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INTEGRATION IN VECTOR SPACES

GUNNAR F. STEFÁNSSON

Abstract. We define an integral of a vector-valued function f : Ω −→
X with respect to a bounded countably additive vector-valued measure
ν : Σ −→ Y and investigate its properties. The integral is an element
of X⊗̌Y , and when f is ν-measurable we show that f is integrable if

and only if ‖f‖ ∈ L1(ν). In this case, the indefinite integral of f is
of bounded variation if and only if ‖f‖ ∈ L1(|ν|). We also define the

integral of a weakly ν-measurable function and show that such a function
f satisfies x∗f ∈ L1(ν) for all x∗ ∈ X∗ and is |y∗ν|-Pettis integrable for
all y∗ ∈ Y ∗.

1. Introduction and notation

R.G. Bartle [1] introduced an integral in which both the function to be
integrated and the measure take values in normed linear spaces; the inte-
gral of an X-valued function with respect to a Y -valued (finitely) additive
measure appears as an element of a Banach space Z via a bilinear mapping
X×Y −→ Z. The integral possesses some of the properties usually associated
with the Lebesgue theory of integration; in particular, the Vitali and Bounded
Convergence theorems remain valid in this setting, while the Lebesgue Dom-
inated Convergence theorem fails.

In this paper we define the integral of an X-valued function with respect
to a Y -valued measure as an element of the injective tensor product of X⊗Y .

We begin by defining the integral of a strongly measurable function, an
analogue of the Bochner integral [2], and closely connected to the integral of
D. R. Lewis [3]. Next, we extend the integral to less measurable functions,
namely, functions which are not essentially separably valued. This extension
requires a different approach to the integral, and our setup follows that of [2,
Section I.3].

Given a Banach space X, its closed unit ball is denoted by BX , and its
dual by X∗. If X and Y are Banach spaces, the space of all bounded linear
operators from X to Y is denoted by L(X,Y ), and K(X,Y ) denotes the closed
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926 GUNNAR F. STEFÁNSSON

subspace of all compact linear operators. B(X,Y ) represents the space of all
bounded bilinear functionals on X × Y , and the completion of the tensor
product X ⊗ Y with respect to the least reasonable cross norm is X⊗̌Y .

If (Ω,Σ) is a measurable space and ν : Σ −→ Y a countably additive
measure, its semivariation on a set E ∈ Σ is given by ‖ν‖(E) = sup{|y∗ν|(A) :
y∗ ∈ BY ∗}, where |y∗ν| is the variation of the scalar measure y∗ν. The
measure ν is called bounded if ‖ν‖(Ω) < ∞. The variation of ν, denoted by
|ν|, is given by |ν|(E) = supπ

∑
A∈π ‖ν(A)‖, where the supremum is taken

over all finite partitions π of E into pairwise disjoint members of Σ.
By a theorem of Rybakov [2, Section IX.2, Theorem 2], there exists y∗ ∈

BY ∗ such that |y∗ν| ≤ ‖ν‖ � |y∗ν|. As defined in [3], a function f : Ω −→ R

is said to have a generalized integral with respect to ν if f is y∗ν-integrable
for all y∗ ∈ Y ∗. The generalized ν-integral of f over E ∈ Σ is an element
y∗∗E ∈ Y ∗∗ such that

y∗∗E (y∗) =
∫
E

f dy∗ν

for all y∗ ∈ Y ∗. The function is called ν-integrable if y∗∗E belongs to the image
of Y in Y ∗∗. In [6] it was shown that the space of all (equivalence classes)
of functions having a generalized integral with respect to ν is a Banach space
when equipped with the norm

‖f‖ν = sup
{∫

Ω

|f | d|y∗ν| : y∗ ∈ BY ∗
}
.

We denote this space by w -L1(ν). The space L1(ν) of all ν-integrable functions
is a closed subspace of w -L1(ν).

If µ : Σ −→ R is countably additive and finite, L1(µ,X) denotes the
Banach space of all (equivalence classes) of µ-Bochner integrable functions
f : Ω −→ X with norm

‖f‖ =
∫

Ω

‖f‖ dµ.

If x∗f ∈ L1(µ) for all x∗ ∈ X∗ then f is said to be µ-Dunford integrable. In
this case, the mapping

Tf : X∗ −→ L1(µ),
defined by Tf (x∗) = x∗f , is bounded. The µ-Dunford integral of f over a set
E ∈ Σ is an element x∗∗E ∈ X∗∗ such that for all x∗ ∈ X∗,

x∗∗E (x∗) =
∫
E

x∗f dµ.

If x∗∗ ∈ X ⊂ X∗∗ then f is said to be µ-Pettis integrable. P (µ,X) denotes
the completion of the vector space of all (equivalence classes of) µ-Pettis
integrable functions f : Ω −→ X with norm

‖f‖P = sup
{∫

Ω

|x∗f | dµ : ‖x∗‖ ≤ 1
}
.
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2. Definition of the integral and basic properties

Throughout this section, let X and Y be real Banach spaces, (Ω,Σ) a
measurable space and ν : Σ −→ Y a bounded and countably additive measure.
We assume that the measurable space is complete with respect to |y∗ν|, where
y∗ ∈ BY ∗ is chosen such that ‖ν‖ � |y∗ν|. A function f : Ω −→ X is said to
be ν-measurable if there exists a sequence (φn) of simple functions such that
limn ‖f − φn‖ = 0 ‖ν‖-almost everywhere. Similarly, a function f : Ω −→ X
is weakly ν-measurable if for each x∗ ∈ X∗ the scalar function x∗f is ‖ν‖-
measurable. Clearly, f is ν-measurable if and only if it is |y∗ν|-measurable.
Thus we have the following Pettis type measurability theorems (see [2, Section
II.1]).

Theorem A. A function f : Ω −→ X is ν-measurable if and only if
(1) f is ‖ν‖-essentially separably valued, and
(2) f is weakly ν-measurable.

Corollary B. A function f : Ω −→ X is ν-measurable if and only if
f is the ν-almost everywhere uniform limit of a sequence of countably valued
ν-measurable functions.

Let φ =
∑
xiχAi be an X-valued simple function and let E ∈ Σ. We define∫

E
φdν by the equation∫

E

φdν =
∑

xi ⊗ ν(E ∩Ai).

Since ν is additive,
∫
E
φdν does not depend on the representation of φ. Fur-

thermore, for any element x∗ ⊗ y∗ ∈ BX∗ ×BY ∗ , we get∣∣∣∣x∗ ⊗ y∗(∫
E

φdν

)∣∣∣∣ =
∣∣∣∑x∗(xi) · y∗ν(E ∩Ai)

∣∣∣
≤
∑
|x∗(xi)| · |y∗ν| (E ∩Ai)

≤
∑
‖xi‖ · |y∗ν| (E ∩Ai)

=
∫
E

‖φ‖ d |y∗ν| .

Therefore, if we view
∫
E
φdν as an element of X⊗̌Y , then∥∥∥∥∫

E

φdν

∥∥∥∥ ≤ sup
{∫

E

‖φ‖ d |y∗ν| : y∗ ∈ BY ∗
}
.

Definition 1. A ν-measurable function f : Ω −→ X is called ⊗̌-integrable,
if there exists a sequence (φn) of simple functions such that

(1) lim
n

sup
{∫

Ω

‖f − φn‖ d |y∗ν| : y∗ ∈ BY ∗
}

= 0.
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In this case, the sequence
(∫
E
φn dν

)
is a Cauchy sequence in X⊗̌Y for

each E ∈ Σ. The limit,

(2)
∫
E

f dν = lim
n

∫
E

φn dν,

is called the ⊗̌-integral of f over E with respect to ν. Since the integral
of a simple function does not depend on the representation of this func-
tion, the above limit is well defined and independent of the defining sequence(∫
E
φn dν

)
. To simplify the notation, we set

N(f) = sup
{∫

Ω

‖f‖ d |y∗ν| : y∗ ∈ BY ∗
}
,

whenever f : Ω −→ X is ν-measurable.

Theorem 1. A ν-measurable function f is ⊗̌-integrable if and only if ‖f‖
is ν-integrable.

Proof. To prove necessity, let f be a ⊗̌-integrable function and (φn) a
sequence of simple functions such that limn N(f − φn) = 0. If we denote
the essential supremum of ‖φn(·)‖ by Mn, then N(φn) ≤ Mn‖ν‖(Ω) and
consequently, N(f) < ∞. It follows that ‖f‖ has a generalized integral with
respect to ν; that is, ‖f‖ ∈ w − L1(ν). But| ‖f‖ − ‖φn‖ | ≤ ‖f − φn‖, and
therefore ‖ ‖f‖ − ‖φn‖ ‖ν ≤ N(f − φn). Thus, (‖φn‖) converges to ‖f‖ in
w-L1(ν). Since each ‖φn‖ ∈ L1(ν), and L1(ν) is a closed subspace of w-L1(ν),
‖f‖ is in fact an element of L1(ν).

To prove sufficiency, assume ‖f‖ is ν-integrable. By [3, Theorem 2.2], the
indefinite integral of ‖f‖ with respect to ν is a countably additive Y -valued
measure and lim‖ν‖(E)→0 N(f · χE) = 0.

Using Corollary B, we obtain a sequence (fn) of countably valued functions
such that ‖f − fn‖ ≤ 1/n ‖ν‖-almost everywhere. Then ‖fn‖ ≤ ‖f‖ + 1/n
and so, by [6, Proposition 5], ‖fn‖ is ν-integrable for all n. In particular,

(3) lim
‖ν‖(E)→0

N(fn · χE) = 0.

Write

fn =
∞∑
k=1

xn,kχEn,k ,

where En,i ∩ En,j = ∅ if i 6= j, En,k ∈ Σ and xn,k ∈ X. For each n, equation
(3) above allows us to choose pn large enough so that

sup
‖y∗‖≤1

∫
∪k>pnEn,k

‖fn‖ d |y∗ν| <
‖ν‖(Ω)
n

.
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If we let φn =
∑
k≤pn xn,kχEn,k , then φn is a simple function and

N(f − φn) ≤ N(f − fn) + N(fn − φn) ≤ 2‖ν‖(Ω)
n

. �

Corollary 1. If f is ν-measurable and bounded, then f is ⊗̌-integrable.

Corollary 2. Let f and g be two ν-measurable functions. If g is ⊗̌-
integrable and ‖f‖ ≤ ‖g‖ ‖ν‖-almost everywhere, then f is ⊗̌-integrable.

The following result gives some fundamental properties of the ⊗̌-integral.

Theorem 2. If f is a ⊗̌-integrable function, then the set function µf
defined on Σ by

µf (E) =
∫
E

f dν

is a countably additive measure. Furthermore, we have:
(1) ‖µf‖(E) = sup

{∫
E
|x∗f | d |y∗ν| : x∗ ∈ BX∗ , y∗ ∈ BY ∗

}
;

(2) lim‖ν(E)‖→0 ‖µf‖(E) = 0;
(3) µf is of bounded variation if and only if ‖f‖ ∈ L1(|ν|), in which case

|µf |(E) =
∫
E

‖f‖ d|ν|.

Proof. To prove that µf is countably additive it suffices to show that µf is
weakly countably additive, in view of the Orlicz-Pettis theorem. To this end,
let (En) be a sequence of pairwise disjoint sets in Σ, let E = ∪nEn, and fix
an element x∗⊗ y∗ ∈ X∗⊗Y ∗. Equation (2) above shows that for any F ∈ Σ

(x∗ ⊗ y∗)
∫
F

f dν =
∫
F

x∗f dy∗ν,

and therefore∣∣∣∣∣(x∗ ⊗ y∗)µf (E)−
k∑

n=1

(x∗ ⊗ y∗)µf (Ek)

∣∣∣∣∣ = |(x∗ ⊗ y∗)µf (∪n>kEn)|

≤
∫
∪n>kEn

|x∗f | d|y∗ν|.

Clearly limn

∫
∪n>kEn |x

∗f | d|y∗ν| = 0, and therefore (x∗ ⊗ y∗)µf is countably
additive. Since x∗ ⊗ y∗ was arbitrary, a theorem of Lewis [4, Lemma 1.1]
allows us to conclude that µf is weakly countably additive.

To prove (1), we use the fact that any element u∗ of (X⊗̌Y )∗ is of integral
type; that is, for any u ∈ X⊗̌Y ,

u∗(u) =
∫
BX∗×BY ∗

x∗ ⊗ y∗(u) dµ(x∗, y∗) and ‖u∗‖ = |µ|(BX∗ ×BY ∗),
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where µ is a regular Borel measure on the compact space (BX∗ ,weak∗) ×
(BY ∗ ,weak∗). Let π be a partition of a set E in Σ and u∗ an element of the
unit ball of (X⊗̌Y )∗. Then∑
A∈π
|u∗µf (A)| =

∑
A∈π

∣∣∣∣∫
BX∗×BY ∗

x∗ ⊗ y∗ (µf (A)) dµ(x∗, y∗)
∣∣∣∣

≤
∫
BX∗×BY ∗

∑
A∈π

∣∣∣∣∫
A

x∗f dy∗ν

∣∣∣∣ d|µ|(x∗, y∗)
≤
∫
BX∗×BY ∗

∑
A∈π

∫
A

|x∗f | d |y∗ν| d|µ|(x∗, y∗)

=
∫
BX∗×BY ∗

(∫
E

|x∗f | d |y∗ν|
)
d|µ|(x∗, y∗)

≤ sup
{∫

E

|x∗f | d |y∗ν| : x∗ ∈ BX∗ , y∗ ∈ BY ∗
}
· |µ|(BX∗ ×BY ∗)

≤ sup
{∫

E

|x∗f | d |y∗ν| : x∗ ∈ BX∗ , y∗ ∈ BY ∗
}
.

Hence

‖µf‖(E) ≤ sup
{∫

E

|x∗f | d |y∗ν| : x∗ ∈ BX∗ , y∗ ∈ BY ∗
}
.

To establish the reverse inequality, note that

‖µf‖(E) = sup {|u∗µf |(E) : ‖u∗‖ ≤ 1}
≥ sup {|(x∗ ⊗ y∗)µf |(E) : ‖x∗‖, ‖y∗‖ ≤ 1}

= sup
{∫

E

|x∗f | d|y∗ν| : x∗ ∈ BX∗ , y∗ ∈ BY ∗
}
.

To prove (2), observe that if y∗ ∈ BY ∗ is chosen so that ‖ν‖ � |y∗ν|, the
countably additive measure µf vanishes on sets of |y∗ν|-measure zero. Thus,
by [2, Theorem I.2.1], µf is |y∗ν|-continuous, and hence ν-continuous.

To prove (3), let us first assume that ‖f‖ ∈ L1(|ν|) and fix E ∈ Σ. If π is
a finite partition of E, then∑

A∈π
‖µf (A)‖ ≤

∑
A∈π

∫
A

‖f‖ d|ν| =
∫
E

‖f‖ d|ν|.

Thus, µf is of bounded variation and |µf |(E) ≤
∫
E
‖f‖ d|ν|.

For the converse, suppose µf is of bounded variation. If we view µf (E) as
an element of L(Y ∗, X), then for any fixed y∗ ∈ Y ∗, µf (·)(y∗) is a countably
additive X-valued measure. If fact, for any E ∈ Σ,

µf (E)(y∗) =
∫
E

f dy∗ν,



INTEGRATION IN VECTOR SPACES 931

which is the Bochner integral of f with respect to y∗ν. If π is a finite partition
of E, then ∑

A∈π
‖µf (A)(y∗)‖ ≤

∑
A∈π
‖µf (A)‖ · ‖y∗‖,

and hence ∫
E

‖f‖ d|y∗ν| ≤ ‖y∗‖ · |µf |(E).

Fix E ∈ Σ and let A ∈ Σ be a subset of E. Find y∗ ∈ Y ∗ with ‖y∗‖ = 1 such
that ‖ν(A)‖ = |y∗ν(A)|. If |a| · χA ≤ ‖f‖, then

‖ν(A)‖ = |y∗ν(A)| ≤
∫
A

d|y∗ν| ≤ |a|−1

∫
A

‖f‖ d|y∗ν| ≤ |a|−1|µf |(A).

Consequently, |a| · |ν|(E) ≤ |µf |(E). It follows that for any real-valued, non-
negative simple function φ satisfying φ ≤ ‖f‖ we have∫

E

φd|ν| ≤ |µf |(E).

Therefore, ‖f‖ ∈ L1(|ν|) and
∫
E
‖f‖ d|ν| ≤ |µf |(E). �

Theorem 3 (Dominated Convergence Theorem). Let (fn) be a sequence
of ⊗̌-integrable functions which converges ‖ν‖-a.e to a function f . If there
exists a ⊗̌-integrable function g such that ‖fn‖ ≤ ‖g‖ ‖ν‖-a.e., then f is
⊗̌-integrable and

lim
n

∫
E

fn dν =
∫
E

f dν, E ∈ Σ .

In fact, the limit is uniform with respect to E ∈ Σ.

Proof. Note that ‖f‖ ≤ ‖g‖ ‖ν‖-a.e. Hence, by Corollary 2, f is ⊗̌-
integrable. Fix ε > 0, and for each n let

En = {ω ∈ Ω : ‖f(ω)− fn(ω)‖ ≥ ε}.

For any E ∈ Σ and (x∗, y∗) ∈ BX∗ ×BY ∗ we have∣∣∣∣∫
E

x∗(f − fn) dy∗ν
∣∣∣∣ ≤

∣∣∣∣∣
∫
E\En

x∗(f − fn) dy∗ν

∣∣∣∣∣+
∣∣∣∣∫
E∩En

x∗(f − fn) dy∗ν
∣∣∣∣

≤ ε · ‖ν‖(E \ En) + 2‖µg‖(E ∩ En)

≤ ε · ‖ν‖(Ω) + 2‖µg‖(En).

Hence ∥∥∥∥∫
E

f dν −
∫
E

fn dν

∥∥∥∥ ≤ ε · ‖ν‖(Ω) + 2‖µg‖(En).

Since limn ‖µg‖(En) = 0, and ε can be chosen arbitrarily small, the result
follows. �
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Let L1(ν,X, Y ) denote the vector space of all (‖ν‖-equivalence classes of)
⊗̌-integrable functions equipped with the norm N(·).

Theorem 4. L1(ν,X, Y ) is a Banach space.

Proof. If (fn) is a Cauchy sequence in L1(ν,X, Y ) then (fn) is uniformly
Cauchy in L1(|y∗ν|, X) for all y∗ ∈ BY ∗ . Let fy∗ be the limit of (fn) in
L1(|y∗ν|, X).

Find z∗ ∈ BY ∗ such that ‖ν‖ � |z∗ν|. There exists a set Ez∗ ∈ Σ of
|z∗ν|-measure zero and a subsequence (fnk) of (fn) such that

lim
k
fnk(ω) = fz∗(ω)

off Ez∗ . Similarly, for any y∗ ∈ BY ∗ there exists a set Ey∗ ∈ Σ of |y∗ν|-
measure zero and a subsequence (fnk,j ) of (fnk) such that

lim
j
fnk,j (ω) = fy∗(ω)

off Ey∗ . Then fy∗(ω) = fz∗(ω) off Ey∗ ∪ Ez∗ . Since |y∗ν|(Ey∗ ∪ Ez∗) = 0,
it follows that fz∗ ∈ L1(|y∗ν|, X) and fz∗ = fy∗ |y∗ν|- a.e. Therefore, fz∗ ∈
L1(|y∗ν|, X), for all y∗ ∈ BY ∗ , and limn N(fz∗ − fn) = 0. Set f = fz∗ .

It remains to show that f is ⊗̌-integrable. But each fn is ⊗̌ integrable, so
we can find a sequence (φn) of simple functions so that N(fn − φn) < 1/n.
Then

N(f − φn) ≤ N(f − fn) + N(fn − φn)

< N(f − fn) + 1/n.

Thus, f is ⊗̌-integrable. �

Example 1. Take X to be any infinite-dimensional Banach space, and
take Y = R. Let Ω = [0, 1] and let ν be the Lebesgue measure.

There exists an unconditionally convergent series
∑
n xn in X that is not

absolutely convergent. The function

f =
∑
n

xn
ν(En)

χEn ,

where (En) is any partition of [0, 1] into sets of positive measures, is ν-Pettis
integrable but not ν-Bochner integrable. If we let fn be the n’th partial sum,
then

(1) limn fn = f everywhere, and
(2) limν(E)→0 sup ‖µfn‖(E) = 0.

Since f is not Bochner integrable, the usual formulation of the Vitali conver-
gence theorem does not hold.

Let us consider the same example under more general assumptions.
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Example 2. Assume we have a sequence (fn) of ⊗̌-integrable functions
and a ν-measurable function f such that the following two conditions hold:

(1) limn fn = f ν-almost everywhere, and
(2) limν(E)→0 sup ‖µfn‖(E) = 0.

What can we say about the function f?

Claim 1. For any (x∗, y∗) ∈ X∗ × Y ∗, we have f ∈ P (y∗ν,X) and x∗f ∈
L1(ν).

Indeed, the first assertion follows from [5, Theorem 2.10] and the second
follows from [3, Lemma 2.3], once we realize that (

∫
E
x∗fn dν) is a Cauchy

sequence in Y for all E ∈ Σ.

Claim 2. For any E ∈ Σ, the sequence (µfn(E)) is Cauchy in X⊗̌Y .
To see this, fix E ∈ Σ. Since fn −→ f ‖ν‖- a.e, we have ‖fn‖ −→ ‖f‖ ‖ν‖-

a.e, and hence ‖fn‖ −→ ‖f‖ ‖ν‖-almost uniformly.
Let ε > 0 and choose δ > 0 such that supn ‖µfn‖(F ) < ε whenever

‖ν‖(F ) < δ. Next, choose a set F ∈ Σ with ‖ν‖(F ) < δ such that ‖fn‖ −→
‖f‖ uniformly off F . Then, for any (x∗, y∗) ∈ BX∗ ×BY ∗ ,

|(x∗ ⊗ y∗)(µfn(E)− µfm(E))| ≤
∫
E∩F
|x∗(fn − fm)| d|y∗ν|

+
∫
E\F
|x∗(fn − fm)| d|y∗ν|

≤ 2ε+ ε · ‖ν‖(Ω),

for all sufficiently large n and m. Therefore,

‖µfn(E)− µfm(E)‖ ≤ 2ε+ ε · ‖ν‖(Ω)

for all sufficiently large n and m.
Let uE denote the limit of the sequence (µfn(E)). Then

(x∗ ⊗ y∗)(uE) = lim
n

(x∗ ⊗ y∗)(µfn(E)) = lim
n

∫
E

x∗fn dy
∗ν =

∫
E

x∗f dy∗ν.

Thus we have shown that, under conditions (1) and (2), the function f , even
though it need not be not ⊗̌-integrable (as in Example 1), does have a weaker
integral, namely u(·) ∈ X⊗̌Y , such that for any x∗ and y∗,

(x∗ ⊗ y∗)(uE) =
∫
E

x∗f dy∗ν.

We now turn our attention to this weaker integral.
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3. The integral of weakly measurable functions

Let f : Ω −→ X be a weakly ν-measurable function and choose an element
y∗0 ∈ BY ∗ such that ‖ν‖ � |y∗0ν|.

If x∗f ∈ L1(y∗ν) for all (x∗, y∗) ∈ X∗ × Y ∗ and we fix x∗ ∈ X∗, then
x∗f has a generalized integral with respect to ν. By [6, Proposition 2], the
mapping

Y ∗ 3 y∗ −→ x∗f
dy∗ν
d|y∗0ν|

∈ L1(|y∗0ν|)

is bounded. Similarly, the mapping

X∗ 3 x∗ −→ x∗f
dy∗ν
d|y∗0ν|

∈ L1(|y∗0ν|)

is bounded, because for any fixed y∗ ∈ Y ∗, the function f is y∗ν-Dunford
integrable. This means that if we define an operator Tf,ν : X∗ × Y ∗ −→
L1(|y∗0ν|) by the equation

Tf,ν(x∗, y∗) = x∗f
dy∗ν

d|y∗0ν|
,

then Tf,ν is separately continuous, and thus continuous. Hence, for every
g ∈ L∞(|y∗0ν|), the map ψg defined by

ψg(x∗, y∗) =
∫

Ω

g · x∗f dy∗ν,

is an element of B(X∗, Y ∗).

Definition 2. A weakly ‖ν‖-measurable function f : Ω −→ X is said to
have a generalized weak ⊗-integral (with respect to ν) if x∗f ∈ L1(y∗ν) for all
(x∗, y∗) ∈ X∗ × Y ∗. If f is such a function, and E ∈ Σ, the generalized weak
⊗-integral of f over E is defined by the element ψχE .

If ψχE ∈ X⊗̌Y for all E ∈ Σ, then f is said to be weakly ⊗̌-integrable and
ψχE is called the weak ⊗̌-integral of f over E and denoted by

∫
E
f dν.

The measure µf : Σ −→ B(X∗ × Y ∗), defined by µf (E) = ψχE , is not nec-
essarily countably additive. A standard argument proves that µf is countably
additive if and only if the operator Tf,ν is weakly compact.

The following theorem is an analogue of Theorem 2, whose proof applies
with a few minor changes.

Theorem 5. If f is weakly ⊗̌-integrable, then we have:
(1) lim‖ν‖(E)→0

∫
E
f dν = 0.

(2) If (En) is a sequence of pairwise disjoint sets in Σ and E =
⋃∞
n=1En,

then ∫
E

f dν =
∞∑
n=1

∫
En

f dν,
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where the sum on the right is unconditionally convergent.
(3) If µf (E) =

∫
E
f dν, then µf is of bounded semivariation and

‖µf‖(E) = sup
{∫

E

|x∗f | d|y∗ν| : ‖x∗‖, ‖y∗‖ ≤ 1
}
.

It should be clear that if X = R, then f is ⊗̌-integrable if and only if
f ∈ L1(ν). Similarly, if Y = R, then f is ⊗̌-integrable if and only if f is
ν-Pettis integrable.

In Claim 1 of Example 2 we showed that if a ν-measurable function f is ⊗̌-
integrable, then x∗f ∈ L1(ν) and f ∈ P (|y∗ν|, X) for all (x∗, y∗) ∈ X∗ × Y ∗.
This is a property shared by the weakly ⊗̌-integrable functions.

Proposition 1. Assume f : Ω −→ X is weakly ⊗̌-integrable. Then:

(1) For every y∗ ∈ Y ∗, f is |y∗ν|-Pettis integrable.
(2) For every x∗ ∈ X∗, x∗f ∈ L1(ν).

Proof. Let f be a weakly ⊗̌-integrable function. To prove (1), fix y∗ ∈ Y ∗.
We want to show that, for every E ∈ Σ, the functional

x∗ 7−→
∫
E

x∗f d|y∗ν|

is an element of X. To do so, we show that this functional is weak∗-to-weak
continuous. Let (x∗α) be a net in BX∗ converging weak∗ to x∗ ∈ BX∗ . Then
x∗α ⊗ y∗(u) converges to x∗ ⊗ y∗(u) for all u ∈ X⊗̌Y . In particular,

lim
α
x∗α

(∫
E

f dy∗ν

)
= lim

α

∫
E

x∗αf dy
∗ν

= lim
α
x∗α ⊗ y∗

(∫
E

f dν

)
= x∗ ⊗ y∗

(∫
E

f dν

)
=
∫
E

x∗f dy∗ν

= x∗
(∫

E

f dy∗ν

)
.

To prove (2), fix an element x∗ in X∗. The remarks preceding Definition 2
show that x∗f is an element of w -L1(ν). To prove that f ∈ L1(ν), it suffices
to verify that the indefinite integral

µx∗f (E) =
∫
E

x∗f dν
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is countably additive. Thus, let (En) be a sequence of pairwise disjoint sets
in Σ and let E = ∪En. Then

‖µx∗f (E)−
k∑

n=1

µx∗f (En)‖ = ‖µx∗f (∪n>kEn)‖

= sup
y∗∈BY ∗

∣∣∣∣y∗ ∫
∪n>kEn

x∗f dν

∣∣∣∣
≤ sup
y∗∈BY ∗

∫
∪n>kEn

|x∗f | d|y∗ν|

≤ ‖µf‖(∪n>kEn).

Therefore

lim
k
‖µx∗f (E)−

k∑
n=1

µx∗f (En)‖ ≤ lim
k
‖µf‖(∪n>kEn) = 0.

It follows that µx∗f is countably additive and, consequently, x∗f ∈ L1(ν). �

Proposition 2. If a ν-measurable function f : Ω −→ X has a generalized
weak ⊗- integral (with respect to ν), then f is weakly ⊗̌-integrable if and only
if Tf,ν is weakly compact. In this case Tf,ν is compact.

Proof. First, we note that if a ν-measurable function f is ⊗̌-integrable then
it is weakly ⊗̌-integrable and, for any E ∈ Σ, the two integrals over E are
equal.

Let f be a ν-measurable function and assume f is weakly ⊗̌-integrable. By
Theorem 5, the indefinite integral of f is countably additive, and hence Tf,ν
is weakly compact.

Now, assume f has a generalized integral and Tf,ν is weakly compact. Then
µf : Σ −→ B(X∗×Y ∗) is countably additive. We want to show that µf takes
its values in X⊗̌Y . To this end, write f as a sum

f =
∞∑
n=1

f · χEn ,

where (En) is a sequence of pairwise disjoint sets in Σ such that fχEn is
bounded, and ∪∞n=1En = Ω. Since µf is countably additive, we have

µf (E) =
∞∑
n=1

µf (E ∩ En)

for all E ∈ Σ. But µf (E ∩En) =
∫
E
fχEn dν is an element of X⊗̌Y for all n,

because f · χEn is ⊗̌-integrable. Consequently µf (E) ∈ X⊗̌Y for all E ∈ Σ,
and hence f is ⊗̌-integrable.

To prove that Tf,ν is, in fact, compact, choose a sequence fn of count-
ably valued functions such that ‖f − fn‖ ≤ 1/n. Then each fn is weakly
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⊗̌-integrable. Indeed, f is weakly ⊗̌-integrable, f − fn is ⊗̌-integrable and
therefore fn = f − (f − fn) is weakly ⊗̌-integrable. Then we know that the
indefinite integral, µfn , is countably additive for all n. Write fn as a sum

fn =
∞∑
k=1

xn,kχEn,k ,

where En,i ∩ En,j = ∅ if i 6= j and ∪kEn,k = Ω, and note that

‖µfn‖(E) ≤ ‖ν‖(E)
n

+ ‖µf‖(E).

Therefore lim‖ν‖(E)→0 supn ‖µfn‖(E) = 0. For each n find an integer pn so
that ‖µfn‖(∪k>pnEn,k) < 1/n, and let φn =

∑
k≤pn xn,kχEn,k .

Now, for any g ∈ L∞(|y∗0ν|),

‖T ∗f,ν(g)− T ∗φn,ν(g)‖ ≤ sup
‖x∗‖,‖y∗‖≤1

∫
Ω

|g||x∗(f − fn)| d|y∗ν|

+ sup
‖x∗‖,‖y∗‖≤1

∫
Ω

|g||x∗(fn − φn)| d|y∗ν|

≤ ‖g‖ · ‖ν‖(Ω)
n

+ ‖g‖ · ‖µfn‖(∪k>pnEn,k)

≤ ‖g‖ ·
(
|ν‖(Ω)
n

+
1
n

)
.

Hence T ∗f,ν is the uniform operator limit of the sequence (T ∗φn,ν). Since each
φn has a finite range, each T ∗φn,ν is a finite rank operator, and thus compact.
It follows that T ∗f,ν is compact. Consequently, Tf,ν is compact as well. �

A Banach space Y is said to be accessible if, given a compact set K in Y
and ε > 0, there is a finite rank bounded linear operator u : Y −→ Y such
that ‖u(y) − y‖ < ε for any y ∈ K. It is known that Y is accessible if and
only if, for every Banach space X, we have X∗⊗̌Y = K(X,Y ).

Example 3. Suppose that a weakly ‖ν‖-measurable function f has a
generalized weak ⊗-integral with respect to ν. Assume further that f satisfies
conditions (1) and (2) of Proposition 1. Then, for every E ∈ Σ, we can
consider the (generalized) integral ψE as an element u of L(X∗, Y ) or as an
element v of L(Y ∗, X). Since u∗ = v and v∗ = u, both u and v are weak∗-to-
weak continuous, and if either u or v is compact, both are compact.

Consider the case where u is compact and Y is accessible. For given ε > 0
we can find a finite rank operator w : Y −→ Y such that ‖y − w(y)‖ < ε
for all y ∈ BX∗ . Thus ‖u − wu‖ < ε and wu is a finite rank operator. But
the adjoint, (wu)∗ = u∗w∗, takes its values in X, and therefore wu ∈ X⊗Y .
Hence u ∈ X ⊗ Y = X⊗̌Y . Similarly, if v is compact and X is accessible,
v ∈ X⊗̌Y . In either case, the integral ψE is an element of X⊗̌Y .
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Theorem 6. Suppose that X or Y is accessible and f : Ω −→ X is weakly
ν-measurable. The following statements are equivalent:

(1) f is weakly ⊗̌-integrable.
(2) For every y∗ ∈ Y ∗, we have f ∈ P (y∗ν,X) and {

∫
E
x∗f dν : ‖x∗‖ ≤

1} is a compact subset of Y .
(3) For every x∗ ∈ X∗, we have x∗f ∈ L1(ν) and {

∫
E
f dy∗ν : ‖y∗‖ ≤ 1}

is a compact subset of X.

Proof. This is a direct consequence of Proposition 1 and Example 3. �
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