) \, ds = \int_{0}^{1} (1 \wedge s^{-1}t) \, |\psi(s)| \, ds$$

$$\leq \int_{0}^{1} (1 \wedge s^{-1}t) \, \psi^{*}(s) \, ds$$

$$= \int_{0}^{t} (\mathcal{Q}\psi^{*})(s) \, ds \qquad (t \in I).$$

This shows that $Q|\psi| \prec Q\psi^*$ (since these two functions are nonincreasing). Hence $Q|\psi| \in Y$ (cf. (R2')), as desired.

We are now ready to prove Propositions 1 and 2.

Proof of Proposition 1. Suppose $\mathcal{M}(X) \subset \mathcal{H}(X)$.

(i) To prove that X is r.i., it suffices to show that X satisfies (R1') (see Lemma 1). Assume that $x, y \ge 0$ a.s., $\{x > 0\} \cap \{y > 0\} = \emptyset$, $x \simeq_d y$, and $x \in X$. We must prove that $y \in X$. To this end, we may assume $y \notin L_{\infty}$.

There are two cases to consider:

Case 1: $\mathbb{P}(y=s) = 0$ for any s > 0; Case 2: $\mathbb{P}(y=s) > 0$ for some s > 0.

In Case 1, we define $\tilde{y} \in L_1$ and $\alpha \in \mathbb{R}$ by letting $\tilde{y} = y$ and $\alpha = 0$.

In Case 2, we define \tilde{y} and α as follows. Let $\Omega_0 = \bigcup_{s \in \Gamma} \{y = s\}$ and let $\alpha = \mathbb{P}(\Omega_0)$, where Γ is the set of s > 0 such that $\mathbb{P}(y = s) > 0$. Since Ω is nonatomic, we can find a nonnegative random variable r such that $\{r > 0\} = \Omega_0$ and $r^*(t) = (\alpha - t)^+$ for all $t \in I$ (see [5, p. 44]). We then define $\tilde{y} = y + r$.

In any case, we have:

- $\mathbb{P}(\tilde{y}=s)=0$ for all s>0;
- $\{y > 0\} = \{\tilde{y} > 0\};$
- $y \leq \tilde{y} \leq y + \alpha$ on Ω , and hence $y^* \leq \tilde{y}^* \leq y^* + \alpha$ on I.

In the rest of the proof of (i), we do not have to distinguish the two cases.

Define a sequence $\{t_n\}_{n=1}^{\infty}$ in I by setting

$$t_0 = \mathbb{P}(\tilde{y} > 0);$$

$$t_n = \sup\{s \in I \mid (\mathcal{P}\tilde{y}^*)(s) > 2(\mathcal{P}\tilde{y}^*)(t_{n-1})\} \quad (n = 1, 2, ...).$$

Then, since $y \notin L_{\infty}$ and $\mathcal{P}\tilde{y}^*$ is continuous, it is easy to verify that $0 < t_n < t_{n-1}$ for all $n \geq 1$, and

(7)
$$(\mathcal{P}\tilde{y}^*)(t_n) = 2(\mathcal{P}\tilde{y}^*)(t_{n-1}) \quad (n = 1, 2, \ldots).$$

From (7) it follows that $t_n \downarrow 0$ as $n \to \infty$. Let $\{A(t) \mid t \in I\}$ be a family of sets in Σ satisfying the four conditions of Lemma 2 (relative to x). Let

$$A_n = A(t_n), \ B_n = \{\omega \mid \tilde{y}(\omega) > \tilde{y}^*(t_n)\}, \ \text{and} \ \Lambda_n = A_n \cup B_n$$

for each n=0,1,2... We define a filtration $\mathcal{F}=(\mathcal{F}_n)_{n\geq 0}$ and a martingale as follows:

as follows:
$$\mathcal{F}_{n} = \sigma\{\Lambda \setminus \Lambda_{n} \mid \Lambda \in \Sigma\},$$

$$f_{n} = \mathbb{E}[x \mid \mathcal{F}_{n}],$$

$$(n = 0, 1, 2, \ldots).$$

Because $\mathbb{P}(A_n) = \mathbb{P}(B_n) = t_n$ and $A_n \cap B_n = \emptyset$, we see from (iii) of Lemma 2 that

$$f_n = \frac{1_{\Lambda_n}}{\mathbb{P}(\Lambda_n)} \mathbb{E}[x 1_{\Lambda_n}] + x 1_{\Omega \setminus \Lambda_n} = \frac{1}{2} (\mathcal{P} y^*)(t_n) 1_{\Lambda_n} + x 1_{\Omega \setminus \Lambda_n}.$$

Therefore

$$\Delta_n f = \begin{cases} \frac{1}{2} (\mathcal{P} y^*)(t_n) - \frac{1}{2} (\mathcal{P} y^*)(t_{n-1}) & \text{on } \Lambda_n, \\ x - \frac{1}{2} (\mathcal{P} y^*)(t_{n-1}) & \text{on } \Lambda_{n-1} \setminus \Lambda_n, \quad (n = 1, 2, \ldots). \\ 0 & \text{on } \Omega \setminus \Lambda_{n-1}, \end{cases}$$

Since x = 0 on B_n , it follows that

(9)
$$\Delta_n f = -\frac{1}{2} (\mathcal{P} y^*)(t_{n-1}) \quad \text{on } B_{n-1} \setminus B_n.$$

Using (7), (9), the continuity of $\mathcal{P}\tilde{y}^*$, and the nonincreasing property of \tilde{y}^* , we see that on $B_{n-1} \setminus B_n$

$$y \leq \tilde{y} \leq \tilde{y}^*(t_n)$$

$$\leq (\mathcal{P}\tilde{y}^*)(t_n) = 2(\mathcal{P}\tilde{y}^*)(t_{n-1})$$

$$\leq 2(\mathcal{P}y^*)(t_{n-1}) + 2\alpha = 4|\Delta_n f| + 2\alpha.$$

Because $\{y > 0\} = \{\tilde{y} > 0\} = B_0$ and $B_n \downarrow \emptyset$ a.s., we deduce that a.s.

(10)
$$y = \sum_{n=1}^{\infty} y \, 1_{B_{n-1} \setminus B_n} = 4 \left(\sum_{n=1}^{\infty} |\Delta_n f|^2 1_{B_{n-1} \setminus B_n} \right)^{1/2} + 2\alpha \le 4S(f) + 2\alpha.$$

On the other hand, since $\mathbb{P}(\Lambda_n) = 2t_n \to 0$ as $n \to \infty$, we see that $f_\infty = x \in X$ or equivalently $f = (f_n) \in \mathcal{M}(X)$. Hence $S(f) \in X$ by hypothesis. Combining this with (10), we conclude that $y \in X$. This completes the proof of (i).

(ii) As shown above, X is r.i. Hence we may assume (see the discussion following Definition 2) that X is endowed with an r.i. norm. Let $(\widehat{X}, \|\cdot\|_{\widehat{X}})$ be the Luxemburg representation of X. To prove that $\beta_X < 1$, it suffices to show that $\mathcal{P}\varphi \in \widehat{X}$ whenever $\varphi \in \mathcal{D}'_{\widehat{X}} \setminus L_{\infty}(I)$ (see Lemma 3).

Since $\mu(\varphi > 0) \leq 1/2$ (and Ω is nonatomic), we can find nonnegative random variables x and y such that $x^* = y^* = \varphi$ on I and $\{x > 0\} \cap \{y > 0\} = \emptyset$. We then define \tilde{y} , α , $\{t_n\}$, $\{A_n\}$, $\{B_n\}$, $\{\Lambda_n\}$, $\mathcal{F} = (\mathcal{F}_n)$, and $f = (f_n)$ as in the proof of (i). Then

$$(\mathcal{P}\tilde{y}^*)(t_n) \le 4|\Delta_n f| + 2\alpha$$
 on $B_{n-1} \setminus B_n$,

as shown above. Therefore

$$\sum_{n=1}^{\infty} (\mathcal{P}\tilde{y}^*)(t_n) 1_{B_{n-1}\setminus B_n} \le 4S(f) + 2\alpha.$$

Observe that the nonincreasing rearrangement of the left-hand side is the function $s \mapsto \sum_{n=1}^{\infty} (\mathcal{P}\tilde{y}^*)(t_n) 1_{[t_n, t_{n-1})}(s)$. It is greater than or equal to $\mathcal{P}\tilde{y}^*$. Thus we find that

$$\mathcal{P}\varphi = \mathcal{P}y^* \le \mathcal{P}\tilde{y}^* \le \sum_{n=1}^{\infty} (\mathcal{P}\tilde{y}^*)(t_n) 1_{[t_n, t_{n-1})} \le 4S(f)^* + 2\alpha.$$

Since $x^* = \varphi \in \mathcal{D}_{\widehat{X}} \subset \widehat{X}$, we see that $f_{\infty} = x \in X$ (cf. (L1)). Hence $S(f) \in X$ by hypothesis. As a consequence, $\mathcal{P}\varphi \leq 4S(f)^* + 2\alpha \in \widehat{X}$. This completes the proof of Proposition 1.

Proof of Proposition 2. Assume that $\beta_X < 1$ and $\mathcal{H}(X) \subset \mathcal{M}(X)$. To prove Proposition 2, we may assume that X is endowed with an r.i. norm. According to Lemma 3, it suffices to show that $\mathcal{Q}\varphi\in\widehat{X}$ whenever $\varphi\in\mathcal{D}_{\widehat{X}}$. To this end, we may assume $\varphi\not\equiv 0$; hence $(\mathcal{Q}\varphi)(t)\to\infty$ as $t\to 0+$. Choose

a random variable x so that $x^* = \mathcal{Q}\varphi$ on I and define a sequence $\{t_n\}$ in I by setting

$$t_0 = 1;$$

$$t_n = \sup\{s \in I \mid (\mathcal{P}x^*)(s) > (\mathcal{P}x^*)(t_{n-1}) + n^{-1}\} \quad (n = 1, 2, \ldots).$$

Then it is easy to verify that $0 < t_n < t_{n-1}$ and

(11)
$$(\mathcal{P}x^*)(t_n) = (\mathcal{P}x^*)(t_{n-1}) + n^{-1} \quad (n = 1, 2, \ldots).$$

Since $(\mathcal{P}x^*)(t_n) = (\mathcal{P}x^*)(t_0) + \sum_{j=1}^n j^{-1} \to \infty$, we see that $t_n \downarrow 0$ as $n \to \infty$. Let $\{A(t) \mid t \in I\}$ be a family of sets in Σ satisfying the four conditions of Lemma 2, and let $\Lambda_n = A(t_n)$ for each $n \geq 0$. Then, by (iv) of Lemma 2,

(12)
$$x^*(t_{n-1}) \le x \le x^*(t_n) \quad \text{on } \Lambda_{n-1} \setminus \Lambda_n.$$

Define $\mathcal{F} = (\mathcal{F}_n)_{n \geq 0}$ and $f = (f_n)_{n \geq 0}$ by (8). Then it is easy to see that

$$f_n = (\mathcal{P}x^*)(t_n)1_{\Lambda_n} + x1_{\Omega \setminus \Lambda_n} \quad (n = 0, 1, 2, \ldots).$$

Therefore

(13)
$$|\Delta_n f| = \begin{cases} n^{-1} & \text{on } \Lambda_n, \\ |x - (\mathcal{P}x^*)(t_{n-1})| & \text{on } \Lambda_{n-1} \setminus \Lambda_n, \quad (n = 1, 2, \ldots). \\ 0 & \text{on } \Omega \setminus \Lambda_{n-1}, \end{cases}$$

Using (11) and (12) we find that, on $\Lambda_{n-1} \setminus \Lambda_n$,

$$-n^{-1} \le (\mathcal{P}x^*)(t_n) - x^*(t_n) - n^{-1}$$

$$= (\mathcal{P}x^*)(t_{n-1}) - x^*(t_n)$$

$$\le (\mathcal{P}x^*)(t_{n-1}) - x$$

$$\le (\mathcal{P}x^*)(t_{n-1}) - x^*(t_{n-1}).$$

Hence it follows that

$$|(\mathcal{P}x^*)(t_{n-1}) - x| \le (\mathcal{P}x^*)(t_{n-1}) - x^*(t_{n-1}) + n^{-1}$$
 on $\Lambda_{n-1} \setminus \Lambda_n$.

Since $\mathcal{P}x^* - x^* = \mathcal{P}\mathcal{Q}\varphi - \mathcal{Q}\varphi = \mathcal{P}\varphi$ by (6a), we have

$$\left| (\mathcal{P}x^*)(t_{n-1}) - x \right| \le (\mathcal{P}\varphi)(t_{n-1}) + n^{-1} \quad \text{ on } \Lambda_{n-1} \setminus \Lambda_n.$$

This, together with (13), implies that

$$|\Delta_n f| \le n^{-1} 1_{\Lambda_n} + \{ (\mathcal{P}\varphi)(t_{n-1}) + n^{-1} \} 1_{\Lambda_{n-1} \setminus \Lambda_n}$$

= $n^{-1} 1_{\Lambda_{n-1}} + (\mathcal{P}\varphi)(t_{n-1}) 1_{\Lambda_{n-1} \setminus \Lambda_n}$

for each $n \ge 1$. Since $|f_0| = |\mathbb{E}[x \mid \mathcal{F}_0]| = ||x||_1 = ||\varphi||_1$, it follows that

(14)
$$S(f) \le \|\varphi\|_1 + K + \sum_{n=1}^{\infty} (\mathcal{P}\varphi)(t_{n-1}) 1_{\Lambda_{n-1} \setminus \Lambda_n},$$

where $K = \left\{\sum_{n=1}^{\infty} n^{-2}\right\}^{1/2}$. Note that the nonincreasing rearrangement of the last sum in (14) is the function $s \mapsto \sum_{n=1}^{\infty} (\mathcal{P}\varphi)(t_{n-1}) 1_{[t_n, t_{n-1})}(s)$. Hence by (14),

$$S(f)^* \le \|\varphi\|_1 + K + \sum_{n=1}^{\infty} (\mathcal{P}\varphi)(t_{n-1}) 1_{[t_n, t_{n-1})} \le \|\varphi\|_1 + K + \mathcal{P}\varphi.$$

Note that right-hand side belongs to \widehat{X} . Indeed, since $\beta_{\widehat{X}} = \beta_X < 1$ and $\varphi \in \widehat{X}$, Shimogaki's Theorem shows that $\mathcal{P}\varphi \in \widehat{X}$. Therefore $S(f) \in X$. Since $\mathcal{H}(X) \subset \mathcal{M}(X)$, we conclude that $x = f_{\infty} \in X$, or equivalently that $\mathcal{Q}\varphi = x^* \in \widehat{X}$. This completes the proof.

We now turn to the proof of Proposition 3. As mentioned before, Proposition 3 follows from the results of [1]. We give here another proof. We begin with a lemma which extends Garsia's lemma. For notation and terminology see, e.g., [6].

LEMMA 4 ([8]). Let $(x_n)_{n\geq 0}$ be a nondecreasing sequence of nonnegative random variables adapted to a filtration $\mathcal{F} = (\mathcal{F}_n)_{n\geq 0}$, let $x_\infty = \lim_{n\to\infty} x_n$, and let y be a nonnegative integrable random variable. If the inequality

(15)
$$\mathbb{E}[x_{\infty} - x_{\tau-1} \mid \mathcal{F}_{\tau}] \leq \mathbb{E}[y \mid \mathcal{F}_{\tau}]$$

holds a.s. for every \mathcal{F} -stopping time τ , with the convention that $x_{-1} = 0$, then $x_{\infty}^* \prec \mathcal{Q}y^*$.

Proof. Let $t \in I$ and $t' = \inf\{s \in I \mid x_{\infty}^*(s) = x_{\infty}^*(t)\}$. Then $0 \le t' \le t$, $(0, t') = \{s \in I \mid x_{\infty}^*(s) > x_{\infty}^*(t)\}$, and $x_{\infty}^*(s) = x_{\infty}^*(t)$ whenever $t' \le s \le t$. Applying (15) to the stopping time $\tau = \inf\{n \ge 0 \mid x_n > x_{\infty}^*(t)\}$ and using the Hardy-Littlewood inequality (cf. (3)), we have

$$\int_{0}^{t} x_{\infty}^{*}(s) ds - t x_{\infty}^{*}(t) = \int_{0}^{t'} \left(x_{\infty}^{*}(s) - x_{\infty}^{*}(t) \right) ds$$

$$= \mathbb{E} \left[\left(x_{\infty} - x_{\infty}^{*}(t) \right) \mathbf{1}_{\{x_{\infty} > x_{\infty}^{*}(t)\}} \right]$$

$$\leq \mathbb{E} \left[\left(x_{\infty} - x_{\tau-1} \right) \mathbf{1}_{\{\tau < \infty\}} \right]$$

$$\leq \mathbb{E} \left[y \mathbf{1}_{\{x_{\infty} > x_{\infty}^{*}(t)\}} \right]$$

$$\leq \int_{0}^{t} y^{*}(s) ds.$$

Thus $\mathcal{P}x_{\infty}^* - x_{\infty}^* \leq \mathcal{P}y^*$ on I. Therefore it follows from (6a) and (6b) that

(16)
$$\mathcal{P}x_{\infty}^* - \|x_{\infty}^*\|_1 = \mathcal{Q}(\mathcal{P}x_{\infty}^* - x_{\infty}^*) \le \mathcal{Q}\mathcal{P}y^* = \mathcal{P}\mathcal{Q}y^* - \|y^*\|_1.$$

On the other hand, setting $\tau \equiv 0$ in (15) yields that

$$||x_{\infty}^*||_1 = ||x||_1 \le ||y||_1 = ||y^*||_1$$
.

Combining this with (16), we conclude that $\mathcal{P}x_{\infty}^* \leq \mathcal{PQ}y^*$ on I, or equivalently that $x_{\infty}^* \prec \mathcal{Q}y^*$.

LEMMA 5. Let x and y be nonnegative integrable random variables. If the inequality

(17)
$$\lambda \mathbb{P}(x \ge \lambda) \le \int_{\{x \ge \lambda\}} y \, d\mathbb{P}$$

holds for any $\lambda > 0$, then $x^* \leq \mathcal{P}y^*$ on I.

Proof. Let $t \in I$ and $t' = \mathbb{P}(x \ge x^*(t))$; then $t' \ge t$. Setting $\lambda = x^*(t)$ in (17) and using the Hardy-Littlewood inequality (cf. (3)), we obtain

$$x^*(t) \le \frac{1}{t'} \int_{\{x > x^*(t)\}} y \, d\mathbb{P} \le (\mathcal{P}y^*)(t') \le (\mathcal{P}y^*)(t)$$

as desired. \Box

Proof of Proposition 3. Suppose $0 < \alpha_X \le \beta_X < 1$. Then both $\mathcal P$ and $\mathcal Q$ are bounded operators from $\widehat X$ into $\widehat X$. To prove (4), we may assume that X is endowed with an r.i. norm. Recall (the conditional form of) Davis' inequality: there are constants k > 0 and k' > 0 such that

$$\mathbb{E}\left[M(f) - M_{\tau-1}(f) \mid \mathcal{F}_{\tau}\right] \leq k \,\mathbb{E}\left[S(f) \mid \mathcal{F}_{\tau}\right] \quad \text{a.s., and}$$

$$\mathbb{E}\left[S(f) - S_{\tau-1}(f) \mid \mathcal{F}_{\tau}\right] \leq k' \,\mathbb{E}\left[M(f) \mid \mathcal{F}_{\tau}\right] \quad \text{a.s.}$$

for all $f \in \mathcal{M}_{\mathcal{F}}$ and for all \mathcal{F} -stopping times τ (see, e.g., [6, p. 286] or [10, p. 89]). It then follows from Lemma 4 that $M(f)^* \prec k \mathcal{Q}S(f)^*$ and $S(f)^* \prec k' \mathcal{Q}M(f)^*$. Therefore, by (L2) and (R2'), we have

- (18) $\|M(f)\|_X = \|M(f)^*\|_{\widehat{X}} \le k \|QS(f)^*\|_{\widehat{X}} \le k \|Q\|_{B(\widehat{X})} \|S(f)\|_X$ and
- $(19) ||S(f)||_X = ||S(f)^*||_{\widehat{X}} \le k' ||QM(f)^*||_{\widehat{X}} \le k' ||Q||_{B(\widehat{X})} ||M(f)||_X.$

Now we recall Doob's inequality (see, e.g., [10, p. 34]): for any $f \in \mathcal{M}$,

$$\lambda \mathbb{P}(M(f) > \lambda) \le \int_{\{M(f) > \lambda\}} |f_{\infty}| d\mathbb{P} \qquad (\lambda > 0).$$

It then follows from Lemma 5 that $M(f)^* \leq \mathcal{P} f_{\infty}^*$ on I. Therefore

(20)
$$\|M(f)\|_{X} = \|M(f)^*\|_{\widehat{X}} \le \|\mathcal{P}\|_{B(\widehat{X})} \|f_{\infty}\|_{X} \quad (f \in \mathcal{M}).$$

Combining (18), (19), and (20), we obtain (4) with $c = (k \| \mathcal{Q} \|_{B(\widehat{X})})^{-1}$ and $C = k' \| \mathcal{Q} \|_{B(\widehat{X})} \| \mathcal{P} \|_{B(\widehat{X})}$.

[‡] To prove (4), we can assume that $f \in H_1$; hence $QS(f)^*$ and $QM(f)^*$ can be defined.

4. Application to weighted norm inequalities

Let $\Phi:[0,\infty)\to[0,\infty)$ be an *N-function*, namely, an increasing convex function such that:

- $\Phi(u) = 0$ if and only if u = 0;
- $\bullet \lim_{u \to \infty} \frac{\Phi(u)}{u} = \infty;$
- $\bullet \lim_{u \to 0+} \frac{\Phi(u)}{u} = 0.$

Then the complementary function Ψ , which is given by

$$\Psi(u) = \sup \{ uv - \Phi(v) \mid v \ge 0 \} \quad (v \ge 0),$$

is also an N-function. We say that Φ satisfies the Δ_2 -condition and write $\Phi \in \Delta_2$ if there exist constants k > 0 and $u_0 \ge 0$ such that $\Phi(2u) \le k \Phi(u)$ for $u \ge u_0$. We say that Φ satisfies the ∇_2 -condition and write $\Phi \in \nabla_2$ if $\Psi \in \Delta_2$. Then $\Phi \in \nabla_2$ if and only if there exist constants l > 1 and $v_0 \ge 0$ such that $\Phi(v) \le (2l)^{-1} \Phi(lv)$ for $v \ge v_0$ (see [9, p. 25]).

Let L_{Φ} be the Orlicz space over $(\Omega, \Sigma, \mathbb{P})$ endowed with the *Luxemburg norm* $\|\cdot\|_{\Phi}$ (see [9, p. 78]), and denote by α_{Φ} and β_{Φ} the lower and upper Boyd indices of L_{Φ} . It is known that $\alpha_{\Phi} > 0$ if and only if $\Phi \in \Delta_2$ (see [12, Theorems 3.2 and 4.2.]). Moreover, since $\alpha_{\Psi} + \beta_{\Phi} = 1$, it follows that $\beta_{\Phi} < 1$ if and only if $\Phi \in \nabla_2$.

Now let w be a weight random variable, i.e., let w be a (strictly) positive and integrable random variable. We assume that $\mathbb{E}[w] = 1$ and consider the probability measure

$$\mathbb{P}_w(\Lambda) = \mathbb{E}[w1_{\Lambda}] \qquad (\Lambda \in \Sigma).$$

Let $(L_{\Phi,w}, \|\cdot\|_{\Phi,w})$ be the Orlicz space over $(\Omega, \Sigma, \mathbb{P}_w)$ endowed with the Luxemburg norm relative to \mathbb{P}_w . Denoting by ψ the right-derivative of Ψ , we claim that if $\psi(w^{-1}) \in L_1$, then $L_{\infty} \hookrightarrow L_{\Phi,w} \hookrightarrow L_1$, where L_1 and L_{∞} are Lebesgue spaces with respect to \mathbb{P} . The first embedding is evident. To see the second embedding, suppose that $x \in L_{\Phi,w}$ and $\|x\|_{\Phi,w} \leq 1$. Then

$$\mathbb{E}\big[|x|\big] \leq \mathbb{E}\big[\,\Phi(|x|)\,w\,\big] + \mathbb{E}\big[\,\Psi(w^{-1})\,w\,\big] \leq 1 + \mathbb{E}\big[\,\psi(w^{-1})\,\big] =: M < \infty.$$

Here we have used the Young inequality $uv \leq \Phi(u) + \Psi(v)$ and the inequality $\Psi(v) \leq v\psi(v)$. Thus $\|\cdot\|_1 \leq M \|\cdot\|_{\Phi,w}$ as claimed.

With the notation above, we have:

THEOREM 2. Suppose that $\Phi \in \Delta_2$ and $\psi(w^{-1}) \in L_1$. Then the following are equivalent:

(i) there are constants c and C such that

(21)
$$c \| f_{\infty} \|_{\Phi, w} \le \| S(f) \|_{\Phi, w} \le C \| f_{\infty} \|_{\Phi, w} \quad (f \in \mathcal{M});$$

(ii) (a) there are constants c_1 and c_2 such that $c_1 \leq w \leq c_2$ a.s., and (b) $\Phi \in \nabla_2$.

Before proving Theorem 2, we recall that

(22)
$$\int_{0}^{t} w^{*}(s) ds = \max \left\{ \int_{\Lambda} w d\mathbb{P} \mid \Lambda \in \Sigma, \ \mathbb{P}(\Lambda) = t \right\}$$
$$\int_{0}^{t} w_{*}(s) ds = \min \left\{ \int_{\Lambda} w d\mathbb{P} \mid \Lambda \in \Sigma, \ \mathbb{P}(\Lambda) = t \right\}$$
$$(t \in I).$$

where $w_*(s) = w^*(1-s)$ (see [5, p. 47]).

Proof. (ii) \Rightarrow (i). Condition (a) shows that $\|\cdot\|_{\Phi} \approx \|\cdot\|_{\Phi,w}$ and condition (b) shows that $\beta_{\Phi} < 1$. Furthermore $\alpha_X > 0$, since $\Phi \in \Delta_2$ by hypothesis. Hence we obtain (21) from Proposition 3.

(i) \Rightarrow (ii). Suppose that (i) holds. Then $L_{\Phi,w}$ is r.i. with respect to $\mathbb P$ (or briefly, " $\mathbb P$ -r.i.") by Theorem 1. Hence there exists a $\mathbb P$ -r.i. norm $\|\|\cdot\|\|_{\Phi,w}$ on $L_{\Phi,w}$ such that $k_1\|\cdot\|_{\Phi,w}\leq\|\|\cdot\|\|_{\Phi,w}\leq k_2\|\cdot\|_{\Phi,w}$ with some constants $k_1>0$ and $k_2>0$. By hypothesis, there exists $u_0\geq 0$ and $k\geq 1$ such that

(23)
$$\Phi\left(\frac{k_2 u}{k_1}\right) \le K\Phi(u) \quad \text{for all } u \ge u_0.$$

Since $w \in L_1$, we can find a positive number δ such that $\mathbb{P}_w(\Lambda) \leq 1/\Phi(u_0)$ whenever $\mathbb{P}(\Lambda) < \delta$. Suppose now that Λ , $\Lambda' \in \Sigma$ and $0 < \mathbb{P}(\Lambda) = \mathbb{P}(\Lambda') = t < \delta$. Then $1_{\Lambda}^* = 1_{\Lambda'}^*$ and $\mathbb{P}_w(\Lambda) \leq 1/\Phi(u_0)$. Furthermore,

$$k_{1} \left\{ \Phi^{-1} \left(\frac{1}{\mathbb{P}_{w}(\Lambda)} \right) \right\}^{-1} = k_{1} \left\| 1_{\Lambda} \right\|_{\Phi, w}$$

$$\leq \left\| 1_{\Lambda} \right\|_{\Phi, w} = \left\| 1_{\Lambda'} \right\|_{\Phi, w}$$

$$\leq k_{2} \left\| 1_{\Lambda'} \right\|_{\Phi, w} = k_{2} \left\{ \Phi^{-1} \left(\frac{1}{\mathbb{P}_{w}(\Lambda')} \right) \right\}^{-1},$$

or equivalently

(24)
$$\Phi^{-1}\left(\frac{1}{\mathbb{P}_w(\Lambda')}\right) \le \frac{k_2}{k_1} \Phi^{-1}\left(\frac{1}{\mathbb{P}_w(\Lambda)}\right).$$

Using (23) and (24), we obtain that

$$\int_{\Lambda} w \, d\mathbb{P} = \mathbb{P}_w(\Lambda) \le K \mathbb{P}_w(\Lambda') = K \int_{\Lambda'} w \, d\mathbb{P}.$$

Hence we may use (22) to deduce that

$$\frac{1}{t} \int_0^t w^*(s) \, ds \le \frac{K}{t} \int_0^t w_*(s) \qquad (0 < t < \delta).$$

Letting $t \to 0+$, we conclude that $\operatorname{ess\,sup} w \leq K \operatorname{ess\,inf} w$. This means that there exist constants c_1 and c_2 such that $c_1 \leq w \leq c_2$ a.s. Therefore (21) can be written as

$$c' \| f_{\infty} \|_{\Phi} \le \| S(f) \|_{\Phi} \le C' \| f_{\infty} \|_{\Phi} \qquad (f \in \mathcal{M})$$

with some constants c' and C'. According to Theorem 1, the upper Boyd index β_{Φ} must be less than one, or equivalently Φ must satisfy the ∇_2 -condition. This completes the proof.

Acknowledgement. The author would like to thank the referee for his helpful suggestions.

References

- A. Antipa, Doob's inequality for rearrangement-invariant function spaces, Rev. Roumaine Math. Pures Appl. 35 (1990), 101–108.
- [2] C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, Boston, MA, 1988
- [3] D. W. Boyd, Indices of function spaces and their relationship to interpolation, Canad. J. Math. 21 (1969), 1245–1254.
- [4] D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494–1504.
- [5] K. M. Chong and N. M. Rice, Equimeasurable rearrangements of functions, Queen's Papers in Pure and Appl. Math., vol. 28, Queen's Univ., Kingston, Ontario, 1971.
- [6] C. Dellacherie and P. A. Meyer, Probabilities and potential. B, North-Holland, Amsterdam, 1982.
- [7] W. B. Johnson and G. Schechtman, Martingale inequalities in rearrangement invariant function spaces, Israel J. Math. 64 (1988), 267–275.
- [8] M. Kikuchi, Averaging operators and martingale inequalities in rearrangement invariant function spaces, Canad. Math. Bull. 42 (1999), 321–334.
- [9] M. A. Krasnoselskiĭ and Ya. B. Rutickiĭ, Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961.
- [10] R. L. Long, Martingale spaces and inequalities, Peking Univ. Press, Beijing, 1993.
- [11] W. A. J. Luxemburg, Rearrangement-invariant Banach function spaces, Proc. Sympos. in Analysis, Queen's Papers in Pure and Appl. Math., vol. 10, Queen's Univ., Kingston, Ontario, 1967, pp. 83–144.
- [12] L. Maligranda, *Indices and interpolation*, Dissertationes Math. (Rozprawy Mat.) **234**,
- [13] I. Ya. Novikov, Martingale inequalities in rearrangement invariant function spaces, Function spaces (Poznań, 1989), Teubner-Texte Math., vol. 120, Teubner, Stuttgart, 1991, pp. 120–127.
- [14] T. Shimogaki, Hardy-Littlewood majorants in function spaces, J. Math. Soc. Japan 17 (1965), 365–373.

Department of Mathematics, Toyama University, 3190 Gofuku, Toyama 930–8555, Japan

 $E\text{-}mail\ address: \verb+kikuchi@sci.toyama-u.ac.jp+$