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THE STRONG TEST IDEAL

NOBUO HARA AND KAREN E. SMITH

Let R be a Noetherian commutative ring containing a field. The test ideal,
introduced by Hochster and Huneke in [HH1], has emerged as an important
object associated to R. The test ideal can be defined as the largest ideal J of
R such that JI∗ ⊂ I for all ideals I of R where I∗ denotes the tight closure
of I. Although it is not obvious that a ring R admits a non-zero test ideal,
Hochster and Huneke showed nearly every ring of interest possesses a non-zero
test ideal. (The definition of tight closure and basic features of the test ideal
are recalled in Section 0.)

In [Hu], Craig Huneke introduced the related concept of a strong test ideal:
an ideal J of R such that JI∗ = JI for all ideals I of the ring, where I∗ denotes
the tight closure of I. Huneke showed that non-trivial strong test ideals exist
for a reasonably large class of rings, and put them to interesting use bounding
the degrees of the equations of integral dependence for certain elements in the
integral closure of an ideal. He also asked whether the blowup of the maximal
strong test ideal might be a variety with only rational singularities, or some
other good properties.

The purpose of this paper is to show that in many cases the test ideal is
itself a strong test ideal. Since a sum of strong test ideals is a strong test ideal,
there exists a unique maximal strong test ideal for R, and it is natural to call
it the strong test ideal. From the definitions, we see that every strong test
ideal is contained in the test ideal, but there is no a priori reason to expect
them to coincide. Our paper shows that in many cases, the strong test ideal
and the test ideal coincide. This provides numerous non-trivial examples in
which the strong test ideal, proven to exist but not constructed explicitly by
Huneke, can be explicitly described. This allows us to answer questions posed
in [Hu].

An outline of the main results of the paper follows. Section 0 reviews basic
definitions and properties of tight closure and test ideals.

Received July 25, 2000; received in final form September 8, 2000.
2000 Mathematics Subject Classification. Primary 13A35. Secondary 13D45, 14B15,

13A30.
The first author was supported by Grant-in-Aid for Scientific Research No. 11740028,

Japan. The second author was partially supported by NSF Grant DMS 96-25308.

c©2001 University of Illinois

949



950 NOBUO HARA AND KAREN E. SMITH

In Section 1, we give a simple proof that in any ring in which the test ideal
is maximal, the test ideal coincides with the strong test ideal. This allows
us to produce easy examples in which the blowup of the maximal strong test
ideal has a non-rational singularity — indeed, examples in which its blowup
does not appear to be in any way nicer than the original ring. This provides
a negative answer to Question 3.3 of [Hu] and lays to rest any speculations
about good properties of blowups of strong test ideals.

In Section 2, we study further situations in which test ideals are strong
test ideals. We begin from the point of view that Huneke’s existence proof
for strong test ideals suggests that, if a ring has a filtration of ideals with
certain nice properties, then the ideals appearing in this filtration are strong
test ideals. Accordingly, if the test ideal appears in such a nice filtration, then
it is a strong test ideal. We apply this method to the graded and canonical
filtrations, and show that the test ideal is a strong test ideal under some
additional conditions.

Based on our work here, we have come to believe that the test ideal may
equal the strong test ideal in any excellent local reduced ring of prime charac-
teristic. Such a result would provide an affirmative answer to a strengthened
form of Huneke’s Question 3.1, which asks whether the test ideal and strong
test ideal might have the same radical in general. Our work also provides
evidence for an affirmative answer to a strengthened form of Question 3.4 of
[Hu], in which Huneke asks whether the strong test ideal is tightly closed. In
fact, at least in the geometric situation explored here in Section 2, the strong
test ideal is actually integrally closed (so, in particular, it is tight closed). The
point is that in this setting the test ideal is integrally closed, as proved in [H2]
and [S2].

We should mention that as this paper was under preparation, Adela Vraciu,
working on her PhD thesis under the direction of Mel Hochster, found a proof
that the test ideal is a strong test ideal in complete local rings of characteristic
p > 0. Her proof is quite simple and it gives further confirmation of our
conjecture that the test ideal is always a strong test ideal; see [V]. Although
our method presented in Section 2 is considerably less elementary than this
argument, we feel that it is of interest and significance from the viewpoint of,
say, the study of F-rationality and F-regularity of Rees algebras.

0. Definitions and preliminaries

Tight closure, and hence the test ideal and strong test ideals, are primarily
characteristic p notions defined via iteration of the Frobenius map. However,
they can be defined also in characteristic zero, by reduction to characteristic
p. First let us begin with the definition in characteristic p > 0. The reader
is referred to [HH1], [HH2] for general properties of tight closure and the test
ideal in characteristic p.
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0.1. Definition ([HH1]). Let R be a Noetherian commutative ring of
prime characteristic p > 0. For an ideal I of R and a power q = pe of p, we
denote by I [q] the ideal generated by the qth powers of the elements of I. The
tight closure I∗ of I is defined to be the ideal consisting of all elements z ∈ R
for which there is an element c not in any minimal prime of R such that

czq ∈ I [q]

for all large q = pe. The test ideal of R, denoted by τ(R) or simply by τ when
R is clear from the context, is the unique largest ideal τ such that

τI∗ ⊂ I

for all ideals I. An element of τ which is not in any minimal prime of R is
called a test element. A test element c ∈ R is characterized by the property
that for any ideal I and any z ∈ R, one has z ∈ I∗ if and only if czq ∈ I [q] for
all powers q = pe.

0.2. Definition ([Hu]). Let R be a Noetherian commutative ring of
characteristic p > 0. An ideal J of R is said to be a strong test ideal if

JI∗ ⊂ JI,

or equivalently, if JI∗ = JI. The unique ideal J maximal with respect to this
property is called the strong test ideal. It is clear that the strong test ideal is
contained in the test ideal τ .

A ring is said to be weakly F-regular if all of its ideals are tightly closed.
Clearly, a ring is weakly F-regular if and only if its test ideal is the unit ideal.
In this case, the strong test ideal is obviously also the unit ideal.

The test ideal is much better understood in general than the strong test
ideal. For example, we have the following useful characterization of the test
ideal of a local ring of prime characteristic p.

0.3. Let (R,m) be a Noetherian local ring of characteristic p > 0 and let
E = ER(R/m) be the injective hull of the residue field R/m as an R-module.
An element ξ ∈ E is in 0∗E if and only if there exists c ∈ R not in any minimal
prime of R such that c ⊗ ξ = 0 in R(e) ⊗R E for all large e ∈ N, where R(e)

denotes the R-bimodule which is R with the usual R-module structure on the
left, but where the right R-module structure is given by the e-times iterated
Frobenius. It is proved in [AM] and [LS] that, if R is Q-Gorenstein or an
N-graded ring over a field R0, then 0∗E is equal to the finitistic tight closure
0∗fgE of zero in E (see [HH1] for the definition of 0∗fgE ). Hence by [HH1, 8.23],
the test ideal τ of R is equal to AnnR(0∗E), the annihilator of 0∗E in R, if R is
Q-Gorenstein or N-graded over a field.
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0.4. Reduction to prime characteristic. Given a ring containing a
field of characteristic zero, one can define tight closure using the method of
“reduction to characteristic p.” This is easiest to describe when R is an algebra
essentially of finite type over a field k of characteristic zero. One can choose
a finitely generated Z-algebra A contained in k and a subalgebra RA of R
essentially of finite type over A such that the natural map RA ⊗A k → R is
an isomorphism. For a maximal ideal µ of A, we consider the base change
SpecA/µ → SpecA to get a prime characteristic ring Rµ = RA ⊗A A/µ.
This is considered to be a “prime characteristic model” of the original ring
R, and we refer to such Rµ for maximal ideals µ in a suitable dense open
subset of SpecA as “reduction to characteristic p � 0” of R. Furthermore,
given a resolution of singularities f : X → SpecR, we can reduce this entire
setup to characteristic p � 0. (See [H1, 2], [S1, 2] for details.) We use the
phrase “in characteristic p� 0” when we speak of such a setup reduced from
characteristic zero to characteristic p� 0.

0.5. Characteristic zero. If R has characteristic zero, one needs to
reduce to prime characteristic in order to define the tight closure of I∗ of an
ideal I ⊂ R, and there is more than one way to proceed with this reduction;
see [Ho], [HH4]. However, we must be cautious speaking about the test ideal
(resp. the strong test ideal) in characteristic zero. It still makes sense to
consider the largest ideal τ ′ (resp. J ′) such that τ ′I∗ ⊂ I (resp. J ′I∗ ⊂ J ′I)
for all ideals I of R, but this may not be quite what we want to study. Rather,
we want to consider the ideal τ (resp. J) of R which reduces to the test ideal
(resp. the strong test ideal) in “almost all prime characteristic reductions” of
R.

Let R be a ring essentially of finite type over a field of characteristic zero.
An ideal τ (resp. J) of R will be called a universal test ideal (resp. a universal
strong test ideal) if choosing A and RA as in 0.4 such that RA contains the
generators for τ (resp. J), then setting τA = τ ∩RA (resp. JA = J ∩RA), the
ideal τA mod µ (resp. JA mod µ) is the test ideal (resp. a strong test ideal)
for the ring RA mod µ for all µ in a dense open subset of SpecA. If R admits
a universal test ideal, it is unique and contains the unique largest universal
strong test ideal of R. In this case, we will simply call them the test ideal and
the strong test ideal of R, respectively.

In characteristic zero, as in the prime characteristic case, the test ideal is
better understood than the strong test ideal.

0.6. Theorem ([H2], [S2]). Let R be a normal Q-Gorenstein ring es-
sentially of finite type over a field of characteristic zero. Then R admits a
(universal) test ideal, denoted τ(R), and it is equal to the multiplier ideal.
Namely, if f : X → SpecR is a resolution of singularities with simple nor-
mal crossing exceptional divisor and if we write KX = f∗KR + ∆ for an
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f-exceptional Q-divisor ∆, then

τ(R) = H0(X,OX(d∆e)).

Although the above theorem is stated in characteristic zero, it is essentially
a statement in prime characteristic. It says that, if f : X → SpecR is a
resolution of singularities in characteristic p � 0 reduced from the original
setting in characteristic zero as in 0.4, then one has τ(R) = H0(X,OX(d∆e)).

1. Counterexamples to Huneke’s question

In [Hu], Huneke introduced the notion of strong test ideals and asked
whether the blowup with respect to the strong test ideal might have only
rational singularities. In this section we give simple examples showing that
the answer to this question is negative. The main point of our argument is
the following simple characterization of the strong test ideal in a ring whose
test ideal is maximal.

1.1. Theorem. Let (R,m) be a local ring containing a field, and assume
that m is the test ideal of R. Then m is the strong test ideal of R.

Many rings have the property that the test ideal is maximal. For example,
any F-pure local ring with an isolated non-strongly-F-regular point has this
property.

Proof. If m is not the strong test ideal of R, then there exists an ideal I
of R such that mI∗ is not contained in mI. Among all such counterexample
ideals I, choose one which is generated by the minimal possible number of
elements.

Since mI∗ is contained in I but not in mI, there must be a c ∈ m and a
z ∈ I∗ such that cz is in I but not in mI. This means that cz is a minimal
generator for I. Let cz, x1, x2, . . . , xr be a minimal generating set for I.

Since z ∈ I∗ and c is a test element, we have equations

czq = aq(cz)q + b1qx
q
1 + · · ·+ brqx

q
r

with aq, b1q, . . . , brq ∈ R for all q = pe, whence

czq(1− aqcq−1) ∈ (xq1, . . . , x
q
r)

for all q = pe. Since 1− aqcq−1 is a unit in R, we see that

z ∈ (x1, . . . , xr)∗.

But now I∗ = (x1, . . . , xr)∗, because I = (cz, x1, . . . , xr) ⊂ (z, x1, . . . , xr), so
that I∗ ⊂ (z, x1, . . . , xr)∗ = (x1, . . . , xr)∗, while the reverse inclusion is trivial.
Because (x1, . . . , xr) is generated by strictly fewer elements than I, we have
that m(x1, . . . , xr)∗ ⊂ m(x1, . . . , xr).

We conclude that mI∗ = m(x1, . . . , xr)∗ ⊂ m(x1, . . . , xr) ⊂ mI, contrary
to our choice of I. This contradiction completes the proof. �
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We now put to rest Huneke’s speculations about the nice properties the
blow up of the strong test ideal might have.

1.2. Example. Let R be the localization at the maximal ideal (x, y, z)
of the two dimensional normal graded ring k[x, y, z]/(x2 + y3 + z6), where k
is a field of characteristic p ≥ 5. The test ideal of this ring is the unique
homogeneous maximal ideal, by Theorems 4.3 and 5.4 of [HS] (see also [H1,
H2] for more similar results that hold in any dimension and p� 0, but without
the specific bound on p). However, the blowup of the maximal ideal produces a
normal scheme with an isolated non-rational singularity. Explicitly, the unique
singular point corresponds to the maximal ideal (x′, y′, z) in the affine scheme
Spec k[x′, y′, z]/((x′)2 + (y′)3z + z4), where x′ = x

z and y′ = y
z . Because this

can be graded with degree x′ = 2 and degree y′ = degree z = 1, we see that the
a-invariant is again zero, so we have a non-rational singularity. The test ideal,
and hence the strong test ideal, at this point (at least in large characteristic) is
the maximal ideal (x′, y′, z). Blowing this up again, we achieve a scheme that
is not even regular in codimension one; for example, the affine patch where
z does not vanish is isomorphic to Spec k[x′′, y′′, z]/((x′′)2 + (y′′)3z2 + z2),
which is singular along the curve where x′′ and z are zero. This shows that
the blowup of the strong test ideal need not even been normal in general, nor
is an iterated blow-up of strong test ideals likely to have good properties.

As far as we know, it is possible that the test ideal is always the strong
test ideal. The next result gives an elementary argument that suggests that
for graded rings, the test ideal always coincides with the strong test ideal. We
will later strengthen this result; see Theorem 2.6.

1.3. Theorem. Let R be an N-graded ring. Assume that the test ideal
τ is generated by all elements of degrees exceeding a certain fixed number a.
Then the test ideal is a strong test ideal for homogeneous ideals. That is,
τI∗ = τI for all homogeneous ideals I, where τ is the test ideal of R.

For an example of a ring satisfying the above condition on τ , let R be any
Q-Gorenstein N-graded ring with an isolated non-F-regular point, in charac-
teristic p� 0 (including characteristic zero); see Remark 2.7.

Proof. Suppose that the claim is false, so there exists a homogeneous I
such that τI∗ is not contained in τI. Choose such a counterexample ideal I
generated by the fewest possible homogeneous elements y1, y2, . . . , yr. Let δ
be the unique integer such that some minimal homogeneous generator of I
has degree δ, but no minimal generator of I has degree exceeding δ. Since I∗

and τ are homogeneous, it suffices to show that for every homogeneous z ∈ I∗
and homogeneous c in τ , the product cz is in τI. But since cz ∈ I, we can
write

cz = b1y1 + · · ·+ bryr
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and since τ = R>a we only need to check that the coefficients bi have degrees
greater than a. For this is sufficient that the degree of z is at least the degree
of each yi.

Assume, on the contrary, that the degree of z is strictly less than the degree
of some yi. In particular, the degree of z is less than δ. Let I = I1 + I2 where
I1 is homogeneous and generated by elements of degree less than δ, and I2 is
generated by homogeneous elements of degree exactly δ. But since the degree
of z is less than δ, the equations

czq ∈ I [q]
1 + I

[q]
2

for large q can hold only if the coefficients on the generators of I [q]
2 are zero,

since the degrees of these generators are much larger than the degree of czq.
This implies that z ∈ I∗1 . By our assumption on the minimality of our coun-
terexample, we see that τz ⊂ τI∗1 ⊂ τI1 = τI. Thus τI∗ ⊂ τI in either case,
and the proof is complete. �

Theorem 1.3 raises the following natural question: If τI∗ ⊂ τI for all ho-
mogeneous ideals I in a graded ring, is it true that τI∗ ⊂ τI for all ideals
I of R? It seems quite plausible that there is an elementary proof that the
answer is yes, especially because τ itself is homogeneous. If so, then Theorem
1.3 would imply that the test ideal in a graded ring satisfying the hypothesis
above coincides with the strong test ideal. In any case, in Theorem 2.6, we
establish that the test ideal is the strong test ideal in a graded ring satisfy-
ing the hypothesis of Theorem 1.2, although our argument is somewhat less
elementary.

In every example in which the strong test ideal is known, it is equal to the
test ideal. Thus we are led to the problem: Is the test ideal always equal to
the strong test ideal?

2. The identification of the test and strong test ideals

In this section, all rings of characteristic p > 0 are assumed to be F-finite
(which, in particular, implies excellence [Ku]). We will also change notation
slightly, letting (A,m) denote the local ring we study, rather than (R,m).

The main results here are Theorem 2.6 and Theorems 2.12, each proving
that the test ideal is the strong test ideal in situations where we understand
the test ideal well enough.

Our strategy to attack the problem is based on the theory of Rees algebras
and “filtered blowings-up.” A filtration on a Noetherian domain A is a de-
creasing sequence of ideals {Jn}n≥0 of A satisfying the conditions: (i) J0 = A
and Jn 6= 0 for every n ≥ 0; and (ii) Jm · Jn ⊂ Jm+n for every m,n ≥ 0.
A filtration {Jn}n≥0 is called a Noetherian (resp. normal) filtration if the
Rees algebra R =

⊕
n≥0 JnT

n ⊂ A[T ] is a finitely generated (resp. normal)
A-algebra, where T is an indeterminate of degree 1.
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The following key lemma is observed by Huneke in [Hu].

2.1. Lemma (cf. [Hu]). Let A be a Noetherian domain of characteristic
p > 0 and let R =

⊕
n≥0 JnT

n be the Rees algebra of a Noetherian filtration
{Jn} of ideals on A. Assume that for an integer N ≥ 0, the degree N piece
RN = JNT

N of R is contained in the test ideal τ(R). Then JN ⊂ A is a
strong test ideal of A.

Proof. Let I ⊂ A be any ideal of A. Then I∗ ⊂ (IR)∗, so that

JNI
∗ · TN = I∗RN ⊂ IR

by our hypothesis. Looking at the degree N part of this containment, we see
that JNI∗ · TN ⊂ (IR)N = IJN · TN . Thus JNI∗ ⊂ JNI for all I ⊂ A,
whence the result. �

2.2. Setup. Let (A,m) be a d-dimensional Noetherian local or N-graded
ring over a field of characteristic p > 0 and {Jn} be a Noetherian normal
filtration of ideals on A. Let R =

⊕
n≥0 JnT

n be the Rees algebra associated
with {Jn} and M = mR + R+ be the homogeneous maximal ideal of R.
We set X = ProjR and OX(n) := R(n)∼ on X for n ∈ Z. The birational
projective morphism ψ : X → SpecA is called the filtered blowup of {Jn}n≥0.
We have the following fundamental commutative diagram [TW]:

Y ′ = SpecX
(⊕

n∈ZOX(n)Tn
) ∼−→ SpecR \ V (R+)

↓ ↓
S ↪→ Y = SpecX

(⊕
n≥0OX(n)Tn

)
ϕ−→ SpecR

↓ $ ↓
E ↪→ X = ProjR ψ−→ SpecA

Here E denotes the closed fiber of ψ, and S is the zero-section of $, i.e.,
the Weil divisor on Y defined by the ideal sheaf

⊕
n>0OX(n)Tn of OY =⊕

n≥0OX(n)Tn.
By Demazure [D], there exists a ψ-ample Q-Cartier divisor ∆ on X such

that OX(n) = OX(n∆) := OX(bn∆c) for every n ∈ Z. For simplicity, we
assume that ∆ is an integral Weil divisor. (When ∆ has non-integer coeffi-
cients, we have to make a modification by the “fractional part” ∆′ in Lemma
2.3 below, as in Lemma 2.8.)

In the following, the canonical sheaf (resp. canonical divisor) of a normal
variety V is denoted by ωV (resp. KV ), and the divisorial sheaf corresponding
to the divisor nKV (n ∈ Z) is denoted by ω(n)

V or OV (nKV ).
To apply our ideas, we require a few easy lemmas.
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2.3. Lemma. Let the situation be as in 2.2. Then we have the following
isomorphism of graded R-modules for each i ∈ Z:

Hd+1
M (ω(i)

R ) ∼=
⊕
n<i

Hd
E(ω(i)

X (n))Tn.

Proof. Since KY = π∗KX − S in the divisor class group of Y (cf. [TW,
Proposition 3.11]), one has ω(i)

Y
∼=
⊕

n≥i ω
(i)
X (n)Tn. This implies that

ω
(i)
R
∼= H0(Y, ω(i)

Y ) ∼=
⊕
n≥i

H0(X,ω(i)
X (n))Tn,

since ω(i)
R and ω

(i)
Y are reflexive and ϕ : Y → SpecR is isomorphic in codi-

mension one (cf. [TW, Remark 1.3 (iii)]). Hence by the duality for graded
R-modules [TW, Proposition A.3.13],

Hd+1
M (ω(i)

R ) ∼= HomA(HomR(ω(i)
R , ωR), EA(A/m))

∼= HomA(ω(1−i)
R , EA(A/m))

∼=
⊕
n≥1−i

HomA(H0(X,ω(1−i)
X (n))Tn, EA(A/m)),

where EA(A/m) is the injective envelope of the A-module A/m, sitting in
degree 0. The right-hand side of this equality is identified with⊕

n≥1−i

Hd
E(ω(i)

X (−n))T−n =
⊕
n<i

Hd
E(ω(i)

X (n))Tn

by the Grothendieck duality, as required. �

2.4. Lemma. Let c ∈ R be a nonzero element of an integral domain R
of characteristic p > 0 satisfying the following property: There exists a test
element d ∈ R, a power q = pe and θ ∈ HomR(R1/q, R) such that θ(d1/q) = c.
Then c is a test element of R.

Proof. Let I ⊂ R be an ideal and let x ∈ I∗. Then one has dxq ∈ I [q], so
that

cx = θ((dxq)1/q) ∈ θ((I [q])1/q) = θ(I ·R1/q) ⊂ I.
Hence cI∗ ⊂ I for all I, which means that c is a test element. �

We can now prove a key proposition.

2.5. Proposition. Assume notation as in 2.2. Then there exists an
element c ∈ A that is a test element for R. For such a c ∈ A and a given
integer N ≥ 0, assume further that the following condition holds: There exists
an e0 ∈ N such that the map

(c, cF, . . . , cF e0) : Hd
E(ωX(−N)) −→

e0⊕
e=0

Hd
E(F e∗ (ω(q)

X (−qN)))
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is injective, where cF e : Hd
E(ωX(−N))→ Hd

E(F e∗ (ω(q)
X (−qN))) is the induced

e-times iterated Frobenius map followed by multiplication by c. Then JN is a
strong test ideal of A.

Proof. We can choose a nonzero element c ∈ J1 such that Ac is regular.
Then Rc = Ac[T ] is also regular, so that some power of c, which we relabel
as c, is a test element of R by [HH3].

By Lemmas 2.1 and 2.4, we see that JN is a strong test ideal ifRN = JNT
N

lies in the image of the map
e0⊕
e=0

HomR(R1/q,R) δ−→
e0⊕
e=0

HomR(R1/q,R)→ HomR(R,R) = R,

where δ denotes the diagonal map diag(c, c1/p, . . . , c1/p
e0 ). Here we note that

R1/q and so HomR(R1/q,R) have natural 1
qZ-grading, and the above map is

viewed as a graded homomorphism via the p−e0Z-grading, since so is R ↪→
R1/q c

1/q

−→ R1/q for q = 1, p, . . . , pe0 . Therefore it is sufficient to prove that the
above map is surjective in degree N .

Now the Matlis dual of HomR(R1/q,R) ∼= HomR((ω(q)
R )1/q, ωR) in the

category of graded R-modules is Hd+1
M ((ω(q)

R )1/q). Hence it suffices to show
that the map

Hd+1
M (ωR)→

e0⊕
e=0

Hd+1
M ((ω(q)

R )1/q) δ−→
e0⊕
e=0

Hd+1
M ((ω(q)

R )1/q)

is injective in degree −N . This map is identified with the map

(c, cF, . . . , cF e0) : Hd+1
M (ωR)→

e0⊕
e=0

Hd+1
M (ω(q)

R )

by [W2]. Hence the required injectivity follows from our assumption, because
we have the graded decomposition

Hd+1
M ((ω(q)

R )1/q) ∼=
⊕
n<q

Hd
E(F e∗ (ω(q)

X (n)))Tn/q

by Lemma 2.3, and its degree −N component is Hd
E(F e∗ (ω(q)

X (−qN))). The
proposition is proved. �

2.6. Theorem. Let A =
⊕

k≥0Ak be a Noetherian normal graded ring
over a field A0. Assume that the test ideal τ of A is described as the ideal of
all elements of A whose degrees are more than a fixed integer, A≥N . Then
τ = A≥N is the strong test ideal of A.

2.7. Remark. If A is a normal graded ring with an isolated non-F-regular
point and if A is Q-Gorenstein, i.e., ω(r)

A
∼= A(b) for some integers r > 0 and b,
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then in characteristic p� 0 (including characteristic zero), one has τ = R>b/r
([H2], see also [HS] for the Gorenstein case). So in this case, the assumption
of the theorem is satisfied.

Proof. We make use of the graded filtration as the filtration {Jn}n≥0 in
Proposition 2.5, namely, Jn = A≥n =

⊕
k≥nAk. In this case, the divisor ∆

in Setup 2.2 is −E (integral!), and we can choose a homogeneous test element
c of A which is also a test element of R =

⊕
n≥0 JnT

n.
The graded ringA is represented byA = R(E,D) =

⊕
k≥0H(E,OE(kD))tk

for an ample Q-Cartier divisor D on E = ProjA and a homogeneous ele-
ment t of degree 1 in the fraction field of A (see [D]). Then X = ProjR ∼=
SpecE(

⊕
k≥0OE(kD)tk), and we have not only the fundamental diagram for

the Rees algebra R in Setup 2.2, but also that for the graded ring A:

X − E ∼−→ SpecA \ {m}
↓ ↓

E ↪→ X
ψ−→ SpecA

=↘ ↓ π
E = ProjA

We define the “fractional part” D′ of the Q-divisor D as follows [W1]: Let D
be expressed as D =

∑
(ei/di)Di, where each Di is a prime divisor on E and

di and ei are coprime integers with di > 0. Then set D′ =
∑

((di − 1)/di)Di.
We will describe the map

cF e : Hd
E(ωX(−N)) −→ Hd

E(F e∗ (ω(q)
X (−qN)))

in Proposition 2.5 in terms of the Demazure representation.

2.8. Lemma. With the notation as above, one has the following isomor-
phisms of graded A-modules for each integers i and n:

(i) Hd
m(ω(i)

A ) ∼=
⊕
k∈Z

Hd−1(E,OE(i(KE +D′) + kD))tk.

(ii) Hd
E(ω(i)

X (n)) ∼=
⊕
k<i+n

Hd−1(E,OE(i(KE +D′) + kD))tk.

In particular, Hd
E(ω(i)

X (n)) is the quotient A-module of Hd
m(ω(i)

A ) consisting of
the graded part of degree < i+ n.

Proof. (i) is shown in [W2]. Since ψ : X → SpecA is isomorphic outside
of E, we have an exact sequence

Hd−1(X,ω(i)
X (n))

ρ→ Hd
m(ω(i)

A )→ Hd
E(ω(i)

X (n))→ 0.
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Now, KX = π∗(KE +D′)−E and OX(i) = OX(−iE) =
⊕

k≥iOE(kD)tk by
[W1], so that

ω
(i)
X (n) = OX(iπ∗(KE +D′)− (i+ n)E) =

⊕
k≥i+n

OE(i(KE +D′) + kD)tk.

Hence the map ρ in the above exact sequence is isomorphic in degree ≥ i+n.
This proves (ii). �

We continue the proof of Theorem 2.6. By Proposition 2.5 and Lemma 2.8,
it is sufficient to show that there exists an e0 ∈ N such that the map

(c, cF, . . . , cF e0) : Hd
m(ωA) −→

e0⊕
e=0

Hd
m(ω(q)

A )

is injective in degree ≤ −N . However, by [W2], this map is identified with
the map

Φ(e0) = (c, cF, . . . , cF e0) : E(A/m) −→
e0⊕
e=0

A(e) ⊗A E(A/m)

induced for the injective envelope E(A/m) of A/m in the category of graded
A-modules. Since E(A/m) is an Artinian A-module, we can choose an e0 from
which the kernel of Φ(e0) becomes stationary: Ker(Φ(e0)) = Ker(Φ(e0 +1)) =
· · · .

Now by [LS], the test ideal τ(A) = A≥N is equal to AnnA(0∗E(A/m)), so
that 0∗E(A/m) = E(A/m)>−N by the duality. Therefore, if ξ is a nonzero
element of E(A/m) of degree ≤ −N , then ξ /∈ 0∗E(A/m), whence cF e(ξ) 6= 0
in A(e) ⊗A E(A/m) for some q = pe. This means that the stationary kernel
Ker(Φ(e0)) has no graded component of degree ≤ −N . This completes the
proof of the theorem. �

We now turn to the local case. A normal variety V is said to be Q-
Gorenstein (resp. quasi-Gorenstein) if ω(r)

V is invertible for some integer r > 0
(resp. ωV is invertible). The following proposition allows us to reduce the
problem for Q-Gorenstein rings to the quasi-Gorenstein case.

2.9. Proposition. Let (A,m) be a normal Q-Gorenstein local ring such
that the order r of its canonical class is not divisible by the characteristic p.
Given an isomorphism ω

(r)
A
∼= A, we consider the canonical covering B =⊕r−1

i=0 ω
(i)
A with the corresponding ring structure. Suppose that the test ideal

τ(B) of B is the strong test ideal of B. Then the test ideal τ(A) of A is also
the strong test ideal of A.
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Proof. Since r is not divisible by p, τ(B) is a homogeneous ideal under
the Z/rZ-grading of B, and its degree 0 part τ(B)0 is τ(B) ∩A = τ(A) (see,
e.g., [H2], [S2]).

Now let I ⊂ A be any ideal of A. Then

τ(A)I∗ ⊂ τ(B) · (IB)∗ ⊂ τ(B) · IB = τ(B)I,

since τ(B) is a strong test ideal. It is easy to see that the degree 0 part of
τ(B)I is τ(B)0I = τ(A)I, whence τ(A)I∗ ⊂ τ(A)I. �

2.10. The canonical model. Let (A,m) be a normal local ring of
dimA = d ≥ 2, essentially of finite type over a field. A canonical model
ψ : X → SpecA is a birational projective morphism from a normal variety X
satisfying the following conditions (cf. [KMM]):

(i) X has only canonical singularities, i.e., X is Q-Gorenstein and, for
a resolution of singularities g : X̃ → X, one has g∗OX̃(nKX̃) =
OX(nKX) for all n ≥ 0.

(ii) KX is ψ-ample.
Then the canonical ring

R :=
⊕
n≥0

H0(X̃,OX̃(nKX̃))Tn =
⊕
n≥0

H0(X,OX(nKX))Tn

is a finitely generated A-algebra with X = ProjR, and OX(n) := R(n)∼ =
OX(nKX) for n ∈ Z.

2.11. Remark. In characteristic zero, the existence of the canonical
model is equivalent to the finite generation of the A-algebra

⊕
n≥0H

0(X̃,
OX̃(nKX̃))Tn, where X̃ → SpecA is a resolution of the singularity. In gen-
eral it is difficult to prove the existence of canonical models. But it is known
that canonical models exist for surface singularities in arbitrary character-
istic; 3-dimensional singularities in characteristic zero [M]; “nondegenerate”
hypersurface singularities of any dimension [I]; and so on.

2.12. Theorem. Let (A,m) be a Q-Gorenstein normal local ring essen-
tially of finite type over a field whose canonical covering admits a canonical
model. Then in characteristic p � 0 (including characteristic zero: see 0.4
and 0.5), the test ideal τ(A) is the strong test ideal of A.

Proof. By Proposition 2.9 we may assume that A is quasi-Gorenstein and
has a canonical model ψ : X → SpecA. Then the discrepancy ∆ = KX −
ψ∗KA of ψ is an integral divisor. We define a filtration {Jn}n≥0 by Jn :=
H0(X,OX(n∆)) ∼= H0(X,OX(nKX)). The Rees algebra R =

⊕
n≥0 JnT

n

then is Noetherian and normal, and its filtered blowup is the canonical model
ψ : X = ProjR → SpecA.
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Now let f̃ : X̃ → SpecA be a resolution of singularities reduced from
characteristic zero to characteristic p, and let ∆̃ = KX̃ − f̃∗KA be the dis-
crepancy of f̃ . Then in characteristic p� 0, the test ideal of A is described as
τ(A) = H0(X̃,OX̃(∆̃)), and this is identified with H0(X̃, ωX̃) = H0(X,ωX)
via the identification A ∼= ωA (Theorem 0.6). Hence we have that J1 = τ(A).

We will apply Proposition 2.5 to this situation. Let 0 6= c ∈ A be a test
element for R as in Proposition 2.5. Then, since OX(n) ∼= OX(nKX), it is
sufficient to prove the following

Claim. There exists e∈N such that the map cF e :Hd
E(OX)→Hd

E(F e∗OX)
is injective.

Proof of Claim. Since Hd
E(OX) is an Artinian A-module, we only have to

show that, for any nonzero element ξ ∈ Hd
E(OX), cξq 6= 0 in Hd

E(F e∗OX) for
all q = pe � 0.

Let ξ be a nonzero element of Hd
E(OX). We note that the dual form of the

formula τ(A) ∼= H0(X,ωX) is

0∗Hdm(A) = Ker
(
Hd
m(A) σ→ Hd

E(OX)
)
,

where the map σ is the Matlis dual of the natural inclusion H0(X,ωX) ↪→ ωA,
whence surjective (cf. [H2], [MS]).

Pick a ξ̃ ∈ Hd
m(A) which maps to ξ ∈ Hd

E(OX). Then ξ̃ /∈ 0∗Hdm(A), so that

cξ̃q
′
/∈ 0∗Hdm(A) for some power q′ of p, because otherwise, given a test element

d ∈ A, cdξ̃q = 0 for all q = pe, which is a contradiction.
This implies that (cξ̃q

′
)q /∈ 0∗Hdm(A) for all q = pe. To see this, assume to

the contrary that (cξ̃q
′
)q ∈ 0∗Hdm(A) for some power q of p. Then we have that

Hd
m(A) = 0∗Hdm(A) +A(cξ̃q

′
, (cξ̃q

′
)p, . . . , (cξ̃q

′
)q/p), since 0∗Hdm(A) is the maximal

proper submodule of Hd
m(A) which is stable under the Frobenius action [S1].

But this implies that Hd
E(OX) ∼= Hd

m(A)/0∗Hdm(A) has finite length, which is
absurd.

Consequently, we have cξ̃q /∈ 0∗Hdm(A) for all q ≥ q′, so that cξq 6= 0 for all
q ≥ q′, as required. This completes the proof of the theorem. �

As we mentioned in Remark 2.11, Theorem 2.12 is applicable in several
cases. In particular, in the local ring of any Q-Gorenstein normal surface
singularity, the test ideal is equal to the strong test ideal, if the characteristic
is zero or p� 0. What’s more, given the dual graph of the resolution of such
a singularity, we can determine an explicit lower bound of p for which the
identification of the test and strong test ideals occurs (cf. [H3]).

However, this result is not yet satisfactory, because it is likely that the test
ideal is a strong test ideal even in small characteristic p > 0. Also, for our
purpose it seems too much to ask for the existence of canonical models. We
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ask if Proposition 2.5 is applicable to easier filtrations {Jn}n≥0, e.g., Jn = τn,
or Jn = τn.
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