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COMPACTNESS ARGUMENTS FOR SPACES OF
p-INTEGRABLE FUNCTIONS WITH RESPECT TO A
VECTOR MEASURE AND FACTORIZATION OF
OPERATORS THROUGH LEBESGUE-BOCHNER SPACES

E.A. SANCHEZ PEREZ

ABSTRACT. If X is a vector measure with values in a Banach space
and p > 1, we consider the space of real functions L,()\) that are p-
integrable with respect to A. We define two different vector valued dual
topologies and we prove several compactness results for the unit ball of
Ly(X). We apply these results to obtain new Grothendieck-Pietsch type
factorization theorems.

1. Introduction

The Grothendieck-Pietsch factorization theorem for p-summing operators
is a fundamental tool in the theory of Banach spaces. From a technical point
of view, the proof of this classical result is closely related to the weak* com-
pactness of the unit ball of the dual of a Banach space. The aim of this
paper is to apply similar arguments in order to obtain a factorization theorem
for operators defined on Kothe (Banach) function spaces through spaces of
Bochner integrable functions. We also use compactness properties (but with
respect to different topologies) of the unit ball of a particular class of Kothe
function spaces (spaces of p-integrable functions with respect to a vector mea-
sure). In a recent paper, A. Defant [5] proposed a general and unified point of
view for understanding the relation between vector-valued norm inequalities
and factorization properties of (homogeneous) operators on Kéthe function
spaces in the context of the Maurey-Rosenthal theorem. In particular, De-
fant obtained several results on the factorization properties for operators on
spaces of Bochner integrable functions (see 4.4 in [5]). Although the subject
we consider here is closely related, our point of view is different, since we
restrict our attention to the particular case of factorizations through spaces
of p-integrable functions with respect to a vector measure. In this case the
spaces of Bochner integrable functions appear in a natural way.
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908 E.A. SANCHEZ PEREZ

2. Preliminaries and notation

Let (92, X)) be a measurable space, X a (real) Banach space and A: ¥ — X a
countably additive vector measure. Following the definition of Bartle, Dunford
and Schwartz [1] and Lewis [12], we consider the space L;(A) of (classes of ) real
functions that are integrable with respect to A. This space has been studied
by Kluvének and Knowles [10], Okada [15], and Curbera ([4], [3] and [2]). In
this paper we use the same construction in order to define for real numbers
p > 1 the spaces L,(A) of real functions that are p-integrable with respect
to A. In Section 2 we investigate several elementary lattice properties of the
spaces Ly(A) in order to get an easy description of their dual spaces. Section
3 is devoted to proving topological properties of these spaces by means of a
new “vector-dual” space that can be defined using integration with respect to
vector measures. In Section 4 we apply these results to obtain our factorization
theorem.

Throughout this paper we will use several well-known results about general
Vector Measure Theory. The reader can find these results in the book of
Diestel and Uhl [8], and the results about Measure Theory in the book of
Halmos [9].

The notation for Banach spaces and vector measures is standard. A good
reference for general questions on this subject is the book of Wojtaszczyk
[19]. Aspects related to locally convex topologies can be found in [11]. For
p-absolutely summing operators we refer the reader to [18], [7] and [6].

If A € X, we shall write x 4 for the characteristic function of A. Throughout
this paper every vector measure will be countably additive. If (©,3) is a
measurable space and A\: ¥ — X is a countably additive vector measure, the
semivariation of A is the set function ||A||(A) = sup {|(A\,2')| (4) : 2’ € Bx/},
where |[(A\,2')| is the variation of the scalar measure (\,2') and By is the
closed unit ball of the dual space X’ of X.

A measurable real function f defined on 2 is integrable with respect to A
(A-integrable for short) [12] if it is (A, 2’)-integrable for each 2’ € X' and for
every A € ¥ there is an element f 4 J dX of X such that

</Afd)\7m’>:/Afd<)\,x'>, e X,

The Banach lattice Li () coincides with the completion of the normed space
of equivalence classes of simple functions that are equal if the set where they
differ has zero semivariation with respect to the norm

£l = sup{/g|f|d|<w> 2l e BX/}

(see [12] and [13]). The order in this lattice is the ||\||-almost everywhere
order. The following norm is equivalent to the one defined above:

/fd)\ . feLi(N.
A

I f[Ix = sup
Aex
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In particular, [[|f][Ix < [[fllx < 2[1F][|r-
If A is a vector measure and f =Y _"" | a;x 4, is a Y-simple function (where
{4;} C X are pairwise disjoint sets), we define an integral operator by

Q i=1

This definition can be extended to all elements f of the space Ly (\). Various
properties of the integral operator f — fQ f dX have been studied by Okada
and Ricker in [16] and [17].

We extend the definition of L;(\) to L,()) as follows.

DEFINITION 1. Let 1 < p < oo and let A be a countably additive vector
measure. We say that a measurable real function f defined on € is p-integrable
with respect to X if | f|P is A-integrable.

A norm can be defined for the vector space of simple functions (more pre-
cisely, equivalence classes of functions that are equal ||A|-a.e.) by

1/p
[£llp.x = sup { (/Q |f|pdl()\>$'>l) al € BX’} :

This norm is equivalent to the norm defined by
1/p

151 = s |/ 177
Aex A

DEFINITION 2. L,()) denotes the set of (equivalence classes of ) p-integra-
ble functions with respect to A, endowed with the topology given by the norm

- llp.a-

REMARK 3. Note that, if p > 1, each function f € L,(\) also belongs to
L1(X). To verify this, let us define for a function f € L,(\) the set E(f) =
{weQ:[f(w)| <1} It is clear that xg(s) € L1(A), and hence |f|P + xg(y) €
Ly(N). Since |f| < [f|P + XxEg(f), it follows from the lattice property of Li(A)
that f € Ll()\)

We now establish several basic results on the lattice structure of the spaces
of p-integrable functions with respect to a vector measure. First we prove
that this set is indeed a Banach space.

PROPOSITION 4. Let p > 1 and A be a vector measure. Then L,(X\) is a
Banach space and the vector space consisting of (equivalence classes of ) simple
functions is dense in it.

Proof. First we show that the simple functions are dense in L,(A). Of
course, every simple function is p-integrable with respect to A. We will use
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the fact that this set is dense in Lq(\) (see [12]). If € > 0 and f € L,()\),
there is a simple function fy such that

1/p
sup (/Q||f|f’—|fo|P|d|<A,o:'>|) <e

'€Bx/

A standard argument using the properties of the integrable functions with
respect to a scalar measure, the decomposition of f into its positive and
negative parts and the inequality |a — bP < |aP — bP| for every a,b € [0, o]
shows that there is a simple function f; such that |f1|P = |fo|? and

1/p
sup (/Q|f—f1|pd|<A,x’>|) <2

z'€By/

This means that the set of p-integrable functions is in the closure of the
normed space of simple functions with respect to the norm | - ||, ». Now we
show that the limit of each Cauchy sequence of p-integrable functions is also
p-integrable. Let (f,)22; be a Cauchy sequence in L,(\) and € > 0. We
can suppose that || fn|p,» <1 for every n. For each n, consider the canonical
decomposition of the measurable function f, into its positive and negative
parts, f, = f,7 — f,;. It is clear that || f,;} ||, » <1 and ||f, |lp.» < 1 for every
n. Moreover, the definition of the norm || - ||, » implies that the sequences
(fi)ee, and (f,)52, are also Cauchy sequences, since |f, — fm| > |f;F — [, ]
and |fn, — fm| = |f5, — fm] pointwise. Choose a natural number ng such that
for all n,m > ng

1/p
sup (A|f:f;|pd|<x,x'>|> <e

' €EBy/

Let z(, € Bx» and A € X. Consider the scalar measure p defined as
w(B) = (A(B),xp) for each B € ¥. Then there are positive measures p; and
2 such that p(B) = u1(B) — pe(B) for each B € X, and we get for i = 1,2,

1/p 1/p
e ([ 1= air aiona) = ([ 15 - 5217 du)
+1p e +1P 4 e
(/Alfnl m) (/A|fm| uz—)
1 +|p ) _ +|p )
>p‘(/A|fn| dm) (/Alfm| dui

>

)
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where the last inequality holds since |a? — bP| < pla — b| for all a,b € [0,1].

Then,
2pe>‘</Afn+”du1) —([4|f;|pdu1)]
#|(f it a) = ([ 1551 o)
> ([l ana) - ([ iraoa)
(L zra)-( ) )

Thus, supsex || [4 [F5P dX = [, |£FP dX|| < 2pe, and (|f,F|P) -, is a Cauchy
sequence in L;(\). Since L;(\) is a Banach space, there is a function h*
that is the limit of (|, |1’)Zoi1 in Ly(\). Moreover, we can suppose that h™

is a positive function. Let us define f* := (h*)l/” We can use the same
argument to find a limit 4~ of the sequence (| f,7|P);, in L1 () and a function
f~ := (h")Y/P. Consider the measurable function f = ft — f~. It is clear

that f € L,(X). Moreover, if we denote by A, the measures |(\, 2’)| for each
z' € X', we obtain for every n,

1/p
sup (/Hfﬂp—h*]d)\x,) T+ osup </||f P he |d)\x,>
r'€Bx/ Q ' €By/
1/p 1/p
> sup (/ |f;—f+|PdAm«) T+ sup (/ f;—fﬂpdxx/)
w’EBX/ Q I’EBX/ (9]

1/p
+ - =P ,
2 g, ([ =t =ran)

where we have used again the inequality |a — b|P < |aP — bP| for every a,b €
[0, 00]. This shows that f € L,()) is the limit of the sequence (f,)52;. O

PROPOSITION 5. Let p > 1. Then L,(\) is a Kéthe function space.

Proof. Let p be a control measure for A (for instance, a Rybakov measure;
see IX.2 of [8]). We will show that L,(\) is a Kéthe function space over u (see
Def. 1.b.17 in [14]). Suppose that f is a g-measurable function and g € Ly(\)
such that |f| < |g| p-a.e.. Then |g|P € Li(X). Since |f|P < |g|P, we get
|f|P € L1(\) by applying Theorem 1 in [2]. Moreover,

/Qlf\pdw,xﬂS/ﬂlgl”dlwwﬂ
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for every ' € X’. This means that || f|l,.x < ||lgllp.x. For each A € ¥, we have
Xa € Ly(N), and ||xallp.x is equivalent to [|A||P(A), as a consequence of the
equivalent expression for the norm given in Definition 1. O

PROPOSITION 6. Let p > 1. Then L,(\) is an order continuous Banach
lattice with weak order unit.

Proof. The following proof is similar to the proof of Theorem 1 in [2] but
we include it for the sake of completeness. L, () is a Banach lattice with the
natural order, i.e., the pointwise A-a.e. order. We use the characterization of
order continuity given in 1.a.8 of [14]: a Banach lattice X is order continuous
if every increasing order bounded sequence is convergent in the norm topology
of X. Take such a sequence (f,)52; in L,(X). We can suppose that 0 < f,, <
frnt1 < g, where g € L,(\). Let us define f(w) = sup,, fn(w), for w € Q. On
the one hand, for each 2’ € X', (f,)22, is order bounded (as g € L, (|(\, z)]),
and thus f € L,(|(\, 2')]), since L, (|(X\, ')|) is order continuous. On the other
hand, the measure ®|4»(A) = [, |g|? d) is absolutely continuous with respect
to the semivariation ||| (using the fact that a function f which is scalarly
integrable is integrable with respect to A if and only if the measure ®;(A) =
J.4 fdX is absolutely continuous with respect to ||A[|; see [13]). Therefore we

get
\/ prdAH<sup{/ |f|Pd<x',A>|::c'eBX/}<H¢>gp||<A>~
A A

This means that |f|? € Li()), and thus f € L,(\). It remains to check
that [|f, — fllp,x — 0. Let € > 0. Since the measure ®|s_ » is absolutely
continuous with respect to p (as shown in the proof of Proposition 5), there
is a 6. > 0 such that if u(A) < o, then ®j;_¢ »(A) < e. Egoroff’s Theorem
gives a subset Ag € ¥ such that u(Ag) < 0. and the convergence of (f,,)22, is
uniform in Q — Ag. Thus, if, for each 2’ € X, we denote by A,/ the measures
[(A, 2"}, we can write

Ul fu = fI7ly = sup / o — fIP dA

' €By/

< sup / ‘fn - f|p dAy + sup / |f1 - f|p dAy
Q—Ag Ap

'€Bx/ ' €Bxr
< el A (@ = Ag) + [| @7, - ppo | (Ao)

if n > ng, where ng only depends on €. This gives the result.

Finally, let us show that yq is a weak order unit. An element e > 0 of a
Banach lattice L is said to be a weak order unit of L if e Az =0 for z € L
implies & = 0, where y A z denotes the greatest lower bound for y, z € L (see
[14]). Since L,(A) is an order continuous Banach lattice, it is o-complete (see
Proposition 1.a.8 in [14]). The elements of L,(\) are functions, and the order
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is the pointwise order. Thus, the projection P,., associated to xq is defined
as the multiplication operator Py, (f) := xaf. Then xq is a weak order unit
since obviously xqf = f for every f € L,()\) (see p. 9 of [14]). O

The results of this section lead to an easy representation of the dual space
of L,(A). Let 4 be a Rybakov measure for A\. As in the case of Lq(\) (see
Theorem 1.b.14 in [14], [13], [15] or Proposition 1.1 in [16]), we can obtain the
dual space (L,()))" as the Kothe function space of y-measurable functions h

sup

that satisfy
/ ghdu’ < 00.
lgllp,x<11/Q

This expression defines a norm for the dual space, and the duality is given by
(9,h) = [, ghdp (see Lemma 1 in [5]).

3. Vector measure duality and compactness arguments

Let p > 1. We denote by p’ the real number that satisfies 1/p+ 1/p’ = 1.
If X\ is a vector measure, let us fix a function f € L, (/\) This function
defines a linear map f L,(\) — X via the expression f g — fﬂ fgdX, for
g € Ly(N\). Indeed, the following inequalities and the density of the simple
functions in Lp()\)—spaces (Proposition 4) show that this map is well-defined
and continuous. In particular, it is easy to see that the product fg gives an
integrable function with respect to A. Moreover, the multiplication map may
be defined (and is also continuous) with images in L1 (\). For a simple function
g, the required inequality (via Holder’s inequality for scalar measures) is

/fgdAHé sup /fg|d|<A,x'>|]
A ’L"EBX/
pl
< sup /|g|Pd\ aayl[ ) sup /|f 7
wEBX/ meBX/

for each A € X. These operators may be used in order to define a “vector
valued duality” between the spaces L,(A) and L (X).

DEFINITION 7. Let p be a (finite) control measure for a vector measure A
and let L be a Kothe function space on (€2, 3, ). Consider the (linear) space
Lo(p) of (equivalence classes of p-a.e.) simple functions f that satisfy:

(1) The function fg is integrable with respect to A for each g € L.
(2) The norm [|f|z» = supyg, <1 [ fgllx is finite.

We define the Banach space L* of pu-measurable functions as the completion
of the space Lo(u) with respect to the norm given in (2). The same expression
can be used for every f € L.
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Using the equivalent formula ||| - |||x for the norm of Li()\) (see Section 2)
we see that the following norm is equivalent to the norm of L* defined above:

fooe,

PROPOSITION 8. Let p > 1. Then (L,(\))* = Ly (\).

Wfllgs == sup
A€z, gll <1

Proof. The inequalities at the begining of this section give || ||z, ) <

| £1l,7.x and the rest of the conditions needed to assure that L, (\) C (L,(X))*.
Now suppose that f € L, ()\). Let us define the function

.
(12"
On the one hand, since p’ — 1 = p'/p,
('—1p w7
supgren,, (Jo 717707 d|(0e)))

lgllpn = =1
swpyep,, (J1f17 d|(A )"

On the other hand, we have

Il = [1Fglix

g:

3 Tl
= sup | |f] , 7
veBx o supep, ([IFP dI(A2)))

, 1/p’
~ s (Qlfl”d|<A,m’>> N

z'€By/

a[(A,2")]

These inequalities and the density of the set of the simple functions in both
spaces give the result. O

In particular, if we call a Banach function space L A-reflexive when (L*)* =
L, then the spaces L,(\) are A-reflexive for p > 1. We will use the descrip-
tion of L,(A\) as (L,(A)*)* in the following section. However, the dual space
(Lp(N))" does not coincide with L,/ ()), even in the case when the range of
A is relatively compact. Of course, for each 2’ € X’ there is an operator
Iy from Ly (X) to (Ly(X))’ given by the formula (I (f), g) := ([, fgdA,2’).
Moreover, if h € Ly (|(A,2')|) then the expression & .0 g — [, hgd (X, 2')]
defines an element of (L,(\))’, since

< Kllgllpa-
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The case when z, defines a Rybakov measure for A leads in this way to
a continuous inclusion of L, () into (L,(N))" via Ly(A) 3 h — & 4, since
the dual space of a Kothe function space can be represented by means of the
duality relation [ fgdu for a Rybakov measure pu.

The following example shows that L,/ ()\) and (L,()))’ are different spaces.
Let p be the Lebesgue measure for Q = [0, 00] and p > 1. Consider the vector
measure A: ¥ — I given by A(4) := >, We,, Where {ei}$2, defines

the canonical basis of lo. Take the element z(, = > .2, 21/2 e; € lp and the
function f = Y2, 2”” 22 Xpi—1.47- Then f belongs to Ly (|(\, z4)]) € (L,(\)),

since
/ I d | b))
[0,00

However, f is not an element of Lp/()\). Let us show that |f[?" is not
A-integrable. Since Iy does not contain an isomorphic copy of ¢y, the A-
integrability of | f|P" is equivalent to its |(\, z’)|-integrability, for each 2’ € X’
(see Theorem 1 on p. 31 of [10]). Thus it is enough to find an element 2} € X’

such that | f|*" is not |(\, 2/} )|-integrable. Take the sequence z; = Sy 1;//; e,
in which case x) is an element of ;. However, a direct calculation of the
integral of | f|P" with respect to [(\, #})| gives the series

> /91 1 40'/p

S p'/p—p" _ -
2 (Z’p’) 2i/2° 9i/2 le Z
which does not converge. This means that

/ P d I )] = oo.
[0,00]

Thus, f is not an element of L, (\).

The aim of the rest of this section is to obtain compactness results for the
unit ball of the spaces L,()\) endowed with a topology that is coarser than
the norm topology. In order to do this we define two locally convex topologies
for the spaces L,(\). Note that, for p > 1, L,(\) can also be represented
(isometrically) as (L, (\))*, as a consequence of Proposition 8. Then we can
use the equivalent norm ||| - |||z ,(x))» given after Definition 7 for the space
Ly(A). From now on, we will use the norm ||| - ||z, (x))» for the space Ly(A),
and we will denote it briefly by || - ||z, x). For simplicity of notation, the
definition of the unit ball B () of L,(A) will also be with respect to this
norm. We will write B, 5 for the unit ball defined by the usual norm || - ||, -

/ fgdx

LEMMA 9. Letp>1. Then

HQHL,,(/\) = |||9|||(Lp,(x))% = Sup
A<l
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for every g € L,(\). Thus the unit ball By, (x) of the space Ly(\) (with respect
to this norm) can then be represented as
/ fg d)\H <13.
Q

Proof. The result is a direct consequence of Proposition 8 and the definition
of the equivalent norm for the space Lp/()\))‘ given after Definition 7. The
lattice property of the space L,/ (\) implies that || fxallp.a < ||fllp . for each
function f € L,/(\) and A € ¥. This means that

J 1o IR R

DEFINITION 10. Let p > 1 and consider the space L,()). Given gy €
L,(\), e>0,neN,and fi, fa,..., fn € Ly(X\), we define the set

botrpalgo) = {g €L, : H [ st~ gom\

It is easy to see that a (Hausdorff) locally convex topology on L,(X) can be
defined if we consider the class of all the sets & 7, ... ., (go) for every go € Lp(N)
as a basis of neighbourhoods. We call this topology the A-topology for the
space L,(A).

Br,oy =49 € Ly(N): sup
£l A <1

sup
AED, || fllpr A <1

= sup
X Sl a1

<6,Vi:1,...,n}.
X

It is obvious that all the multiplication operators Ty : L,(A) — X defined
by T¢(g) = Jo, fgdA, where f € L,()), are continuous with respect to the
A-topology.

DEFINITION 11. Let p > 1. Given a function gy € L,(A), € > 0, n € N,
x,...,n, € X', and f1, fo,..., fn € Ly (N), we define the set

ettt (90)

= {geLp()\) : ’</in(g—go)d)\,x;>‘ <e,Vi:1,...,n}.

Then the A-weak topology for the space L, () is the Hausdorff locally convex
topology which has as a basis of neighbourhoods the family of sets

§€7f11-~7fnaw,17~~-7$,/n (90)

It is easy to see that the A-topology is coarser than the norm topology and
finer than the A\-weak topology. The A-weak topology is also coarser than the
weak topology of L, (), as the following argument shows. Let f € L,/ (\) and
2’ € X', and consider the continuous linear form ¢(g) = ([, fgdX,a’). If
is a Rybakov measure for A, then X\ is absolutely continuous with respect to
i, and so there is a Radon-Nikodym derivative fy (depending on f and z’)
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for the scalar measure (M(A),2") = [, fodu. Thus ¢(g) = [, gf fodp and f fo
defines an element of (L,(\))’ since
< / af dA,x’>
Q

/ngfo dp

PROPOSITION 12.  The unit ball of the space L,(\) is closed for the A-weak
topology, and thus for the A-topology.

sup
llgllp,a<1

= sup
llgllp.a<1

< N2l 1 llz, -

Proof. Let B]:\p(,\) be the closure of By (x) with respect to the A-weak
topology. Suppose that B \) # Bép(/\). Then there is a function gy €

B})p(/\) — By, (n), and hence a § > 0 such that [|gollr,x) > 1+ 6. Thus
there exists a function fo; € B, » and a norm one element zj, € X’ such
that ’<fﬂ gofo d)\,:c6>‘ > 1+ 6. On the other hand, since Bép()\) is closed
for the A-weak topology, there exists a sequence (g,)5%,; C B L,(n) such that
’<fQ folgo — gn) dX, x6>‘ < 1/n for every natural number n. But

1

— > ‘</ fogod)\—/ ngnd)\7m(/)>’

n Q Q

</ Fodo dA,xg>‘ - ’</ foom dAymg>H S 14— gl > &
Q Q

and we get a contradiction. O

2 ‘

PROPOSITION 13.  The unit ball By, (x) is compact for the A-weak topology.

Proof. The proof follows the lines of the classical proof of Alaoglu’s the-
orem. For each z/ € X’, consider the product space S, := erLp,()\)Bzgf,

where
By = {</ fgd)\,x’> 1g € BLP(A)} CR.
Q

These sets are compact, since ( [, f(-) dA, ") defines a linear form in L, (}).
Thus, the product space S,/ is compact as a consequence of Tychonov’s The-
orem. Now consider the product space Il cx/S;/. Another application of
Tychonov’s Theorem gives the compactness of this topological space. We can
identify the elements g € By, (x) via their coordinates ([, fgdA, z') as ele-
ments of the product space. The definition of the A-weak topology makes it
clear that it coincides with the product topology in the topological subspace
of the product defined by Br (). Then the closure of By, (y) in this topology
is compact. Proposition 12 then yields the desired conclusion. O

We are interested in the case when the unit ball is also compact for the
A-topology. This is not true in general, as shown by the following example.
Consider the measure space (3,[0,1], u), where ¥ is the o-algebra of Borel
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subsets and p is the Lebesgue measure, and the vector measure of bounded
variation A\: ¥ — L;(u) given by A(A) = xa. The range rg(A) of A is closed
but not compact (see p. 261 of [8]). If p > 1, a direct calculation shows that in
this case L (\) = Ly (1), and the A-topology is finer than the weak topology.
However, By, (x) is not a compact set for the A-topology as this would imply
that the range of the vector measure A is compact. Indeed, if f is a function
in L, (X), then the integral map Ty: L,(\) — X given by T¢(g) := [ fgdA
is obviously continuous for the A-topology. We also have that x[p,1) € B L\
and, for each A € 3, [[xallpx» < 1. Then if Br () is A-compact the set
Byoy = {fﬂgdA €Li(p):g¢€ BLP(/\)} would also be compact. In fact, in
this case L,(A) coincides with Ly (u).

The following theorem characterizes the situation when the unit ball is

compact for the A\-topology in terms of the different topologies we have defined
for Ly(A).

THEOREM 14. Let p > 1 and A\ be a vector measure. The following are
equivalent.

(1) The unit ball By, () is compact for the A-topology.

(2) For each f € Ly(X), the operator g — T¢(g) = [, fgdA, from Ly(X)
mto X, is compact.

(3) The A-topology coincides with the A-weak topology.

Proof. First we show the equivalence of (1) and (2). We apply the same
argument that we used to prove Proposition 13. Consider the product space
Wyer,, By, where, for f € L,/ (N), By is the closure in X of the set

Bf = {/fgdAEX:gEBLp()\)}.

We can identify the element g € By, (y) with its coordinates (Jo fa d)\)feLp,(,\)
as elements of the product space. This space is compact, by Tychonov’s
Theorem. From the definition of the A-topology it is clear that this topology
is exactly the product topology when restricted to the topological subspace
By, (n)- Since the latter space is closed, it is compact.

The converse is obvious (since each X-valued, linear function [, f(-) dX is
continuous for the A-topology).

Now we prove the equivalence of (1) and (3). Clearly (3) implies (1) since
By, () is compact for the A-weak topology. To see the converse, we will use
the following property, which is easily proved: if B is a compact subset (for
the norm topology) of a Banach space, then for each € > 0 there is a finite
number of norm one linear functionals a2} € X', i = 1,...,n such that, for
each z € B, there is a number ¢ € {1,...,n} satisfying that ||z| < [{z,z})|+e€.
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oo (0) = {g e 1,0 | [ fgar

(where f; € Ly ()) fori =1,...,n) be a basic neighbourhood of 0 € Br () for
the A-topology. Then we just need to find a neighbourhood of 0 for the A-weak
topology V such that V' C & r,,.. 1,(0). Take iy € {1,...,n}, and consider
the set A;, := {fQ ficgdA:g € BLP(A)}. This set is well-defined and bounded
(see Lemma 9). Moreover, it is a compact set in X, and so we can find finitely
many elements i, ..., x, of the dual space X’ satisfying the above property
for /2. Thus, for each g € By (y), there is an index j € {1,...,m} such that
Hf fiog d/\H <e/2+ |<fQ fiog d)\,ar;-ﬂ. Therefore, the A-weak neighbourhood
of 0 defined by

Vip 1= ﬂ {QEBLP(A)5’</fi09dN7$;‘>‘<;}

j=1,.m

Let

<6,Vi:1,...,n}
X

is contained in the A-neighbourhood & 7, (0). Since
Cetionta0) = [ €n(0),
i=1,....,n

we see that V.= [ V;, is the desired A-weak neighbourhood. (]

i0=1,....,n

DEFINITION 15. A vector measure A satisfying any one of the conditions
of Theorem 14 will be called p-compact.

If L,()) is a reflexive space, then X is a p-compact vector measure if and
only if the X\ topology is coarser than the weak topology. This is a direct
consequence of Theorem 14 and the fact that the weak topology is finer than
the A-weak topology.

4. Factorizations through spaces of Bochner integrable functions

In this section we apply the above results to obtain our factorization theo-
rem for Koéthe function spaces. First we show how we can use the results for
operators defined in the spaces L,(A).

LEMMA 16. Letp > 1 and g > 1, and let A be an X -valued p’-compact
vector measure. Let Y be a Banach space and T a continuous linear operator
T: L,(A) — Y. Then the following statements are equivalent:

(1) There is a constant K such that, for each finite sequence (g;)i—, C

L,(X), we have
q\ /4
[ airax ) .
Q X

n 1/q n
(ZHHQ@)H%) <K sup (Z

Hf”Lp/(k)Sl i=1
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(2) There is a constant K and a regular probability measure pgy defined
on the Borel sets of By, ,(x) such that, for every g € L,(N),

q 1/q
IT(9)ly < K ( /B /Q fgdx duo(f)> .
Ly () X

Proof. First we give an easy proof of the implication (2) = (1). Let (g;)
be a finite sequence of functions in L,(\). Then

an HY<KQ/ S /fgsz

pr V) i=1

dpo(f)

) |

For the converse, we use a classical separation argument based on Ky Fan’s
Lemma (see [18] or [7]). Consider the topological space By, ,(») endowed with
the A-topology, and the space M (B L( x)) of regular Borel measures. Riesz’
Theorem states that this space is the dual of the space of continuous func-
tions C(Br, ,(r)). Consider the subset P(By, ,(x)) C M(Bg_,(x)) of probability
measures. This is a convex set which is compact if we endow M (B L ( ) with
its weak™ topology. In this context, we need to define an appropriate set of
functions N on P(B L »)) satisfying the properties that are required to ap-
ply Ky Fan’s Lemma (see p. 190 of [7]). For each finite sequence (g;)?; from
Ly(A) we can define a function p — @, .4, (1), for p € M(Bg , (), by

Dy Znnguy K/B Z/fgsz
L

pr (N =1
We define N to be the set of all such functions. Then we have:

(a) Each function ®,, ., (-) is clearly convex, and continuous in the weak™
topology of M(BLP,(,\)), since for each g € L,(\) the function U (f) :=
I/ fgd)\Hq belongs to C(BLP,(A)).

(b) A direct calculation shows that each convex combination of two func-
tions from N gives another function in N (see, for example, p. 192 of [7]).

(c) Consider a function @4, 4. (-) € N. Assumption (1), the compactness
of B L(\) and the continuity of the functions ¥, of (a) give a function fy €
BLP,(A) such that

< K? sup ( i dA

feBL 16N

du(f).

n n q
DTy — K7 A <o
i=1 i=1 X

Then the discrete measure dy, satisfies ®g, .4 (67,) < 0. An application of
Ky Fan’s Lemma gives the desired probability measure pyg. O
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Let @ be a Hausdorff compact topological space and let p be a regular Borel
probability measure on (). If X is Banach space, consider the space of X-
valued continuous functions C'(Q), X) and the space L,(Q, u, X) of X-valued
Bochner p-integrable functions. We write I, for the natural inclusion map
I,: C(Q,X) — Lp(Q, 1, X). It is well known that this map is continuous,
injective and |1, < 1.

If we consider the space of continuous functions C’(B L(A)s X ) the results
of Section 3 make it clear that the map Id: L,(\) — C(BLP,(A)7X) defined
as Id(g) := [ g(-)d\ is an isometry. Thus we can identify L,()\) with the
subspace Id(L,(N)).

The following theorem is just the “factorization form” of the above lemma.

THEOREM 17. Letp > 1 and ¢ > 1, and X be an X -valued p’'-compact
vector measure. Let T: L,(A\) — Y be a continuous linear operator satisfying
(1) of Lemma 16. Then there is a probability measure po € M(BLP/()\)) such
that T factorizes as follows:

T

L,(\) -Y
Id T
Iq
G C C(BLP,,X) Iq(G) - Lq(BLp,7,u07X)

where G and I,(G) are the subspaces ofC(BLP, (A)s X) and L, (BLp’ (A)s Mo, X),
respectively, defined by the functions of L,(\).

Proof. The map Id: L,(\) — C(BLP,(A), X) is a continuous operator, and
its image G := Id(L, () is closed. Consider the Bochner space L, (BLP/(A), 140,
X )7 where g is a probability measure given by Lemma 16. The restriction
of the inclusion I; to the subspace G is also continuous. Finally, the oper-
ator T defined by Ti(g) := T(g) for the functions g € I,(G) is also well
defined (as both Id and I, are injective) and continuous, since [|T(g)[|} <

K [, o 1o FodM dpo(). 0

The converse is also true; i.e., if we have such a factorization, then the op-
erator T satisfies (1) of Lemma 16. In fact, as for the case of g-absolutely sum-
ming operators, the canonical map satisfying this condition is I : C(B L,y ()
X) — Ly (BLP,(A),,uO,X), and the Ideal Property is obviously true for the
factorization scheme of the theorem.
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We conclude this paper with a natural extension of the above results to op-
erators defined on Kothe function spaces. The condition we need is a previous
canonical factorization through a space Ly ().

DEFINITION 18. Let L be a Kothe function space over (2,%, ), Y a
Banach space, and p > 1. Let \: ¥ — X be a p-continuous vector measure.
We say that an operator T': L — Y is (A, p)-representable if

(1) the natural map I(xp): L — Ly(A), given by I\ ,)(g) := g, is well-
defined, continuous, and has dense range, and
(2) there is an operator T : L,(A) — Y such that Tiol(y p) = T.

COROLLARY 19. Let L be a Kdthe function space over (2,2, u), Y a
Banach space, ¢ > 1 and p > 1. Let \:' ¥ — X be a p’'-compact vector
measure. If T: L — Y is a (X, p)-representable operator, then the following
are equivalent.

(1) There is a constant K such that, for each finite sequence (g;)?-; C L,

n 1/q n q\ Y4
(Z ||TgZ||§,> <K sup <Z / gi f dA ) :
i=1 Q X

Hf”LP/(A)Sl i—1
(2) If G is the subspace I(x (L), then there is a probability measure fig
such that the operator T factorizes as follows:

I T
Ioxp) A
I
G c (B, X) d 1,(G) C Ly(Bv,, , o, X)

An obvious example of this result is the Grothendieck-Pietsch factorization
theorem for p-summing operators on L,, spaces. For a finite positive measure
w every operator defined on Ly () is obviously (u, p)-representable by consid-
ering the factorization through the same L,(p). We have just shown that this
is also true for spaces L, (), where A has range in a finite dimensional space.
In this case A is obviously p’-compact, and the (), p)-representability of the
operator T' can be easily checked.
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