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INTEGRATION IN VECTOR SPACES

GUNNAR F. STEFANSSON

ABSTRACT. We define an integral of a vector-valued function f: Q —
X with respect to a bounded countably additive vector-valued measure
v : ¥ — Y and investigate its properties. The integral is an element
of X®Y, and when f is v-measurable we show that f is integrable if
and only if ||f|| € Li(v). In this case, the indefinite integral of f is
of bounded variation if and only if ||f|| € Li(Jv]). We also define the
integral of a weakly v-measurable function and show that such a function
f satisfies o* f € L1 (v) for all * € X* and is |y*v|-Pettis integrable for
all y* e Y*.

1. Introduction and notation

R.G. Bartle [1] introduced an integral in which both the function to be
integrated and the measure take values in normed linear spaces; the inte-
gral of an X-valued function with respect to a Y-valued (finitely) additive
measure appears as an element of a Banach space Z via a bilinear mapping
X xY — Z. The integral possesses some of the properties usually associated
with the Lebesgue theory of integration; in particular, the Vitali and Bounded
Convergence theorems remain valid in this setting, while the Lebesgue Dom-
inated Convergence theorem fails.

In this paper we define the integral of an X-valued function with respect
to a Y-valued measure as an element of the injective tensor product of X ® Y.

We begin by defining the integral of a strongly measurable function, an
analogue of the Bochner integral [2], and closely connected to the integral of
D. R. Lewis [3]. Next, we extend the integral to less measurable functions,
namely, functions which are not essentially separably valued. This extension
requires a different approach to the integral, and our setup follows that of [2,
Section 1.3].

Given a Banach space X, its closed unit ball is denoted by By, and its
dual by X*. If X and Y are Banach spaces, the space of all bounded linear
operators from X to Y is denoted by £(X,Y), and K£(X,Y") denotes the closed
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926 GUNNAR F. STEFANSSON

subspace of all compact linear operators. B(X,Y’) represents the space of all
bounded bilinear functionals on X x Y, and the completion of the tensor
product X ® Y with respect to the least reasonable cross norm is X®Y.

If (2,X) is a measurable space and v : ¥ — Y a countably additive
measure, its semivariation on a set E € ¥ is given by ||v||(E) = sup{|y*v|(4) :
y* € By}, where |y*v| is the variation of the scalar measure y*v. The
measure v is called bounded if ||¢||(2) < co. The variation of v, denoted by
lv|, is given by [v|(E) = sup, > ¢, [[¥(A)]], where the supremum is taken
over all finite partitions 7 of E into pairwise disjoint members of X.

By a theorem of Rybakov [2, Section I1X.2, Theorem 2], there exists y* €
By« such that |y*v| < ||v|| < |y*v|. As defined in [3], a function f: Q2 — R
is said to have a generalized integral with respect to v if f is y*v-integrable
for all y* € Y*. The generalized v-integral of f over E € ¥ is an element
Yy € Y™ such that

ve (") =/ fdy™v
E
for all y* € Y*. The function is called v-integrable if y3" belongs to the image
of Y in Y**. In [6] it was shown that the space of all (equivalence classes)

of functions having a generalized integral with respect to v is a Banach space
when equipped with the norm

1l = sup{ /Q Fldlyv] : v € BY*}.

We denote this space by w-L; (v). The space Ly (v) of all v-integrable functions
is a closed subspace of w-Lq(v).

If w : ¥ — R is countably additive and finite, L;(u, X) denotes the
Banach space of all (equivalence classes) of p-Bochner integrable functions

f: 9 — X with norm
I£1= [ 171 dn
Q

If o*f € L1(p) for all * € X* then f is said to be p-Dunford integrable. In
this case, the mapping

Tp: X" — Li(w),
defined by T (z*) = z* f, is bounded. The pu-Dunford integral of f over a set
E ¢ X is an element z77 € X** such that for all z* € X,

o (z*) = /Ex*f dp.

If z** € X C X** then f is said to be pu-Pettis integrable. P(u, X) denotes
the completion of the vector space of all (equivalence classes of) p-Pettis
integrable functions f : Q) — X with norm

1flp = sup{ [l slan s < }
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2. Definition of the integral and basic properties

Throughout this section, let X and Y be real Banach spaces, (,%) a
measurable space and v : ¥ — Y a bounded and countably additive measure.
We assume that the measurable space is complete with respect to |y*v|, where
y* € By~ is chosen such that ||| < |y*v|. A function f:Q — X is said to
be v-measurable if there exists a sequence (¢,,) of simple functions such that
lim, ||f — ¢nl = 0 ||v||-almost everywhere. Similarly, a function f:Q — X
is weakly v-measurable if for each x* € X* the scalar function z*f is ||v|-
measurable. Clearly, f is v-measurable if and only if it is |y*v|-measurable.

Thus we have the following Pettis type measurability theorems (see [2, Section
IL.1)).

THEOREM A. A function f:Q — X is v-measurable if and only if

(1) f is ||v|-essentially separably valued, and
(2) f is weakly v-measurable.

COROLLARY B. A function f : Q — X is v-measurable if and only if
f is the v-almost everywhere uniform limit of a sequence of countably valued
v-measurable functions.

Let ¢ = 3" xixa, be an X-valued simple function and let E € ¥. We define
[ ¢ dv by the equation

/ ¢dv=> z;@v(ENA).
E

Since v is additive, |[ p @ dv does not depend on the representation of ¢. Fur-
thermore, for any element z* ® y* € Bx« X By, we get

r* Ry* (/}S¢dv)‘ = ’Zx*(mz) Yy v(ENA;)
<Y et ()] - lyvl (B0 Ay
<D llwill -yl (B0 Ay

- / Il dly*v]
E

Therefore, if we view || 5 ¢ dv as an element of X®QY, then

/(bdl/ Ssup{/ lloll dly v : y*EBy*}.
E E

DEFINITION 1. A v-measurable function f : Q — X is called ®-integrable,
if there exists a sequence (¢,,) of simple functions such that

(1) lim sup {/ lf — onlld|yv| - y* € By*} =0.
" Q
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In this case, the sequence ( / £ Pn du) is a Cauchy sequence in X®Y for
each F € ¥. The limit,

(2) /E fdv =1lim /E b dv,

is called the ®-integral of f over E with respect to v. Since the integral
of a simple function does not depend on the representation of this func-
tion, the above limit is well defined and independent of the defining sequence
( / £ ®n dl/). To simplify the notation, we set

NU)wP{AHfdwwlwfeBw},

whenever f: () — X is v-measurable.

THEOREM 1. A v-measurable function f is ®-integrable if and only if || f||
is v-integrable.

Proof. To prove necessity, let f be a ®-integrable function and (¢,) a
sequence of simple functions such that lim, N(f — ¢,) = 0. If we denote
the essential supremum of ||¢,(:)| by M,, then N(¢,) < M,|v||(©) and
consequently, N(f) < oo. It follows that ||f|| has a generalized integral with
respect to v; that is, ||f|| € w— Li(v). But|||f|| = lonll| < If — énll, and
therefore | []] — 16, < N(/ — én). Thus, (|éu]) converges to [If] in
w-Ly (V). Since each ||¢n|| € L1(v), and L (v) is a closed subspace of u~L;(v),
I f]] is in fact an element of L;(v).

To prove sufficiency, assume || f|| is v-integrable. By [3, Theorem 2.2], the
indefinite integral of || f|| with respect to v is a countably additive Y-valued
measure and limy,gy—o N(f - xg) = 0.

Using Corollary B, we obtain a sequence (f,,) of countably valued functions
such that ||f — fu|l < 1/n ||v|-almost everywhere. Then ||f,|| < ||f]| + 1/n
and so, by [6, Proposition 5], || || is v-integrable for all n. In particular,

3 lim  N(f, - =0.
() ol (B)—0 (f XE)

Write
oo
Jn= E Tn,kXEqp i
k=1

where E,, ,NE, ; =0ifi# j, E, ; € ¥ and z,, ;, € X. For each n, equation
(3) above allows us to choose p,, large enough so that

v||(2
s [ gl < P
”y*Hél Uk>ann,k n

~—
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If we let ¢, = Zk<pn Tn kXE, ., then ¢, is a simple function and

2wl () o

COROLLARY 1. If f is v-measurable and bounded, then f is ®@-integrable.

COROLLARY 2. Let f and g be two v-measurable functions. If g is ®-
integrable and || f|| < ||g|l ||v||-almost everywhere, then f is @-integrable.

The following result gives some fundamental properties of the ®-integral.

THEOREM 2. If f is a ®-integrable function, then the set function py

defined on X by
= / fdv
E

is a countably additive measure. Furthermore, we have:

(1) [lnsll(B) = sup{ [y |&* | d]y*v| : 2* € Bx+,y* € By-};
(2) limyy(g))—o sl (E) = 0;
(3) wy is of bounded variation if and only if || f|| € Li(|v]), in which case

g |(E / 11 dlv].

Proof. To prove that 15 is countably additive it suffices to show that p; is
weakly countably additive, in view of the Orlicz-Pettis theorem. To this end,
let (E,) be a sequence of pairwise disjoint sets in X, let F = U, E,,, and fix
an element z* ® y* € X* ® Y*. Equation (2) above shows that for any F € ¥

@ o) [ fav= [ o pag

k
(@ @y )up(B) = > (@" @y")us(EBr)| =
n=1

and therefore

(2" @ Y™ ) g (Un>wBon)|

<[ Wy
Un>kEn

Clearly lim, fUn>kEn |z* f| dly*v| = 0, and therefore (z* ® y*)uy is countably
additive. Since z* ® y* was arbitrary, a theorem of Lewis [4, Lemma 1.1]
allows us to conclude that uy is weakly countably additive.

To prove (1), we use the fact that any element u* of (X®Y)* is of integral
type; that is, for any u € XQY,

u” (u) =/ " @y (u)du(z®,y") and u*|| = |p|(Bx- X By-),
Bx* XByx
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where p is a regular Borel measure on the compact space (Bxs,weak™) x
(By~,weak*). Let 7 be a partition of a set E in ¥ and u* an element of the
unit ball of (X&Y)*. Then

St pp(A) = 3 /B ey (u(4) dale )

Aem Aem
/ ¥ f dy*v
A

\/BX*XBY*AZE_”
[ S [l dpla )
Bx* X By Aen A

~[ (L) )
By« XBys \JE

< sup{/ |x* f| d|y*v| : «* € Bx~,y* € By*} |u|(Bx+ X By+)
E

IN

dlpl (=", y")

IN

< sup{/E|x*f| dly*v| : ©* € Bx-,y" € By*}.
Hence

lsh) < sup{ [ 1o a1y s o € By € By .
To establish the reverse inequality, note that

124 [I(E) = sup {[u”ps|(E) : [lu”]] < 1}
> sup {[(z" @y )ps[(E) = (7|, [ly"[] < 1}

:sup{/ |z* f| dly*v| : «* € Bx«,y" EBY*}.
E

To prove (2), observe that if y* € By is chosen so that ||v| < |y*v|, the
countably additive measure i vanishes on sets of |y*v|-measure zero. Thus,
by [2, Theorem I1.2.1], py is |y*v|-continuous, and hence v-continuous.

To prove (3), let us first assume that ||f|| € Li(|v|) and fix E € &. If 7 is
a finite partition of F, then

gl < Y2 [l = [ 170 dl.
D=y e

Thus, 1 is of bounded variation and |uf|(E) < [, || f|l d]v].

For the converse, suppose (s is of bounded variation. If we view u;(E) as
an element of £(Y™, X), then for any fixed y* € Y*, ps(-)(y*) is a countably
additive X-valued measure. If fact, for any F € ¥,

pr(E)(y*) = /E fdy*v,
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which is the Bochner integral of f with respect to y*v. If 7 is a finite partition
of E/, then

DA< D e (A Nyl

Aem Aem
and hence

/ Iy vl <y - s | (E).
E

Fix E € ¥ and let A € ¥ be a subset of E. Find y* € Y* with ||y*|| = 1 such
that [[v(A)[| = |y*v(A)|. If [a| - xa < [[f[], then

(A = ly*(A)] < /A dly*v| < Ja| /A 11l dly ] < lal~ gl (A).

Consequently, |a| - [V|(E) < |ps|(E). It follows that for any real-valued, non-
negative simple function ¢ satisfying ¢ < || f|| we have

[Easd\w < |pus|(B).
Therefore, ||| € Li(|v]) and [y, |[£dlv| < |us|(E). 0

THEOREM 3 (Dominated Convergence Theorem). Let (f,) be a sequence
of @-integrable functions which converges ||v||-a.e to a function f. If there
exists a ®-integrable function g such that || fnll < |lgll lv|-a-e., then f is

®-integrable and
1im/fnd1/:/fd1/7 EeX.
n JE E

In fact, the limit is uniform with respect to E € X..

Proof. Note that ||f]| < |lg|l ||v|-a.e. Hence, by Corollary 2, f is &®-
integrable. Fix € > 0, and for each n let

E,={we:|f(w)—falw) = e}
For any F € ¥ and (z*,y*) € Bx+ X By~ we have

/Ex*(f—fn)dy*v < /E by ¢ /mn“” (f = fu) dy'v
< e [WI(EN Ea) + 2lgll (BN En)
< e [W1() + 2l (En).

Hence

< e [WII(2) + 2l gl (En)-

‘/Efdu—/Efndy

Since lim,, ||pg||(Er) = 0, and € can be chosen arbitrarily small, the result
follows. g
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Let Lq(v, X,Y) denote the vector space of all (||v|-equivalence classes of)
®-integrable functions equipped with the norm IN(-).

THEOREM 4. Lq(v,X,Y) is a Banach space.

Proof. If (f,) is a Cauchy sequence in Li(v, X,Y) then (f,,) is uniformly
Cauchy in Lq(Jy*v|, X) for all y* € By-. Let fy« be the limit of (f,) in
L (jy*v], X).

Find z* € By~ such that ||v| <« |#z*v|. There exists a set E,« € ¥ of
|z*v|-measure zero and a subsequence (f,, ) of (f,) such that

lilgn e (W) = far (w)

off E,-. Similarly, for any y* € By- there exists a set E,» € ¥ of |y*v|-
measure zero and a subsequence (fy, ) of (fy,) such that

off Ey«. Then fy-(w) = fy+(w) off Ey« U E,«. Since |y*v|(Ey U E,«) = 0,
it follows that f.- € L1(ly*v|,X) and f.- = fy- |y*v|- a.e. Therefore, f,« €
Li(Jy*v|, X), for all y* € By~, and lim,, N(f,« — f,,) = 0. Set f = f.-.

It remains to show that f is ®-integrable. But each f, is ® integrable, so
we can find a sequence (¢,,) of simple functions so that N(f,, — ¢,,) < 1/n.
Then

<N(f = fa) +1/n.
Thus, f is ®-integrable. O

ExamMpLE 1. Take X to be any infinite-dimensional Banach space, and
take Y = R. Let Q = [0, 1] and let v be the Lebesgue measure.

There exists an unconditionally convergent series )z, in X that is not
absolutely convergent. The function

In
f = ; Z/(En)XEn’

where (F,,) is any partition of [0, 1] into sets of positive measures, is v-Pettis
integrable but not v-Bochner integrable. If we let f,, be the n’th partial sum,
then

(1) lim, f, = f everywhere, and

(2) Ty ()0 5p 1is, | () = 0.
Since f is not Bochner integrable, the usual formulation of the Vitali conver-
gence theorem does not hold.

Let us consider the same example under more general assumptions.
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EXAMPLE 2. Assume we have a sequence (f,) of ®@-integrable functions
and a v-measurable function f such that the following two conditions hold:

(1) lim, f, = f v-almost everywhere, and
(2) limy(g)—osup[|ug, [(E) = 0.

What can we say about the function f?

CrLAamM 1. For any (z*,y*) € X* x Y*, we have f € P(y*v,X) and z*f €
Ll(l/).

Indeed, the first assertion follows from [5, Theorem 2.10] and the second
follows from [3, Lemma 2.3], once we realize that ([, 2*f, dv) is a Cauchy
sequence in Y for all E € 3.

CLAIM 2. For any E € 3, the sequence (uy, (E)) is Cauchy in X®Y.

To see this, fix E € ¥. Since f, — [ ||v|- a.e, we have || f,|| — [|f]| |¥|I-
a.e, and hence || f,|| — |||l |lv]]-almost uniformly.

Let ¢ > 0 and choose § > 0 such that sup, ||py, [[(F) < € whenever
V|| (F) < 6. Next, choose a set F' € ¥ with ||v||(F) < 6 such that ||f,] —
|l |l uniformly off F'. Then, for any (z*,y*) € Bx~ X By,

(@ ® 4" (s, (B) — o, (B))] < / (Fn — fu)l Iy

ja*
ENF
4 / 1" (fn — fo)| Iy
E\F
<2t e ](9),

for all sufficiently large n and m. Therefore,

15, (E) = iy, (E)|| < 2 + €+ [[v[|(2)

for all sufficiently large n and m.
Let ug denote the limit of the sequence (s, (E)). Then

(e" © ") (up) = lim(a* © y°) (g, (E)) = lim /E 2 f dy*v = /E o fdy'v.

Thus we have shown that, under conditions (1) and (2), the function f, even
though it need not be not ®-integrable (as in Example 1), does have a weaker
integral, namely u.) € X ®Y, such that for any z* and y*,

(2" @y )(up) :/ ¥ fdy*v.

E

We now turn our attention to this weaker integral.
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3. The integral of weakly measurable functions

Let f : @ — X be a weakly v-measurable function and choose an element
Yo € By such that ||v]| < |ygv|.

If o*f € Li(y*v) for all (z*,y*) € X* x Y* and we fix z* € X*, then
x* f has a generalized integral with respect to v. By [6, Proposition 2], the
mapping

dyxv
Y*sy" — a"f—— € Li(|lyov
d‘yoy| (| 0 |)
is bounded. Similarly, the mapping
dyxv

X*s>z" —x fd\ygl/| € Li(lysv))
is bounded, because for any fixed y* € Y™, the function f is y*v-Dunford
integrable. This means that if we define an operator Ty, : X* x Y* —
Li(|y§v|) by the equation

. «p YV
Tro(z*,y") =2 f

dlysv|’
then 7%, is separately continuous, and thus continuous. Hence, for every
g € Loo(|ygv]), the map 1, defined by

wg(m*,y*):/ﬂg~:c*fdy*v,
is an element of B(X*,Y™).

DEFINITION 2. A weakly ||v|-measurable function f:  — X is said to
have a generalized weak ®-integral (with respect to v) if z* f € L1 (y*v) for all
(z*,y*) € X* x Y*. If fis such a function, and F € X, the generalized weak
®-integral of f over E is defined by the element 1, .

If ¢y, € X®Y for all E € ¥, then f is said to be weakly ®-integrable and
hyp s called the weak ®-integral of f over E and denoted by fE fdv.

The measure py: X — B(X* x Y™*), defined by p/(E) = 1y, is not nec-
essarily countably additive. A standard argument proves that ¢ is countably
additive if and only if the operator T, is weakly compact.

The following theorem is an analogue of Theorem 2, whose proof applies
with a few minor changes.

THEOREM 5. If f is weakly ®-integrable, then we have:

(1) limy, j()—o fp fdv = 0.
(2) If (Ey) is a sequence of pairwise disjoint sets in ¥ and E =, En,

then -
fdv = / fdv,



INTEGRATION IN VECTOR SPACES 935

where the sum on the right is unconditionally convergent.
(3) If pg(E) = [, fdv, then py is of bounded semivariation and

s [ICE) Sup{/Elx*fldly*V Sl Nyl < 1}~

It should be clear that if X = R, then f is ®-integrable if and only if
f € Li(v). Similarly, if Y = R, then f is ®-integrable if and only if f is
v-Pettis integrable.

In Claim 1 of Example 2 we showed that if a v-measurable function f is ®-
integrable, then z* f € L1(v) and f € P(Jy*v|, X) for all (z*,y*) € X* x Y*.
This is a property shared by the weakly ®-integrable functions.

PROPOSITION 1. Assume f: Q) — X is weakly ®@-integrable. Then:

(1) For every y* € Y*, f is |y*v|-Pettis integrable.
(2) For every x* € X*, a*f € L1(v).

Proof. Let f be a weakly ®-integrable function. To prove (1), fix y* € Y*.
We want to show that, for every E € X, the functional

o [ dyy)
E
is an element of X. To do so, we show that this functional is weak*-to-weak

continuous. Let (z%) be a net in Bx- converging weak* to #* € Bx+. Then
xk @ y*(u) converges to z* ® y*(u) for all u € X®Y. In particular,

lim x), (/ fdy*u) :lim/ o fdy*v
« E “ JE
=limz}, ® y* (/fdz/>
« E
x*®y*(/fdu)
E
:/a:*fdy*u
E

—u </Efdy*y>.

To prove (2), fix an element z* in X*. The remarks preceding Definition 2
show that z* f is an element of w-L;(v). To prove that f € Li(v), it suffices
to verify that the indefinite integral

/Lx*j(E) :/Ex*fdy
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is countably additive. Thus, let (E,) be a sequence of pairwise disjoint sets

in ¥ and let £ = UFE,,. Then
k

[ (E) — Z pro £ (Bn) || = ||tz f (UnskEn)|
= sup

n=1
y* / ¥ f dv
y*EByx Un>kEn

< sup / & f] dly*v|
y*€By* JUpskEn

||Hf|| (Un>kEn)'

A

IA

Therefore
k
lim gz (B) — > e (En)| < lim g [[(Un>k ) = 0.
n=1

It follows that i, ¢ is countably additive and, consequently, *f € Li(v). O

PRrOPOSITION 2. If a v-measurable function f : (0 — X has a generalized
weak ®- integral (with respect to v), then f is weakly @-integrable if and only
if Ty, is weakly compact. In this case Ty, is compact.

Proof. First, we note that if a v-measurable function f is ®-integrable then
it is weakly ®-integrable and, for any E € ¥, the two integrals over E are
equal.

Let f be a v-measurable function and assume f is weakly ®-integrable. By
Theorem 5, the indefinite integral of f is countably additive, and hence T,
is weakly compact.

Now, assume f has a generalized integral and T, is weakly compact. Then
py s X — B(X* xY™) is countably additive. We want to show that s takes
its values in X®Y. To this end, write f as a sum

F=>fxe.
n=1

where (E,) is a sequence of pairwise disjoint sets in ¥ such that fyxpg, is
bounded, and U2 | E,, = €. Since py is countably additive, we have

pi(E) = ni(ENE,)
n=1
for all E € ¥. But puy(ENE,) = [, fxE, dv is an element of X®Y for all n,
because f - xp, is ®-integrable. Consequently pf(E) € X®Y for all E € 3,
and hence f is ®-integrable.
To prove that T}, is, in fact, compact, choose a sequence f, of count-
ably valued functions such that || f — fn|| < 1/n. Then each f, is weakly
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®-integrable. Indeed, f is weakly ®-integrable, f — f, is ®-integrable and
therefore f, = f — (f — fn) is weakly ®-integrable. Then we know that the
indefinite integral, p,, is countably additive for all n. Write f,, as a sum

oo
— E wn,kXEn,k )
k=1

where E,, ; N E,, ; =0 if i # j and U, E,, , = €, and note that

gy < A ),

Therefore limy, | (z)—osup,, ||/, (E) = 0. For each n find an integer p,, so

that [[pf, [|(Uksp, Enk) <1/n, and let ¢, = >4 Tn kXE, -
Now, for any g € Lo (|ygvl),

Ti00) = To 0@l < sup [ fala®(F = )l dly'v
llz= [l lly= <1
[ lalle* (1 = ol dlyv
HI*H Hy <1

[v1(€2)
< gl ===+ llgll - llreg, 1 (Ve>p,, En.re)

<lgll- (M),

Hence T7 , is the uniform operator limit of the sequence (T} ). Since each
¢n has a finite range, each T} , is a finite rank operator, and thus compact.
It follows that Ty, is compact. Consequently, T, is compact as well. O

A Banach space Y is said to be accessible if, given a compact set K in Y
and € > 0, there is a finite rank bounded linear operator v : ¥ — Y such
that |Ju(y) — y|| < € for any y € K. It is known that Y is accessible if and
only if, for every Banach space X, we have X*®Y = K(X,Y).

EXAMPLE 3. Suppose that a weakly ||v|-measurable function f has a
generalized weak ®-integral with respect to v. Assume further that f satisfies
conditions (1) and (2) of Proposition 1. Then, for every E € X, we can
consider the (generalized) integral ¥z as an element u of £L(X*,Y’) or as an
element v of £L(Y*, X). Since u* = v and v* = u, both uw and v are weak*-to-
weak continuous, and if either u or v is compact, both are compact.

Consider the case where u is compact and Y is accessible. For given € > 0
we can find a finite rank operator w : ¥ — Y such that |y — w(y)| < €
for all y € Bx~. Thus ||u — wul| < € and wu is a finite rank operator. But
the adjoint, (wu)* = u*w*, takes its values in X, and therefore wu € XQY'.
Hence u € X @ Y = X®Y. Similarly, if v is compact and X is accessible,
v € X®Y. In either case, the integral 15 is an element of X®Y.
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THEOREM 6. Suppose that X orY is accessible and f : Q — X is weakly
v-measurable. The following statements are equivalent:
(1) f is weakly @-integrable.
(2) For every y* € Y*, we have f € P(y*v,X) and { [ z*fdv : |z*|| <
1} is a compact subset of Y.
(3) For every x* € X*, we have z*f € Ly(v) and { [, fdy*v : |ly*| <1}
is a compact subset of X.

Proof. This is a direct consequence of Proposition 1 and Example 3. O
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