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A CONSTANT OF POROSITY FOR CONVEX BODIES

M. JIMÉNEZ-SEVILLA AND J. P. MORENO

Abstract. It was proved recently that a Banach space fails the Mazur

intersection property if and only if the family of all closed, convex
and bounded subsets which are intersections of balls is uniformly very
porous. This paper deals with the geometrical implications of this result.

It is shown that every equivalent norm on the space can be associated
in a natural way with a constant of porosity, whose interplay with the

geometry of the space is then investigated. Among other things, we
prove that this constant is closely related to the set of ε-differentiability
points of the space and the set of r-denting points of the dual. We also
obtain estimates for this constant in several classical spaces.

1. Introduction

The present article is a companion to the paper [8] in which the authors
studied the question of whether the majority of closed, convex and bounded
sets in a Banach space are intersections of closed balls. This question can be
answered in the negative if there is at least one such set which does not have
this property. Indeed, it was shown in [8] that either every closed, convex and
bounded set is an intersection of closed balls or the family M of all closed,
convex and bounded sets with the above property is uniformly very porous.
One of the most surprising features of this result is the existence (once the
space and the norm have been fixed) of a positive constant which is a universal
lower bound for the porosity ofM, in spite of the vast class of closed, convex
and bounded sets involved.

This result is the starting point of this paper in which we introduce a con-
stant of porosity for each Banach space and each equivalent norm by consider-
ing the infimum of the porosity of M at each element. It is quite remarkable
that this constant has many geometrical implications. For instance, it can be
used as a measure of non-denseness of (i) the set of weak* denting points of
the dual unit sphere, and (ii) the set of subdifferentials of the norm at the
ε-differentiability points of the unit sphere of the space. The exact value of
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this constant is usually unknown. However, it is shown in Section 3 how to
obtain reasonably good estimates by using the topological information pro-
vided by the set of points of ε-differentiability of the norm. Using this tool, in
Section 4 estimates for the constant are obtained for several classical spaces,
including the spaces C(K), L1(µ), L∞(µ), spaces with property (α, ε), and
spaces with property (β, ε).

While porosity properties in hyperspaces of convex bodies have been widely
investigated (see [6], [13], [17] and [18]), their connections with the geometrical
features of the underlying spaces have been hardly explored. Moreover, the
relationships between topological questions in hyperspaces and the geometry
of Banach spaces are still far from being well understood [1].

2. A constant of porosity for convex bodies

Throughout, X is a Banach space with norm ‖ · ‖ , B‖·‖ is the unit ball
and S‖·‖ the unit sphere in X. The dual of X is denoted by X∗ with the dual
norm ‖ · ‖∗ . Let M be the collection of all intersections of balls, considered
as a subset of the hyperspace H of all closed, convex and bounded sets of a
Banach space, equipped with the Hausdorff metric. Consider a set C ∈ M
and denote by B(C,R) the closed ball centered at C with radius R and by
γ(C,R,M) the supremum of all r for which there exists D ∈ H such that
B(D, r) ⊂ B(C,R) \M. The number

ρ(C,M) = 2 lim
R→0

sup
γ(C,R,M)

R

is called the porosity ofM at C. It was proved in [8] thatM 6= H if and only
if there is a positive number α satisfying

(2.1) ρ(C,M) ≥ α

1 + α

for every C ∈ M. The question of where α comes from needs some expla-
nation. As shown in [8, Proposition 1], if X fails the Mazur intersection
property, then there is a norm one functional f such that Mf = {x ∈ B‖·‖ :
f(x) ≤ 0} /∈ M. This means that there is x0 ∈ B‖·‖ \Mf such that every
ball containing Mf also contains x0. Then α is precisely f(x0). The lower
estimate for ρ(C,M) stated in (2.1) suggests the possibility of considering a
constant of porosity ρ(X, ‖ · ‖) for the whole space X by setting

ρ(X, ‖ · ‖) = inf {ρ(C,M) : C ∈ H} .

Though it is quite natural to define ρ(X, ‖ · ‖) this way, serious difficulties
arise when trying to estimate this quantity. On the other hand, denoting by
Ĉ the intersection of all balls containing C ∈ H, the constant

(2.2) β = sup{d(C, Ĉ) : C ∈ H, C ⊂ B‖·‖}
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is in a sense the exact opposite of ρ(X, ‖·‖). This constant can be estimated by
using a technique described in Section 3 (which involves studying points of ε-
differentiability), but it has no natural definition. Fortunately, both constants
are closely related, as shown in the following proposition. As a consequence,
a method for estimating ρ(X, ‖ · ‖) will be at hand.

Proposition 2.1. Every Banach space X with norm ‖ · ‖ satisfies
β

1 + β
≤ ρ(X, ‖ · ‖) ≤ 2β

Proof. To prove the right inequality, it is enough to consider the set {0} ∈ H
consisting of a single point, the origin, in order to show that ρ({0},M) ≤ 2β.
Notice that the ball B({0}, R) is just the family of all C ∈ H such that
C ⊂ RB‖·‖. Pick C ∈ H with sup{‖y‖ : y ∈ C} < R and suppose that there
is γ ∈ R, 0 < γ < R − sup{‖y‖ : y ∈ C}, such that D ∈ H \M whenever
d(C,D) ≤ γ. Obviously γ < d(C, Ĉ) and, by the definition of β, we have
d(C, Ĉ) < Rβ. Consequently 2γ/R ≤ 2β, which implies that ρ({0},M) ≤ 2β,
as desired.

For the proof of the left inequality, it is convenient to express β by consid-
ering only slices instead the collection of all convex sets. Recall that a slice
S of C ∈ H is a set of the form S = {x ∈ C : f(x) ≤ λ} with f ∈ X∗ and
λ ∈ R. Denote by S the family of all slices of the unit ball. It can be shown,
as a consequence of the Hahn-Banach separation theorem, that

(2.3) β = sup
{
d(S, Ŝ) : S ∈ S

}
.

Indeed, given C ∈ H with C ⊂ B‖·‖, x ∈ Ĉ \C and r > 0 such that x+rB‖·‖∩
C = ∅, there is a functional f ∈ X∗ separating both convex sets x + rB‖·‖

and C. Then f defines a slice S of B‖·‖ containing C. Since x ∈ Ŝ, we have
d(S, Ŝ) ≥ d(C, Ĉ).

Our plan now is to apply an argument similar to the one used in the proof
of [8, Theorem 2.2]. This could be done easily if we knew the existence of a
slice S = {x ∈ B‖·‖ : f(x) ≤ λ} such that

β = sup f(Ŝ)− λ
Notice that, by (2.3), for every n ∈ N there is S = {x ∈ B‖·‖ : g(x) ≤ σ} such
that β ≥ d(S, Ŝ)−1/n. However, we cannot work directly with S, even in the
case β = d(S, Ŝ), since the only value which is relevant here is sup g(Ŝ) − σ.
In order to avoid this difficulty, observe that (2.3) implies that

(2.4) β = sup
{

sup
Ŝ

f − sup
S
f : ||f ||∗ = 1, S ∈ S

}
,

so for every n ∈ N there is a slice S = {x ∈ B‖·‖ : f(x) ≤ σ} such that
β ≥ sup f(Ŝ)− σ − 1/n. Actually, there is no loss of generality if we assume
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that there is x0 ∈ Ŝ such that β = f(x0)−σ. The proof now can be completed
as in [8, Theorem 2.2] �

Obviously, the space X with norm ‖·‖ has the Mazur intersection property
if and only if ρ(X, ‖ · ‖) = β = 0. Intuitively, ρ(X, ‖ · ‖) says how far (X, ‖ · ‖)
is from satisfying this property. If we fix the space and consider ρ(X, ‖ · ‖)
as a real valued mapping from the metric space N of all equivalent norms on
X, one might be tempted to believe that ρ(X, ‖ · ‖) is continuous. However,
this is not the case in spaces with the Mazur intersection property, since the
set of norms satisfying this property is always either empty or residual (and
therefore dense) in N ; see [4].

3. Applications to the geometry of the dual space

A basic connection between the porosity of M and the geometry of the
dual unit ball, S‖·‖∗ , is described in this section. Let us begin by recalling the
definition of points of ε-differentiability [16]. Given ε > 0, define Mε as the
set of all points x ∈ S‖·‖ such that, for some δ(ε, x) > 0,

sup
0<λ<δ, ‖y‖=1

‖x+ λy‖+ ‖x− λy‖ − 2
λ

< ε .

The set Mε is open in S‖·‖ (see [5]) and ∩ε>0Mε is, precisely, the set of points
in S‖·‖ where the norm is Fréchet differentiable. Given x ∈ S‖·‖, let D(x) =
{f ∈ S‖·‖ : f(x) = 1}. In [5] it was shown that X has the Mazur Intersection
Property if and only if, for every ε > 0, the set D(Mε) = {D(x) : x ∈Mε} is
dense in S‖·‖∗ . This means that, when X fails this property, there are ε, δ > 0
so that D(Mε) is not a δ-net of S‖·‖∗ (where N ⊂M is δ-net of M if for every
m ∈M there is n ∈ N with ||m− n|| ≤ δ). One may ask whether there is a
relationship between ε, δ and the constant of porosity β. We next show that
this is, indeed, the case.

Given f ∈ S‖·‖∗ and |λ| ≤ 1 , denote by Sf,λ the slice {x ∈ B‖·‖ : f(x) ≤ λ}
and define

df = sup { sup
Ŝf,λ

f − λ : −1 ≤ λ ≤ 1} .

Clearly, β = sup {df : f ∈ S‖·‖∗}, as stated in (2.4). Finally, recall that
f ∈ X∗ is a norm attaining functional if there is x ∈ S‖·‖ so that f(x) = ||f || .
The role of df as a measure of non-density of D(Mr) when 0 < r < df and
f is a norm attaining functional is illustrated in the following proposition.

Proposition 3.1. Given two norm attaining functionals f, g ∈ S‖·‖∗ , we
have

(i) f /∈ D(Mdf ) when df > 0 ,
(ii) g /∈ D(Mr) when 0 < r < df and ‖g − f‖ ≤ (df − r)/2 .



A CONSTANT OF POROSITY FOR CONVEX BODIES 1065

Proof. (i) Without loss of generality we may assume that there are −1 ≤
λ ≤ 1 and x0 ∈ Ŝf,λ so that df = f(x0) − λ . By symmetry, it is enough to
see that −f /∈ D(Mdf ) . Toward this end, we take an arbitrary point y ∈ S‖·‖
satisfying f(y) = 1 and we consider the ball Bn = B(−ny, n+ λ+ df − 1/n) .
It is clear that x0 /∈ Bn , so there is a norm one vector xn ∈ Sf,λ \Bn. Letting
yn = xn/n, we have

‖ − y + yn‖+ ‖ − y − yn‖ − 2
‖yn‖

=
‖ − y + yn‖ − ‖ − y‖

‖yn‖
+ ‖ − ny − xn‖ − n

≥ − f (yn)
‖yn‖

+
(
n+ λ+ df −

1
n
− n

)
= −f(xn) + λ+ df −

1
n

≥ df −
1
n

.

In order to prove (ii), note that if ||g − f || ≤ df−r
2 then

Sf,λ ⊆ S
g,λ+

df−r
2
⊆ Sf,λ+df−r ,

which implies that Ŝf,λ ⊆ Ŝg,λ+(df−r)/2 and hence x0 ∈ Ŝg,λ+(df−r)/2 . On
the other hand,

g(x0) = f(x0) + (g(x0)− f(x0)) ≥ λ+ df −
df − r

2
= λ+

df − r
2

+ r ,

and therefore dg ≥ r . By (i) it follows that g /∈ D(Mr) . Hence D(Mr) is
not a df−r

2 -net of S‖·‖∗ . �

A functional f ∈ S‖·‖∗ is said to be a weak* r-denting point of B‖·‖∗
provided f is in a slice S = {g ∈ B‖·‖∗ : g(x) ≤ λ} for some x ∈ S‖·‖,
−1 < λ < 1, and diam S < r . Let Dr denote the set of all weak* r-denting
points of S‖·‖∗ .

Corollary 3.2. Let (X, ‖ · ‖) be a Banach space with β > 0.

(i) D(Mr) is not a s−r
2 - net of S‖·‖∗ when r < s < β.

(ii) Dr is not a s−3r
2 - net of S‖·‖∗ when r < s/3 < β/3.

Proof. (i) Since β = sup {df : f ∈ S‖·‖∗}, there is f ∈ S‖·‖∗ satisfying
df > s > r. Applying now (ii) of Proposition 3.1, we conclude that D(Mr) is
not a df−r

2 - net of S‖·‖∗ and, consequently, is not a s−r
2 - net either.

(ii) Notice that D(Mr) is contained in Dr (by [5, Lemma 2.1]) and Dr is
contained in D(Mr) + rB‖·‖∗ . Pick f ∈ S‖·‖∗ satisfying df/3 > s/3 > r. If
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we assume that Dr is a df−3r
2 - net of S‖·‖∗ , then

S‖·‖∗ ⊂ Dr +
df − 3r

2
B‖·‖∗ ⊆ D(Mr) +

df − r
2

B‖·‖∗ ,

which implies that D(Mr) is a df−r
2 -net of S‖·‖∗ , a contradiction. �

The corollary sheds light on the geometrical meaning of β (and thus of the
constant of porosity) and yields an estimate of the holes of D(Mε) for every
ε < β. Conversely, one might try to get estimates of β from the geometrical
features of the space. There seems to be no direct way to calculate β, but
Proposition 3.3 gives some insight into this question. This result will be used
in the next section as the main tool to estimate β in many classical spaces.

Proposition 3.3. For f ∈ S‖·‖∗ and 0 < ε < 1/2, dist(f,D(M4ε)) ≥ 2ε
implies that 0 ∈ Ŝf,−ε. Therefore, if D(M4ε) is not a 2ε-net, then β ≥ ε .

Proof. We may assume that f is a norm attaining functional. Say that
f(x0) = 1 with ‖x0‖ = 1. If 0 /∈ Ŝf,−ε, there is a ball B = B(x1, R)
containing Sf,−ε′ in its interior and missing 0 for some 0 < ε′ < ε . Consider
the sets C = int(conv(Sf,−ε′ ∪ {0})) and S = {x ∈ C : ‖x − x1‖ = R}.
Let z0 ∈ S and g ∈ D

(
z0−x1
R

)
. As a first step in the proof, we will see that

‖f − g‖ ≤ 2ε′.
Indeed, the set H = {x ∈ X : g(x) = R+ g(x1)} does not intersect Sf,−ε′ .

Also, note that 0 /∈ {x ∈ X : g(x) ≤ g(x1) + R} so H ∩ S−f,−ε′ = ∅ . By
symmetry, −H does not intersect Sf,−ε′ ∪S−f,−ε′ . Finally, this implies that
ker g∩B‖·‖ ⊆ f−1([−ε′, ε′]) and, by Phelps’ Lemma [14], either ‖f−g‖ ≤ 2ε′

or ||f + g|| ≤ 2ε′ . We show that the second alternative is impossible. We
have −x0 ∈ Sf,−ε′ , so g(−x0) < g(z0) and hence 0 = g(0) > g(z0) > g(−x0).
Consequently, g(x0) > 0, which implies that

‖f + g‖ ≥ f(x0) + g(x0) > 1 > 2ε > 2ε′.

Hence we have ‖f − g‖ ≤ 2ε′. Consequently, for every sequence {zn} with
‖zn − x1‖ = R and lim ‖zn − z0‖ = 0 and for every sequence {gzn} with
gzn ∈ D

(
zn−x1
R

)
one has lim sup ‖gzn−gzm‖ ≤ 4ε′ . Applying now Lemma 2.1

of [5] we get that z0−x1
R ∈M4ε. This implies that dist(f,D(M4ε)) ≤ 2ε′ < 2ε,

which is a contradiction. �

Remark 3.4. Since the set D(Mr) is contained in Dr for every r, the
above proposition shows that β ≥ ε if the set D4ε of weak* 4ε-denting points
of B‖·‖∗ is not a 2ε-net of S‖·‖∗ .
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4. Estimates for the constant of porosity in classical spaces

We have shown in Proposition 2.1 that ρ (X, ‖ · ‖) ≥ β
1+β . In this section,

we obtain estimates (for concrete spaces X) of the form β ≥ ε which allows
us to conclude that ρ (X, ‖ · ‖) ≥ ε

1+ε since the map t → t
1+t is strictly

increasing.

1. Finite dimensional polyhedral spaces. A finite dimensional space
is said to be polyhedral provided its unit ball is the convex hull of a (symmetric)
finite set. This is a particular case of Banach spaces (not necessarily finite
dimensional) whose norms have property (α, ε) for some 0 < ε ≤ 1 : there is
a family {xi, x∗i }i∈I ⊂ S‖·‖×S‖·‖∗ so that (a) x∗i (xi) = 1, (b) |x∗i (xj)| ≤ 1−ε
if i 6= j and (c) B‖·‖ = conv ({±xi}i∈I); see [15]. Spaces with property (α, ε)
satisfy β ≥ ε and hence ρ (X, ‖ · ‖) ≥ ε

1+ε .
Let xi0 be one of the points appearing in the definition of property (α, ε).

We claim that every ball containing the set D = conv ({±xi}i∈I\{i0}) also
contains xi0 . As a consequence, we deduce that xi0 ∈ Ŝ1−ε, x∗i0

and so β ≥ ε .
Indeed, suppose that B is a ball containing D and missing xi0 . Let ϕ

denote the composition of the homothety and the translation mapping B‖·‖
onto B. We can separate xi0 from B by a functional g ∈ X∗ supporting B
at ϕ(D). The existence of such a functional needs some explanation. Since
B‖·‖ = conv ({±xi}i∈I) = conv ({±xi0} ∪D), we know that every functional
supporting x ∈ S‖·‖, x 6= ±xi0 , must also support D. Moreover,

‖ · ‖ = sup {fx(·) : x ∈ S‖·‖, x 6= ±xi0},
where fx(x) = 1 = ‖fx‖. Finally, assume that g supports B at f(d) with
d ∈ D. Though it is clear that the segments [d, xi0 ] and [f(d), f(xi0)] are
parallel, xi0 is separated from d by the functional g while this it not the case
for f(xi0) and f(d), so we have reached a contradiction.

2. The C(K)-spaces. If K is any compact Hausdorff space, C(K) de-
notes the Banach space of all continuous real-valued functions f : K → R

endowed with the “sup norm” ‖f‖∞ = max t∈K |f(t)|. This space satisfies
β ≥ 1/2 and hence ρ(C(K), ‖ · ‖∞) ≥ 1/3.

We first consider a function f ∈ SC(K) which attains its norm at an
accumulation point of K, so that there is a (not eventually constant) sequence
{tn} ∈ K with limn |f(tn)| = 1. We may assume, without loss of generality,
that limn f(tn) = 1. Denote by δt ∈ SC(K)∗ the evaluation at the point t.
Note that ||δt ± δt′ || = 2 if t 6= t′. Then, for each −1 < λ < 1 , every slice
Sf,λ of BC(K)∗ contains two different elements of the sequence {δtn}. Hence
diam (Sf,λ) ≥ 2 and, by [5, Lemma 2.1], we conclude f /∈M2.

Otherwise, f attains its norm at a point t0 ∈ K \K ′ (where K denotes
the set of all accumulation points of K). It is well known that, in this case,
the sup norm ‖·‖∞ is Fréchet differentiable at f with differential δt0 so that
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f ∈ Mr for every r > 0. Summarizing, we have D(Mr) = {δt : t ∈ K \K ′}
for every 0 < r < 2 and, consequently, D(Mr) is not a (r/2)-net of S‖·‖∗∞ .
Proposition 3.3 ensures that β ≥ 1/2 .

3. The L∞(µ)-spaces. For a space of positive measure (Ω,Σ, µ) , the
Banach space L∞(µ) consists of all (essentially) bounded measurable func-
tions f : Ω→ R under the norm ‖f‖∞ = inf {C : |f(x)| ≤ C a. e. in Ω}. This
space satisfies β ≥ 1/2 and thus ρ (L∞(µ), ‖ · ‖∞) ≥ 1/3.

In fact, we can prove a much more general result: given two Banach spaces
Y and Z, the space X = Y ⊕∞Z with norm ‖·‖∞ = max {‖·‖Y , ‖·‖Z} satisfies
β ≥ 1/2 . Indeed, it is easily checked that a point x = (x1, x2) ∈ X satisfying
‖x1‖X = 1 and ‖x2‖Y = 1 is not in M2 since, given x∗1 ∈ Y ∗, x∗2 ∈ Z∗ with
‖x∗1‖Y ∗ = x∗1(x1) = 1 and ‖x∗2‖Z∗ = x∗2(x2) = 1, the points x∗ = (x∗1, 0) and
y∗ = (0, x∗2) are in D(x) and ‖x∗ − y∗‖ = 2. As a consequence, we have

D(M2) ⊂ {(x∗, 0) : x∗ ∈ Y ∗, ‖x∗‖Y ∗ = 1} ∪ {(0, y∗) : y∗ ∈ Z∗, ‖y∗‖Z∗ = 1},

so D(M2) is not an ε-net, for any 0 < ε < 1 and β ≥ 1/2.

4. The L1(µ)-spaces. For a space of positive measure (Ω,Σ, µ) , the Ba-
nach space L1(µ) consists of all (equivalence classes of) measurable functions
f : Ω→ R under the norm ‖f‖1 =

∫
Ω
|f | dµ < ∞. This space satisfies β ≥ 1

and, consequently, ρ(L1(µ), ‖ · ‖1) ≥ 1/2 .
As in the previous case, we can prove something stronger: given two Banach

spaces Y , Z, the space Y ⊕1 Z endowed with the norm ‖ · ‖ = ‖ · ‖Y + ‖ · ‖Z
satisfies β ≥ 1. Letting D = {(y, 0) : ‖y‖Y = 1}, it suffices to see that every
point (0, z) ∈ Y ⊕1 Z with ‖z‖Z = 1 is contained in D̂. To this end observe
that, for every x = (y, z) ∈ X,

‖x‖1 = ‖y‖Y + ‖z‖Z = sup {(y∗, z∗)(x) : ‖y∗‖Y ∗ = 1, ‖z∗‖Z∗ = 1}.

Suppose now that B is a ball containing D and missing x = (0, z) for some
z ∈ Z, ‖z‖Z = 1. The above equation shows that x can be separated
from B by a functional supporting ϕ(D) (ϕ being the composition of the
homothety and the translation mapping the unit ball onto B), and we derive
a contradiction as in the proof of property (α, ε).

5. Spaces with property (β, ε). A norm ‖ · ‖ on a Banach space X
has property (β, ε) for some 0 < ε ≤ 1 if there is a family {xi, fi}i∈I ⊂
S‖·‖ × S‖·‖∗ so that (a) x∗i (xi) = 1, (b) |x∗i (xj)| ≤ 1 − ε for i 6= j, and (c)
||x|| = sup { |x∗i (x)| : i ∈ I} for every x ∈ X; see [9]. Spaces having norms
with the above property satisfy β ≥ ε/(4− 2ε) and thus ρ(X, ‖·‖) ≥ ε/(4+ε).

First, note that ||xi ± xj || ≤ 2 − ε for every i, j ∈ I, i 6= j. Then
||x∗i − x∗j ||∗ ≥ (x∗i − x∗j )(

xi−xj
2−ε ) ≥ 2ε

2−ε and, similarly, ||x∗i + x∗j ||∗ ≥ 2ε
2−ε .
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Now, consider x ∈ S‖·‖ for which there is a (not eventually constant) se-
quence {x∗n} ⊂ {x∗i }i∈I satisfying limn |x∗n(x)| = 1. We may assume, without
loss of generality, that limn x

∗
n(x) = 1. Then every slice Sx,λ of B‖·‖∗ with

−1 < λ < 1 contains at least two different elements of the sequence. Thus
diam (Sx,λ) ≥ 2ε

2−ε and x /∈M 2ε
2−ε

. In the other case, x ∈ S‖·‖ lies in the rela-
tive interior (in S‖·‖ ) of some face Fi = {x ∈ S‖·‖ : x∗i (x) = 1} (or −Fi ) and
then the norm is Fréchet differentiable at x with differential x∗i (or −x∗i , re-
spectively); see [11]. Therefore, D(Mr) = {±x∗i : i ∈ I} for every 0 < r < 2ε

2−ε
and, consequently, D(Mr) is not a (r/2)-net. Finally, Proposition 3.3 yields
the desired estimate β ≥ ε/(4− 2ε).

5. Final remarks

A vertex point of a closed bounded convex body C is a point which is
strongly exposed by an open set of functionals. Consequently, when a space
X has a vertex point in its unit ball, there is an hyperplane in X∗ whose
intersection with S‖·‖∗ has non-empty (relative) interior, and obviously, for
some r > 0, weak* r-denting points cannot be dense in S‖·‖∗ . This is the
reason why ρ (X, ‖ · ‖) > 0. A particular class of vertex points consists of the
strongly vertex points, defined as follows: A point x is a strongly vertex point
of C if there is a closed, convex and bounded set D with x /∈ D satisfying
C = conv ({x} ∪ C). For more information on vertex and strongly vertex
points see [11]. The porosity of spaces having a strongly vertex point in its
unit ball can be estimated by using the same arguments as in the case of
property (α, ε). This is the case, for instance, of Lorentz sequence spaces
d(w, 1).

The “natural” norms with property (β, ε) are the finite dimensional poly-
hedral norms and the usual sup norm on c0 and `∞. The former norms have
property α and the latter are sup norms on C(K) spaces. In both cases we
may have better constants of porosity (ε/(1 + ε) and 1/3, respectively). How-
ever, norms with property (β, ε) are important in the theory of norm attaining
operators. Partington [12] proved that every Banach space can be equivalently
renormed with property (β, ε). These norms are Fréchet differentiable on a
dense open set of the space [11], but, as we have seen, they are far from having
the Mazur intersection property.

The Mazur intersection property was introduced by Mazur [10] and later
studied by Phelps [14], Sullivan [16], Giles, Gregory and Sims [5] and, after
these pioneering works, by many other authors. Information concerning this
property can be found in [2], [3], [7] and the references therein. There remain
a number of open problems in this subject, such as the existence of points
of Fréchet differentiability in spaces with this property. While spaces with
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Fréchet differentiable norms satisfy the Mazur intersection property, it is un-
known if this is also the case for spaces with a (Fréchet) differentiable bump
function.

Finally, the reader interested in the state of the art in the field of hyper-
spaces and their topologies is referred to the authoritative book by G. Beer
[1]. Connections between these topologies and geometrical features of the
underlying spaces are still far from being well known.
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[7] M. Jiménez Sevilla and J.P. Moreno, Renorming Banach spaces with the Mazur in-

tersection property, J. Funct. Anal. 144 (1997) 486–504.
[8] , A note on porosity and the Mazur intersection property, Mathematika, to

appear.
[9] J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963)

139–148.
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