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DIFFERENTIAL TRANSCENDENCE OF A CLASS OF
GENERALIZED DIRICHLET SERIES

MASAAKI AMOU AND MASANORI KATSURADA

ABsSTRACT. We investigate differential transcendence properties for a
generalized Dirichlet series of the form Y>> ;an X, . Our treatment of
this series is purely algebraic and does not rely on any analytic properties
of generalized Dirichlet series. We establish differential transcendence
theorems for a certain class of generalized Dirichlet series. These results
imply that the Hurwits zeta-function (s, a) does not satisfy an algebraic
differential equation with complex coefficients.

1. Introduction and statement of results

Let A\, (n € Ny :={0,1,2,...}) be a strictly increasing sequence of positive
numbers which tends to infinity as n tends to infinity, and let a,, (n € Np) be
an arbitrary sequence of complex numbers. We consider a series of the form

(L1) ORI
n=0""T

which is called a (formal) Dirichlet series. Here s is an abstract symbol (or
a complex variable if the series converges for some complex number s = sp).
Let a be a positive real parameter. The series

1
(1.2) o) =Y
n=0
which is a particular case of (1.1), is called the Hurwitz zeta-function. Note
that ((s,1) = ((s) is the Riemann zeta-function. The aim of the present
paper is to study the differential transcendence of a certain class of generalized
Dirichlet series, which includes the Hurwitz zeta-functions. Our main results
are stated at the end of this section. We emphasize that our arguments are
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purely algebraic and do not appeal to any analytic properties of generalized
Dirichlet series.

We denote by G the set of all generalized Dirichlet series. The complex
field C can be regarded as a subset of G by defining 1° = 1. Then the set
G forms an algebra over C under the following operations of addition and
multiplication (or convolution). For any elements f(s) = > ;2 a;\;* and
9(s) = >0 o bmpy® in G, let k,, (n € Ng) be the strictly increasing sequence
consisting of all elements A\; and p,, (I,m € Np), and let v, (n € Ny) be
the strictly increasing sequence consisting of all elements of the form A;p,
(I,m € Ny). Then the addition and the multiplication of f and g are defined
by

f(s)Jrg(s):ch/i;S, Cn:a;1+b/n
n=0

and
f(S)g(S) = Z dnl/f;s7 dn = Z albm;
n=0 l,meNg

Al =Vn,
respectively, where a], = ay if \y = Kk, for some k and a], = 0 otherwise,
and b/, is defined analogously. Further, the derivative with respect to s of the
series f(s) given by (1.1) is defined by

flis) =3 (=08
n=0 n

and for any j € N the j-th derivative fU)(s) is defined inductively as the j-th
iterate of the derivative.

Let r be a positive integer and let H be any subalgebra of G. A collection of
generalized Dirichlet series f1, ..., f is called differentially algebraically inde-
pendent over H if there are no nontrivial algebraic relations with coefficients
in ‘H among the series fl(]) (j =0,1,2,...;1 =1,2,...,r). In particular, if
this condition holds in the case r = 1, the series f; is said to be differentially
transcendental over H.

We define the (formal) Dirichlet series ring D, a subalgebra of G, as the set
of all series f € G of the form f =3 a,n™*. Note that the Riemann zeta-
function ((s) belongs to this subalgebra. The study of differential algebraic
independence of elements of D has a long history, which dates back to a
problem of Hilbert posed at the International Congress of Mathematicians
held on 1902 (see Ostrowski [4]). Let A be the set of all arithmetic functions,
which forms a ring under the usual addition, subtraction and convolution. It
is readily seen that A is isomorphic to D through the homomorphism

A3 a(n) — Z a(n)n™° € D.

n=1
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Popken [5] studied independence problems on the algebra A. More systematic
and thorough investigations of the structure of A (and hence D) have been
carried out by Shapiro [6], and Shapiro and Sparer [7]. Laohakosol [2] gave
a refinement of an independence criterion for arithmetic functions, due to
Popken [5], and proved certain differential independence results in quantitative
form for the elements of D.

A Dirichlet series f = Y °  a,n~* € D is called a Dirichlet polynomial
if a, = 0 for all sufficiently large n, and the subring of D consisting of all
Dirichlet polynomials is denoted by Dy. One of the simplest results in this
direction is the following theorem (see, for e.g., [2, Theorem 4]).

THEOREM A. Let f =37, a,n"* € D be such that the set
{p prime: p divides some n with a, # 0}

is an infinite set. Then f is differentially transcendental over C.

Let U = {uy, }nen be a sequence of complex numbers. The U-operation
on D is defined for f =>"""  a,n"* € D by

ApUn

)

@uf)(s) =

ns
n=1

and for any j € N, 8Ijjf denotes the j-th iterate of the U-operation. We
note that dy becomes the derivative (with respect to s) when u, = —logn.
Following an argument in [7], one can easily reformulate the statement of
Theorem A by using the U-operation and Dy instead of the derivative (with
respect to s) and C, respectively.

THEOREM B. Let f =)>"7" a,n * € D be such that the set
{p prime: p divides some n with a, # 0}

is an infinite set. Let U = {un}nen be a sequence of complex numbers that
are pairwise distinct. Then, for any r € No, the series f,0u f,0%f,..., 0 f
are algebraically independent over Dy.

In the present paper we generalize Theorem A to a certain class of (formal)
generalized Dirichlet series, which includes a family of Hurwitz zeta functions
{(s,a).

Our first theorem implies the differential transcendence of ((s, a) for tran-
scendental a.

THEOREM 1. Let f =3 " jan\,® be a generalized Dirichlet series such
that a, # 0 for infinitely many n € Ng. Suppose that A, (n € Ny) and p,
(n € N) are multiplicatively independent, where p,, is the n-th prime number.
Then f is differentially transcendental over Dy.
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Let K be an algebraic number field of finite degree, and let Ok be the ring
of integers in K. For any a € K we write N(a) = Normgg(a). Our second
theorem implies the differential transcendence of ((s,a) for algebraic a.

THEOREM 2. Let f =Y 7" ay\,* be a generalized Dirichlet series which
satisfies the following four conditions:
(i) A\p € K for all n € Ng;
(ii) there exists a positive integer D such that DX, € Ok for all n € Ny;
(iii) the sequence {|N(An)|}nen, is strictly increasing except for finitely
many initial terms;
(iv) if D is a positive integer satisfying (ii), the set

{p prime: p divides N(D)\,) for some n with a,, # 0}

is an infinite set.

Then f is differentially transcendental over Dy.

We give two corollaries of the theorems. To state the first corollary, which
is a consequence of Theorem 2, we extend the notion of the norm to any
polynomial P(z) =377, a;z7 € K[X] by setting

d m
(Normg /g P)(x) := HZUi(ij)ﬂfj,

i=15=0

where o1, ...,04 are the automorphisms from K into C.

COROLLARY 1. Let K be a real algebraic number field of finite degree over
Q, and let P(x) be a non-constant polynomial with coefficients in K such that
P(n) > 0 for alln € Ny. Let a, (n € Nyg) be a sequence of complex numbers
satisfying a, # 0 for all sufficiently large n € Ng. Then the generalized
Dirichlet series

16 =3 poye
n=0

is differentially transcendental over Dy. If we suppose in addition that the
norm for P(x) contains a factor Q(z) € Z[zx] with at least two simple roots,
then the same conclusion holds under the weaker condition that a, # 0 for
infinitely many n.

REMARK. The formal series f(s) in Corollary 1 is, in fact, a generalized
Dirichlet series since the set {n’ € Ny : P(n) = P(n')} is a finite set for any
n € Np.

If A, = n+a (n € Ny) with a positive real number a, we can apply Theorem
1 or Theorem 2 according as a is transcendental or algebraic, and then obtain
the following corollary.
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COROLLARY 2. Let a be a positive real number, and let a, (n € Ny) be a
sequence of complex numbers satisfying a, # 0 for infinitely many n. Then
the generalized Dirichlet series

(1.3) gs)=3" m

n=0

is differentially transcendental over Dy.

REMARK. Let x be a real parameter. The Lerch zeta-function L(z, a, s) is
a particular case by (1.3), with the choice a,, = €?™"®. Using the universality
properties of Lerch zeta-functions, Garunkstis and Laurincikas [1] recently
established the functional independence of L(x,a,s) when a is rational or
transcendental (see also the very recent work of Laurin¢ikas and Matsumoto
[3]). For instance, when a is transcendental, their result asserts that if Fy,,
m =20,1,...,n, are continuous functions and for all s

Z §™ Fo(L(,a,8), L' (z,a,5),..., LYY (z,a,s)) =0,
m=0

then F,,, =0 for m =0,1,...,n. Here N is an arbitrary positive integer, and
LY (z,a,s), 7 =0,1,...,N — 1, denotes the j-th derivative with respect to
the variable s.

The authors would like to thank Professor Ryotaro Okazaki who kindly
pointed out that condition (iii) in the original version of Theorem 2 was in-
sufficient. The authors are also indebted to the referee for valuable comments
and refinements of an earlier version of the present paper.

We prove Theorem 1 in the next section. Theorem 2 is proved in Section
3, and the final section is devoted to the proofs of the corollaries.

2. Proof of Theorem 1

In order to prove Theorem 1, we need a slight generalization of the Jacobian
criterion for algebraic independence of elements in D, due to Shapiro and
Sparer (see Theorem 3.1 of [7, Section 3]).

Let H be an arbitrary subalgebra of G. A derivation d over H is defined to
be a mapping from H into itself satisfying

d(f1f2) = d(f1)f2 + frd(f2), d(cifi + caf2) = cid(f1) + c2d(f2)

for all f; and fy in ‘H, and any complex constants ¢; and cs. For any given
elements f1, fo, ..., f in H, the Jacobian of the f; relative to the d; is defined
as the r x r determinant

J(froooos frldy, ..o dy) = det(di(fj))1<ij<r-
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LEMMA 1. Let f1,..., [ be given elements in H, and let dy,...,d, be
derivations over H which annihilate all elements of a subring KK of H. If
J(f1y.., frldi,...,dr) # 0, then the elements f1,...f, are algebraically in-
dependent over IC.

REMARK. The proof of [7, Theorem 3.1] remains valid if A and £ in the
proof are replaced, as above, by H and K, respectively.

We proceed to the proof of Theorem 1. Let f = > a,\,® be a gener-
alized Dirichlet series satisfying the assumptions of Theorem 1. By removing
the subsequence of those numbers A, for which a,, = 0, we may suppose
without loss of generality that a,, # 0 for all n € Nj.

Let r be a nonnegative integer, and let P(Xo, X1,...,X,) be a nonzero
polynomial with coefficients in Dy. We will show that
(2.1) P(f, f', 1" f) £ 0.

Set S, =p,° forn=1,23,..., where p, denotes the n-th prime number.

Then there exists a positive integer | such that the coefficients of P belong to
C[S1, S2,...,51]- Let T,, = A.,® (n € Np) be the infinite sequence of variables.
Since A\, (n € Np) and p, (n € N) are multiplicatively independent, the
numbers T;, (n € Ny) are algebraically independent over K = C[S1, S, ..., 5]
The ring H = K[[T), : n € Ng|] (C G) can therefore be regarded as a formal
power series ring over K with T,, (n € Np) as the variables. This allows
us to define, for any n € Ny, a derivation 9, = 9/9T, over H, which is
the usual differentiation with respect to 7,,. We consider now the Jacobian
Jn =T s F)0m, Oty - - - Omyr) for a positive integer m satisfying
Ap > 1 for all n > m. On writing b, = —log A\,, we have

T = det(Dpmri(f9)o<i j<r = det(am-‘ribszri)OSiJST
= Qm - Qmypr det(bzn-',-i)OSiJST # 0.

By Lemma 1, this implies the algebraic independence of f, f/,..., f") over K,
and hence (2.1). The proof of Theorem 1 is therefore complete. O

3. Proof of Theorem 2

We first assume that A\g > 1 and \, € Og with |[N(\,)| > 1 for all
n € Ny, and set A = {\,}nen,. Before beginning the proof, we introduce
some notation.

Let Z be the set of all finite non-decreasing sequences in Ny with the con-
vention that Z includes the empty sequence §). For any I = (i1,42,...,%m) € Z
we define

amE

() =7(;A) = | | M\

1
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with the convention 7(f) = 1. Then the following lemma follows immediately
form conditions (i), (ii) and (iii) of Theorem 2.

LEMMA 2. For any I € Z and any n € N we have:
) #{I'eZ: v(I')=7(1)} < o0;
(ii) #{(n', I') e NxT: n't(I") =n7(I)} < oc;
(i) #{(n, I'Y e NxZ: |[N(n'r(I")| = |N(nT(I))|} < o0.

We introduce an equivalence relation on the set Z with respect to A as
follows. Let I and I’ be elements of Z. We say that I is equivalent to I’ if
and only if 7(I) = 7(I’) holds. The equivalence class of I is denoted by [[],
and the set of all equivalence classes by Z/A. By (i) of Lemma 2 any series of

the form ()
a
> Y5 e
[I1eZ/A
makes sense as an element of G, and the set of all such elements is denoted
by HA.

We now prove Theorem 2 under the assumption stated above. Let r be a
nonnegative integer, and let
P(Xo,X1,...,X,) = > PyXPoxi .. X
J=(jo,---.ir)EJ0
be a nonzero element of Dy[Xy, X1, ..., X,], where
m(J)
P; =
m=1
and Jy is a finite subset of J defined by
j: {J: (j07j17"'7j7“) : jl EI\IO (OSZST’)}
Then we show that

ps(m)

€Dy (m(J)€N; ps(m) € C),

F=P(f.f' . f",....f") #0.
For any J = (jo, 71, ..,jr) € J one can represent f7(f')7 ... (f)Jr in the

form
piripye gy = 3 20 @ eo,
(I1€Z/A
and hence
o Z’”(Z‘”m 5wl
JETy m=1 []eT/A (D

Let M be a positive integer such that M > max ez, m(J). Then by (ii) of
Lemma 2 we can consider the algebra

H:=Ha[m™*: m=2,3,...,M](C G),
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whose elements are given by

m,[1]
where ¢(m, [I]) € C and m is bounded. We define a map from H to D by
c(m
: D.
7 Haz[;](m( z[;]NmT k<

From (iii) of Lemma 2 and the multiplicativity of the norm it is seen that the
map o is a well-defined homomorphism. The image o(F') is written as

- A —lo /\nl a
5 5w LS )
JeJo m=1 n=0

The desired assertion therefore follows (under the assumption made at the
beginning of the section), since, by Theorem B, the series

L an(—log \y,)!
=208 An) g1,y
2 ~INGIP )

are algebraically independent over Dj.
To show the assertion in the general case, suppose on the contrary that

P(f,f' ..., f") =0

for some nonzero P(Xo, X1,...,X,) € Do[Xo,X1,...,X,]. Let D be a pos-
itive integer such that DA > 1 and DA, € Ok with |[N(DA,)| > 1 for all
n € Ny, and define

90 =3 e

It follows from the preceding argument that g(s) is differentially transcenden-
tal over Dy. Since f(s) = (1/D)~®g(s), we have

gy — S~ (T (08 D)
=3 (1) @opre e

= (1/D)” Z() (log D)*gU=F(s)  (j=0,1,2,...).

k=0
Hence the equality

(D=NP(f, ..., f)=0
with a sufficiently large N € N yields a differentially algebraic relation for
g(s) over Dy, which is a contradiction. O
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4. Proof of the corollaries

Proof of Corollary 1. The sequence A\, = P(n) (n € Np) obviously satisfies
conditions (i)—(iii) of Theorem 2. Hence it remains to verify condition (iv).
Let D be a positive integer such that P(z) := D(Normg,q P)(z) € Z[z].
Since N(A,) = (Normg g P)(n), to prove the first assertion of Corollary 1 we
need to show

lim sup P[P(n)] = 400,
where, for any integer N > 2, P[N]| denotes the greatest prime factor of N.
This is clear if P(x) does not have a constant term since n | P(n). Thus
suppose ¢ := P(0) # 0. Given an arbitrarily large k € N; let p1,...,px be the
first k& prime numbers. It is readily seen that P(c(p; - - - pr)!) with a sufficiently
large | € N has a prime factor different from pq, ..., pg, and this shows the
desired assertion.

Next we suppose, in addition, that Normg /g P contains a factor Q(z) €
Z]x] with at least two simple roots. Then a result of Siegel [8] gives

lim P[Q(n)] = +oo,
which ensures that condition (iv) is fulfilled in this case. The second assertion
therefore follows, and the corollary is proved. O

Proof of Corollary 2. If a is transcendental or rational, then the assertion
directly follows from Theorem 1 or Theorem 2, respectively. When a is al-
gebraic but not rational, we can apply the second part of Corollary 1 with
P(x) = x + a. This completes the proof. O
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