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CHARACTERIZATION OF BANACH FUNCTION SPACES
THAT PRESERVE THE BURKHOLDER
SQUARE-FUNCTION INEQUALITY
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Dedicated to Professor Tamotsu Tsuchikura on his eightieth birthday

ABSTRACT. Let (X, || - ||x) be a Banach function space over a non-
atomic probability space. We give a necessary and sufficient condition
on X for the inequalities ¢||foc|lx < [|S(f)|lx < C|lfollx to hold for
all uniformly integrable martingales f = (fn)n>0, Where foo = limp fn

a.s. and S(f) = {f02 + >z (fn — fn—1)2}1/2'

1. Introduction

In 1966 Burkholder [4] proved that if 1 < p < oo, then there are positive
constants ¢, and C, such that

(1) p 1 fosll, < NS, < Cpll fooll,
for all uniformly integrable martingales f = (f,)n>0, wWhere fo = lim, f,

almost surely (a.s.) and S(f) = {f& + >y (fn — fn_1)2}1/2. Recall that
(1) holds neither for p = 1 nor for p = co. Here we consider this inequality
for Banach function spaces (see Definition 1 below). Our main result is that
if such a space X satisfies the inequality

cllfollx <UNSUNHIx < Cllfolx

for all uniformly integrable martingales f = (f,,), then X is rearrangement-
invariant and its norm is equivalent to a rearrangement-invariant norm for
which the Boyd indices satisfy 0 < ay < 8y < 1.

Both the Doob maximal inequality and the Burkholder-Davis-Gundy in-
equality, in which the maximal function of f replaces the limit function fu,
have already been studied for rearrangement-invariant spaces (see Antipa [1]
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and the closely related and independent work of Johnson and Schechtman [7],
Kikuchi [8], and Novikov [13]). This work shows that the converse of our main
result is true (see Proposition 3).

2. Notation and terminology
Let (Q, ¥, P) be a nonatomic probability space®.

2.1. Banach function spaces. If X and Y are Banach spaces of random
variables, we write X — Y to mean that X is continuously embedded in Y,
ie., that X C Y and ||z[ly < cllz| y for all z € X with some constant ¢ > 0.

DEFINITION 1. A real Banach space (X, ||| y) of (equivalence classes
of) random variables on Q is called a Banach function space if it satisfies the
following conditions:

(Bl) Lo — X — Ly;
(B2) ifx € X and |y| < |z| as., then y € X and ||y[|x < ||z x;
(B3) ifz, € X, 0<a, T xas. and sup, ||z,||y < oo, then z € X and
2]l x = supy, [2nllx-
We adopt the convention that ||z||y = co unless z € X.

Let x and y be random variables. We write x ~, y if they are equimeasur-
able, or in other words, they are identically distributed.

DEFINITION 2. (i) A Banach function space X is said to be rearrange-
ment-invariant (or simply r.i.) if it satisfies the following condition:

(R1) ifx € X and = ~4 y, then y € X.

(ii) The norm of a Banach function space X is said to be rearrangement-in-
variant (or simply r.i.) if it satisfies the following condition:

(R2) ifz,y€ X and x ~qy, then ||z| v = ||y x-

Note that if the norm of a Banach function space X is r.i., then the space
X is r.i. To see this, suppose that x ~; y and z € X. Then, for all integers
n > 1, we have || An ~ 4 [y| An and hence |||y /\nHX = |||=| /\nHX <|lz| x
by (R2) and (B2). This, together with (B3), implies that y € X. As for the
converse, the norm of an r.i. space! X is not always r.i. (see [11, p. 114] or [5,
p. 99]). There is, however, an r.i. norm || - ||x on X such that || - || ~ ||| - llx
(see [11, p. 138] or [5, p. 106]). Here we write || - ||y = ||| - [|x if these norms
are equivalent.

Now let T = (0, 1] and let p be Lebesgue measure on the o-algebra 9
of Lebesgue measurable subsets of I. The nonincreasing rearrangement of a

* In essence, we may assume that € is the unit interval (0, 1] with Lebesgue measure on
the o-algebra of Lebesgue measurable sets.
T By an r.i. space X, we mean a rearrangement-invariant Banach function space X.
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random variable z on 2, which is denoted by x*, is the function on I defined
as

*(t) =inf{A >0 | P(|z| > \) <t} (tel),

where we follow the convention that inf() = co. Note that z* and |x| are
equimeasurable, i.e.,

p(z* > A) =P(|z] > A) for all A > 0.

The nonincreasing rearrangement ¢* of a measurable function ¢: I — R is
defined in the same way. If ¢ and 1 are measurable functions on I, then

@) [W@wm@s[w@www.

This is called the Hardy-Littlewood inequality (see, e.g., [2, p. 44]). In partic-
ular,

w(E)
3) [lewlis< [* e @ds @ em)

Following [2], we write ¢ < 1 to mean that

t t
/ ©*(s)ds < / Y*(s)ds foralltel.
0 0

It is then clear that ¢ < 1 if and only if p* < ¥*. Moreover, if x and y are
random variables on 2, then we write z < y to mean that z* < y*.

Note that if (X, || -|/y) is endowed with an r.i. norm, then (R2) can be
replaced by the following condition (cf. [2, p. 90]):

(R2) ifz € X and y <z, then y € X and ||y||y < ||z -

We now recall the Luzemburg representation theorem. If (X, |- ||y) is an
r.i. space over ) endowed with an r.i. norm, then there exists an r.i. space
(X, || - llg) over I endowed with an r.i. norm such that

(L1) z € X if and only if 2* € X;
(L2) |lz|yx = [l*||g for all z € X.

See [2, pp. 62-64] for a proof. Such a space (X, || - | ¢) is unique; we call

(X, |- | ¢) the Luzemburg representation of X.

In order to state our results, we need the notion of the Boyd indices. For
each s € (0, 00), the dilation operator D, acting on the space of measurable
functions on I, is defined by

(D, o)1) = { p(st), ifstel, (e

0, otherwise,
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If (Y, || - |ly) is an r.i. space over I, then each D, is a bounded linear operator
from Y into Y, and || Ds || gy < 1Vvs™1, where || - | 5(y) denotes the operator
norm. The lower and upper Boyd indices are defined by

tog [ D=ty _ 081D ey

Yy = 0?;81 log s - s—0+4 log s
e log 1D, log 1D,
og -1 og -1
By = inf o7 WBOY) _ i S—B(Y)’
1<s<oo log s s—00 log s
respectively. If (X, || - || y) is an r.i. space over €2 endowed with an r.i. norm,
then the Boyd indices of (X, || - || ) are defined by ay = ag and By = (5,
where X is the Luxemburg representation of X. Moreover, if (X, |- lx) is an
arbitrary r.i. space and if ||| - ||| x is an r.i. norm on X such that || - ||y =~ || - || x,
then the Boyd indices of (X, || -|/y) are defined to be those of (X, || - [|x)-

In any case, we have 0 < ay < By <1 (see [3] or [2, p. 149]).

2.2. Martingales. By a filtration we mean a nondecreasing sequence F =
(Fn)n>o of sub-o-algebras of ¥. Given a filtration F = (F,,), we denote by
Mg, the collection of all uniformly integrable martingales with respect to
F. As is well known, every f € Mz converges almost surely (a.s.) to some
Je € Ll(Q) and fp, = E[foo |~7:n] (n =12,.. ) (Seea e.g., [6’ p- 26])

In what follows, we will consider martingales with respect to various fil-
trations, and accordingly we let M = |J Mz, where the union is over all
filtrations F. We will use the following notation for f = (f,)n>0 € M:

o AOf = an Anf = fn_fn—l (n:172a"')a

n /

o Su(f):= { Z(Ajf)Q}1 ’ (n=0,1,2,...),
7=0

o S():= lm S.(),

d Mn(f) = Orgﬁgn\fﬂ (n:07172a"')a

o M(f) = lim M()),

o foo:= nh_)ngofn a.s.

3. Main results

Given a Banach function space (X, || - || ) over §, we let
(4) MX) ={f=(fa) eM| fo € X};
5) H(X) = {f = (f) € M| S(f) € X}.

Our main result is as follows:
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THEOREM 1. Let (X, ||-|x) be a Banach function space over Q. Then
the following are equivalent:

(i) there are constants ¢ and C, depending only on X, such that

(4) clfcllx <ISHIx < Cllifollx  (f € M);
(i) M(X) = H(X);
(iil) X is rearrangement-invariant and can be renormed with an equivalent
rearrangement-invariant norm for which the Boyd indices satisfy 0 <
oy <Py <1

Note that except for possible changes in the constants, inequality (4) holds
for a norm if and only if it holds for every equivalent norm.

Recall the convention that ||z|y = oo unless € X. This shows that (i)
implies (ii). That (ii) implies (iii) follows from Propositions 1 and 2 below,
and that (iii) implies (i) is just the assertion of Proposition 3 below.

PRrROPOSITION 1. Let (X, |- ||x) be a Banach function space over Q. If
M(X) C H(X), then:
(i) X is rearrangement-invariant;
(i) By < 1.

PROPOSITION 2. Let (X, || - | ) be a rearrangement-invariant space over
Q. If By <1 and if H(X) C M(X), then ay > 0.

PROPOSITION 3. Let (X, | -|x) be as in Proposition 2. If 0 < ay <
Bx < 1, then there are constants ¢ and C, depending only on X, such that
(4) holds.

Proposition 3 follows from the results of Antipa [1]; however, we will give
an alternative proof of Proposition 3 via Shimogaki’s Theorem.
In order to prove Propositions 1 and 2, we need the following lemmas.

LEMMA 1. Let (X, | -||x) be a Banach function space. Then X is rear-
rangement-invariant if and only if it satisfies the following condition:
(RY) ifax,y>0as,{r>0nN{y>0}t=0, x ~qvy, and x € X, then
yeX.

Proof. Tt suffices to show that (R1’) implies (R1). Suppose that z ~ 4 y and
x € X. To prove that y € X, we may assume y ¢ Lo, (cf. (B1)). Choose A > 0
so large that P(|z| > X) < 1/3. Clearly 2’ := |z|1{j3>x) and ¢ := [y[1{y>2}
are equimeasurable and 2’ € X. Since the set {#' = 0, ¥’ = 0} contains no
atom and P(z’ =0, ¢y = 0) > 1/3, there is a random variable z > 0 such that
{z>0} C {2/ =0,y =0} and z ~4 2’ (cf. [5, p. 44]). Then condition (R1’)
yields that z € X, since {z > 0} N {2’ > 0} = 0 and 2’ € X. Now the same
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reasoning shows that y’ € X. Therefore |y| <y’ 4+ X € X, and thus y € X as
desired. 0

LEMMA 2 ([2, p. 46]). Suppose that x € L1(2) is nonnegative. Then there
is a family {A(t) |t € I'} of measurable subsets of 0 satisfying the following
conditions:

(i) A(s) C A(t) whenever 0 < s <t <1,
(i) P(A(t)) =t for all t € I;
(iii) fA(t) rdP = fg x*(s)ds for all t € I;

(iv) {we Q|z(w)>az*(t)} CA(t) C{w e Q|z(w) > a*(t)} forall t € 1.
In particular, if P(x = s) =0 for all s > 0 and if to = P(x > 0), then A(t)
may be taken to be the set {w € Q| x(w) > x*(t)} for each t € (0, o).

We now consider an averaging operator P and its adjoint Q: for ¢ € L;(I)
define

(Po)(t) = = / ps)ds  (tel),

t
and for ¢ € (g4 L1(t, 1) define

1
s
@0 = [ a5 wen,
t
Then it is easy to derive the following formulae:
(6a) PQp=Pp+ Qp (¢ € Li(1));

(6b) QP¢=P<p+Q<p—/I<pdu (gpeLl(I)).

We recall Shimogaki’s Theorem on the boundedness of P and Q. In terms of
Boyd indices, it can be expressed as follows:

SHIMOGAKI'S THEOREM ([14]). Let (Y, || - |ly-) be a rearrangement-invar-
iant space over I endowed with a rearrangement-invariant norm. Then:
(i) By < 1ifand only if P is a bounded operator from Y into Y;
(ii) ay > 0 if and only if Q is a bounded operator from'Y into Y.

For a proof of (an extension of) this theorem see [2, p. 150] or [3]. Note
that P (resp. Q) is a bounded linear operator from Y into Y if and only if
P(Y) CY (resp. Q(Y) CY). This is an immediate consequence of the closed
graph theorem, since Y — L;(I). Thus:

e 3, <1lifandonlyif P(Y)CY;
e o, >0ifand only if Q(Y) C Y.

The next lemma is a variant of Shimogaki’s Theorem. Before stating it, we
must introduce some notation.
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NoTATION. Let (Y, || - ||y-) be a Banach function space over I.
(i) We denote by Dy the collection of all nonnegative nonincreasing func-
tions in Y.
(ii) We denote by Dy the collection of functions ¢ € Dy such that p(p >
0) < 1/2.

LEMMA 3. Let (Y, ||-|ly) be as in Shimogaki’s Theorem. Then:
(i) By <1 ifand only if P(Dy) CY;
(i) ay >0 if and only if Q(Dy) CY.

Furthermore Dy, may be replaced by Dy, \ Loo(I) in (i).

Proof. The last statement is clear, since Py € L, for any ¢ € L.

To prove (i) and (ii), it suffices to show that:

(") f P(Dy)CY, thenP(Y)CY;

(ii") if Q(Dy) C Y, then Q(Y) CY.

To prove (i'), assume that Py € Y whenever ¢ € Dy,. Let ¢ € Y and
choose A > 0 so that u([t)] > A) < 1/2. If we let ¢ = 9™ 1gy-5y, then
¢ € Dy, and hence Py € Y. By inequality (3) and the inequality ¢* < ¢ + A
we have

[(PY)A)| < (PU*)(1) < (Pe)t) + A (te D).
Hence Py € Y, as desired.

To prove (ii’), assume that Q¢ € Y whenever ¢ € Dy. Let ¢ € Y, or
equivalently, let ¢* € Dy; then Qy* € Y. It suffices to show that Q|| € Y,
since |Qy| < QY| (cf. (B2)). Using inequality (2), we find that

A(me@dw=4<1Af%nw@Ms

1
—1 *
S/O(l/\s t)*(s)ds

t
0

- [@uwds e,

This shows that Q|y| < Qu* (since these two functions are nonincreasing).
Hence Q|| € Y (cf. (R2')), as desired. O

We are now ready to prove Propositions 1 and 2.

Proof of Proposition 1. Suppose M(X) C H(X).

(i) To prove that X is r.i., it suffices to show that X satisfies (R1") (see
Lemma 1). Assume that z, y > 0 a.s., {z >0} N{y >0} =0, z ~4 y, and
x € X. We must prove that y € X. To this end, we may assume y ¢ L.

There are two cases to consider:
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Case 1: P(y = s) =0 for any s > 0;

Case 2: P(y = s) > 0 for some s > 0.

In Case 1, we define § € L1 and « € R by letting § = y and o = 0.

In Case 2, we define § and « as follows. Let Qo = J,cr{y = s} and let
a = P(), where T is the set of s > 0 such that P(y = s) > 0. Since  is
nonatomic, we can find a nonnegative random variable r such that {r > 0} =
Qo and r*(t) = (a—¢)T for all t € I (see [5, p. 44]). We then define g = y+r.

In any case, we have:

o P(j=s)=0forall s >0

o {y>0}={g>0}
o y<gy<y-+aon and hence y* < §* < y* +a on I.

In the rest of the proof of (i), we do not have to distinguish the two cases.
Define a sequence {t,,}22; in I by setting

to = P(y > 0);
tn =sup{s € I | (PF*)(s) > 2(P§*)(tn-1)} (n=1,2,...).

Then, since y ¢ Lo, and PF* is continuous, it is easy to verify that 0 < t,, <
tn_1 for allm > 1, and

(7) (Py*)(tn) =2(Py")(tn-1) (n=1,2,...).

From (7) it follows that ¢, | 0 as n — oco. Let {A(t)|t € I} be a family of
sets in X satisfying the four conditions of Lemma 2 (relative to z). Let

A, = A(tn)7 B, = {w ‘ g(w) > g*(tn)}v and A, = A, U B,
for each n =0,1,2.... We define a filtration F = (F,)n>0 and a martingale

as follows:
@®) Fn=c{A\ A, |A € X},
fn = E[1‘|.7:n],

Because P(A,,) = P(B,) = t, and A4, N B,, = 0, we see from (iii) of Lemma 2
that

(n=0,1,2,...).

fn = ﬁ E[z1a,] +2lo\a, = %(Py*)(tn)lAn +aloa,.
Therefore
3 (Py*)(tn) = 5 (Py*)(ta-1) on Ay,
Anf =3 z—L(Py")(ta-1) onA,_1\A,, (n=12..).

o

on 2 \ An—17

Since x = 0 on B,,, it follows that

(9) Auf =3 (Py)(tnr) on Bui\ By
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Using (7), (9), the continuity of P§*, and the nonincreasing property of 7*,
we see that on B,,_1 \ B,

Yy<g<y(tn)
< (Py*)(tn) = 2(Py")(tn-1)
< 2Py ) (tn-1) + 2a = 4|A, f] + 20
Because {y > 0} = {§ > 0} = By and B,, | 0 a.s., we deduce that a.s.

') oo 1/2
(10) y=Y ylp, B, = 4(2 |Anf|213n1\3n) + 200 < 4S(f) + 2a.

n=1 n=1

On the other hand, since P(A,,) = 2t, — 0 as n — oo, we see that fo, =
x € X or equivalently f = (f,) € M(X). Hence S(f) € X by hypothesis.
Combining this with (10), we conclude that y € X. This completes the proof
of (i).

(ii) As shown above, X is r.i. Hence we may assume (see the discussion
following Definition 2) that X is endowed with an r.i. norm. Let (X, - 1l5)
be the Luxemburg representation of X. To prove that 3, < 1, it suffices to
show that Py € X whenever ¢ € D%\ Loo(I) (see Lemma 3).

Since p(p > 0) < 1/2 (and © is nonatomic), we can find nonnegative
random variables x and y such that 2* = y* = ¢ on I and {& > 0} N {y >
0} = 0. We then define g, o, {t,.}, {An}, {Bn}, {An}, F = (Fn), and f = (f,)
as in the proof of (i). Then

(Pg*)(tn) < 4|Anf| + 2 on anl \Bn7

as shown above. Therefore
o0

D (PF)(ta)lp, \b, <A4S(f)+ 20

n=1
Observe that the nonincreasing rearrangement of the left-hand side is the
function s — Y7 (PJ*)(tn)1pt,, ¢, 1)(s). It is greater than or equal to Pj*.
Thus we find that

Po=Py <Py <> (PF)ta)ly, e, y) <AS(F)" + 20
n=1

Since z* = p € Dg C X, we see that foo =z € X (cf. (L1)). Hence S(f) € X

by hypothesis. As a consequence, Py < 4S(f)* + 2a € X. This completes
the proof of Proposition 1. O

Proof of Proposition 2. Assume that 6, < 1 and H(X) C M(X). To
prove Proposition 2, we may assume that X is endowed with an r.i. norm.
According to Lemma 3, it suffices to show that Q¢ € X whenever p€Ds.
To this end, we may assume ¢ # 0; hence (Qy)(t) — oo as t — 0+. Choose
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a random variable z so that z* = Q¢ on I and define a sequence {t,} in I
by setting

to = 1;

tn =sup{s € I | (Pz*)(s) > (Pa*)(tn—1)+n" '} (n=1,2,...).
Then it is easy to verify that 0 < ¢,, < t,_1 and
(11) (Pa*)(tn) = (Px*)(th—1) +n~ ' (n=1,2,...).

Since (Pa*)(tn) = (Px*)(to) + 27—, j~' — 00, we see that t,, | 0 as n — oo.
Let {A(t)|t € I} be a family of sets in ¥ satisfying the four conditions of
Lemma 2, and let A,, = A(t,,) for each n > 0. Then, by (iv) of Lemma 2,

(12) x(tp—1) <z < a*(tn) on A,_1 \ Ay
Define F = (F,)n>0 and f = (fn)n>0 by (8). Then it is easy to see that
fn= ('Pl‘*)(tn)l/\” +xlﬂ\An (n:O,l,Q,...).

Therefore
on A,

(13) |ALf| = |:L'— (Pz*)(tn-1)] onAp_1\An, (n=1,2,...).
on O\ Ap_1,

Using (11) and (12) we find that, on A,_1 \ A,
TS (P (ta) — 2t (tn) — 7!

= (Pa")(tn-1) — (tn)
< (Pa)(tn-1) —
< (PaYtur) 2" ()

Hence it follows that
|(Pa*)(tn—1) — | < (Pa*)(tn—1) — @ (ta—1) + 0" on Ap_1 \ Ay
Since Pa* —a* =PQy — Qp = Py by (6a), we have
|(Pa*)(ta—1) — 2| < (P@)(tn-1) + 0" on Ap_q\ A,
This, together with (13), implies that
ALl <n  1n, + {(Pe)(tno1) + 07 A, A,

= n_l 1An71 + (PQ)(tn_l)lAn—l\An
for each n > 1. Since |fo| = |E[z | Fo ]| = |z, = |¢ll;, it follows that
(14) S(H) < llelly + K+ Y (Po)(tn-1)la, 1\ans

n=1
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where K = {Zzo:l n’z}l/ ®. Note that the nonincreasing rearrangement of
the last sum in (14) is the function s — > " | (P ) (tn—1)1}s,,1,_,)(s). Hence
by (14),

S(N* < el + K+ Y (P ta-1)lp, 1,0 < llelly + K + Pe.

n=1
Note that right-hand side belongs to X. Indeed, since B3 = By < 1 and

¢ € X, Shimogaki’s Theorem shows that Py € X. Therefore S(f) € X.
Since H(X) € M(X), we conclude that © = f,, € X, or equivalently that
Qp = z* € X. This completes the proof. O

We now turn to the proof of Proposition 3. As mentioned before, Propo-
sition 3 follows from the results of [1]. We give here another proof. We begin
with a lemma which extends Garsia’s lemma. For notation and terminology
see, e.g., [6].

LEMMA 4 ([8]). Let (zn)n>0 be a nondecreasing sequence of nonnegative
random variables adapted to a filtration F = (Fp)n>0, let Too = limy, oo T,
and let y be a nonnegative integrable random variable. If the inequality

(15) Bl — 21| Fr | <E[y|F7]
holds a.s. for every JF-stopping time T, with the convention that x_1 = 0, then

xh < Qu*.

Proof. Let t € I and t' = inf{s € I | %,(s) = x%,(t)}. Then 0 < ¢’ < ¢,
(0,¢) = {s el|ai(s)> a5 (t)}, and a3 (s) = a5 (t) whenever t’ < s < t.
Applying (15) to the stopping time 7 = inf{n >0 | Ty > Th (t)} and using
the Hardy-Littlewood inequality (cf. (3)), we have

/O o (s)ds — t 2" (£) = /0 (a2, (s) — a2 (1)) ds
=E[(v00 — 25(1)) Lz >an, 03]

< E[(xoo - m771)1{7'<oo}:|
<E[Y lawsen 0}

< /Ot y*(s)ds.

Thus Pz, — xk, < Py* on I. Therefore it follows from (6a) and (6b) that
(16) Pag, =zl = QPa, —aZ,) < QPy" =Py — [ly"|; -
On the other hand, setting 7 = 0 in (15) yields that

lzselly = llzlly < llylly = lly* [l -
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Combining this with (16), we conclude that Pz, < PQy* on I, or equiva-
lently that =%, < Qy*. O

LEMMA 5. Let x and y be nonnegative integrable random variables. If the
inequality
(17) AP(z > N) < / ydP

{z=A}

holds for any A > 0, then =* < Py* on I.

Proof. Let t € I and t/ = P(x > 2*(t)); then ¢’ > t. Setting A = z*(¢) in
(17) and using the Hardy-Littlewood inequality (cf. (3)), we obtain

* 1 * *
sy [ ydP< (Py)E) < PO
{z>a* ()}

as desired. O

Proof of Proposition 3. Suppose 0 < o, < 3y < 1. Then both P and Q

are bounded operators from X into X. To prove (4), we may assume that X is
endowed with an r.i. norm. Recall (the conditional form of) Davis’ inequality:
there are constants k > 0 and &’ > 0 such that

E[M(f) = M;_1(f) | F-] <kE[S(f) | Fr] as., and
E[S(f) = Se—1(f) | F+ ] S KE[M(f) | F+] as.

for all f € Mx and for all F-stopping times 7 (see, e.g., [6, p. 286] or [10,
p. 89]). It then follows from Lemma 4 that M(f)* < kQS(f)* and S(f)* <
k' QM(f)*.* Therefore, by (L2) and (R2), we have

(18)  [M(Dlx = [MU1) |5 < k[ QSN[ <k NIQlpx) S«

and
(19 SDllx =S llx < ¥[[@M ()5 < # I1Q1px) M)
Now we recall Doob’s inequality (see, e.g., [10, p. 34]): for any f € M,

AB(M(f) > \) g/ fuldP (A 0).
{M(£)>A}
It then follows from Lemma 5 that M (f)* <P f% on I. Therefore
(20) IM(N[x =M |5 <NPlgx) If=<lx  (fEM).

Combining (18), (19), and (20), we obtain (4) with ¢ = (k ||Q||B(;())_1 and
O

C=FK HQHB()?) ||73||B()?)'

 To prove (4), we can assume that f € Hy; hence QS(f)* and QM(f)* can be defined.
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4. Application to weighted norm inequalities

Let @ : [0, c0) — [0, o0) be an N-function, namely, an increasing convex
function such that:
e O(u) =0 if and only if u =0;
D (u)

e lim —* =
u—oo U

P
e 1im 2 g,
u—0+ U

Then the complementary function ¥, which is given by
U(u) = sup{uv — P(v) | v > 0} (v >0),

is also an N-function. We say that ® satisfies the Ag-condition and write
® € Ay if there exist constants & > 0 and ug > 0 such that ®(2u) < k ®(u)
for u > ug. We say that ® satisfies the Va-condition and write ® € Vs if
VU € Ay. Then ® € Vs, if and only if there exist constants [ > 1 and vg > 0
such that ®(v) < (20)~* &(lv) for v > vy (see [9, p. 25]).

Let Lg be the Orlicz space over (2, ¥, P) endowed with the Luzemburg
norm | - || (see [9, p. 78]), and denote by ag and 34 the lower and upper
Boyd indices of L. It is known that oy > 0 if and only if ® € Ay (see [12,
Theorems 3.2 and 4.2.]). Moreover, since o, + 3, = 1, it follows that 3, < 1
if and only if & € V,.

Now let w be a weight random variable, i.e., let w be a (strictly) positive
and integrable random variable. We assume that E[w] = 1 and consider the
probability measure

Pu(A) =E[wly] (A€

Let (Lo,w, || - |lg.,,) be the Orlicz space over (€2, ¥, P,,) endowed with the
Luxemburg norm relative to P,,. Denoting by 1 the right-derivative of ¥, we
claim that if ¥(w™1) € Ly, then Loy — L < L1, where Ly and Lo, are
Lebesgue spaces with respect to P. The first embedding is evident. To see
the second embedding, suppose that « € Lg ,, and ||x||q>’w < 1. Then

E[lz|]] <E[@(Jz)w] +E[¥(w " w] <1+E[¢(w™")] =1 M < .

Here we have used the Young inequality uv < ®(u) + ¥(v) and the inequality
V(v) <wvyp(v). Thus |- ||, < M| |4, as claimed.

With the notation above, we have:

THEOREM 2. Suppose that ® € Ay and Y(w™1) € Ly. Then the following
are equivalent:
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(i) there are constants ¢ and C such that

(21) clfocllow SNS(Dow < Cllfscllon — (f € M);
(ii) (a) there are constants ¢ and co such that ¢y < w < ¢y a.s., and
(b) P € V,.

Before proving Theorem 2, we recall that

/Otw*(s)dSZmax{/Awdn»’Aez, P(A) :t}
/Otw*(s)dSZmin{/Ade’AeE, ]P’(A):t}

where w,(s) = w*(1 — s) (see [5, p. 47]).

(22) (tel),

Proof. (ii) = (i). Condition (a) shows that [ - || ~ [ - || ,, and condition

(b) shows that 34 < 1. Furthermore oy, > 0, since ® € Ay by hypothesis.

Hence we obtain (21) from Proposition 3.

(i) = (ii). Suppose that (i) holds. Then Lg ,, is r.i. with respect to P (or
briefly, “P-r.i.”) by Theorem 1. Hence there exists a P-r.i. norm || - |||®,w

on L. such that ki || [lg.,, < - llow < k2| g, With some constants

k1 > 0 and ko > 0. By hypothesis, there exists ug > 0 and K > 1 such that

(uo

k
(23) ¢ <Ij;u) < K®(u) forall u> ug.
1
Since w € Ly, we can find a positive number ¢ such that P, (A4) < 1/®
whenever P(A) < §. Suppose now that A, A’ € ¥ and 0 < P(A) = P(A')
t < 6. Then 1} = 1%, and P, (A) < 1/®P(ugp). Furthermore,
1 —1
e () = iale
< tallew = I1arllew
1 —1

< 1o/ = ot

—k2H A ||<I>,w k2{ <Pw(/\'))} ’
or equivalently

_ 1 ko _ 1

24 ! ( ) <=¢! ( ) :
(24) Pu(A)) ~ k1 P, (A)

Using (23) and (24), we obtain that

/Awd]P’:IPw(A) gKIP’w(A’):K/ w dP.

’

~~
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Hence we may use (22) to deduce that

%/O w*(s)dsgg/o wy(8) (0 <t <0).

Letting ¢ — 04, we conclude that esssupw < K essinfw. This means that
there exist constants ¢; and ¢g such that ¢; < w < ¢y a.s. Therefore (21) can
be written as

Nifsclle <ISNlle < C'lfclle  (fEM)

with some constants ¢/ and C’. According to Theorem 1, the upper Boyd in-
dex 34 must be less than one, or equivalently ® must satisfy the V-condition.
This completes the proof. O
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