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LINEAR SYSTEMS OF PLANE CURVES WITH IMPOSED
MULTIPLE POINTS

JOAQUIM ROÉ

Abstract. A conjecture of Harbourne and Hirschowitz implies that
r ≥ 9 general points of multiplicity m impose independent conditions to

the linear system of curves of degree d when d(d+ 3) ≥ rm(m+ 1)− 2.
In this paper we prove that the conditions are independent provided
d+ 2 ≥ (m+ 1)(

√
r + 1.9 + π/8).

Introduction

Let p1, p2, . . . , pr be points of P2. Consider the linear system L consisting
of plane curves of degree d with multiplicity at least m at every pi. For each
point pi the requirement to have an m–fold point at pi imposes m(m + 1)/2
conditions on curves of degree d; we say that the r points impose independent
conditions when the dimension of L is d(d+ 3)/2− rm(m+ 1)/2.

The dimension of L depends on the position of the points, and achieves its
minimal value for a general set of points. We will be interested in this min-
imum and will suppose henceforth that the points are general. A conjecture
of Harbourne [9] and Hirschowitz [14] predicts for which degrees and multi-
plicities the conditions are independent; the conjecture implies independence
whenever r ≥ 9 and d(d + 3)/2 − rm(m + 1)/2 ≥ −1 (note that the latter
is a necessary condition). The paper [18] is a very nice survey on this sub-
ject, giving an overview of known results and describing the present state of
conjectures. The conjecture of Harbourne and Hirschowitz is known to hold
for small multiplicities (namely m ≤ 12), and also in some other particular
cases, e.g., when the number of points is r = 4h (cf. [4], respectively [7]). In
the general case, various sufficient conditions on d for the independence of the
linear conditions can be found in the literature. According to [17], the best
known bounds are Ballico’s bound [1]

d(d+ 3)
2

− rm(m+ 1)
2

≥ d(m− 1)− 1
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for large values of r, and Xu’s bound [21]

d+ 3 > (m+ 1)

√
10
9
r,

valid when r < 360 and m is relatively large. In this paper we use a spe-
cialization similar to that of [20], and the semicontinuity theorem to prove an
H1-vanishing result which implies that

d+ 2 ≥ (m+ 1)(
√
r + 1.9 + π/8)

is enough to have independent linear conditions. This is better than both of
the above-mentioned bounds whenever r ≥ 108, m ≥ 28 and m2 ≥ r.

Recently Harbourne, Holay and Fitchett [12] proved that

d ≥ md
√
re+

d
√
re − 3
2

,

where dxe stands for the least integer greater or equal to x, is a sufficient
condition for independence. The closer r is to a square, the better this bound
is; the bound that we prove here is better for large m whenever

√
r + 1.9 +

π/8 < d
√
re, that is, for approximately 60 % of the values of r.

1. Preliminaries

Let k be an algebraically closed field, P2 the projective plane over k. Con-
sider a sequence

Sr
σr−→ Sr−1 −→ · · ·

σ2−→ S1
σ1−→ S0 = P

2,

where σi is the blowing-up of a point pi ∈ Si−1. The set {p1, p2, . . . , pr} is
a cluster and the sequence K = (p1, p2, . . . , pr) is an ordered cluster. We
write SK = Sr and πK : SK → P

2 for the composition of the blowing-ups.
If Ei ⊂ Si is the exceptional divisor of σi, we also denote by Ei its total
transform (pullback) in SK when no confusion arises. When considering more
than one cluster at a time we will write pi(K) and Si(K) for the i–th point of
the cluster K and the surface obtained by blowing up the first i points of K.
We now review some well–known facts about clusters and Enriques diagrams
(a convenient graphical device to represent these) and refer the reader to [2]
and [3] for proofs and details.

A point pj is said to be proximate to pi, j > i, if and only if j = i+ 1 and
pj lies on the exceptional divisor of blowing up pi, or j > i+ 1 and pj lies on
the strict transform of this exceptional divisor. A point which is proximate
to no other point can be naturally identified with a point of P2; these points
are the roots of K. A point can be proximate to at most two points, one of
which must be proximate to the other. If pi is proximate to two points it is
called satellite; otherwise it is called free. Thus roots are free.

The combinatorial structure of clusters (that is, the proximity relations
between their points) can be conveniently represented by means of Enriques
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diagrams. As is customary, a tree is a directed connected graph without loops
and a forest is a disjoint union of trees. The Enriques diagram D of a cluster
K is a forest with a vertex ṗi for each point pi ∈ K. One usually carries
the attributes of the points of the cluster over to the vertices of the Enriques
diagram; thus, we say that ṗj is proximate to ṗi whenever pj is proximate to pi,
and we speak of roots, satellites or free vertices in D. When necessary, we also
consider the points of D to be ordered in the same way as the corresponding
points on K. The edges of the diagram reflect the proximity relations of K.
For every vertex ṗj which is not a root, let ṗi be the last vertex to which
ṗj is proximate; then there is an edge from ṗi to ṗj . The sequence of edges
connecting a maximal succession of free vertices are drawn as a smooth curve,
whereas the sequence of edges connecting a maximal succession of vertices that
are proximate to the same vertex ṗi are drawn as a line segment, orthogonal
to the edge joining ṗi with the first vertex of the sequence.

A detailed account of Enriques diagrams can be found in [3, 3.9]; Figures 1
and 2 show the few diagrams that will be used in the sequel. One of these is
the diagram consisting of r roots and no other point; we denote this diagram
by D0(r), or simply D0, if r is clear from the context. The other diagrams
form a series, Dk(r), or simply Dk, k = 1, 2, . . . , r − 1, so that in Dk the k
points ṗ2, ṗ3, . . . , ṗk+1 are proximate to ṗ1 and, moreover, ṗi is proximate to
ṗi−1 for all i > 1 (in particular, ṗ3, ṗ4, . . . , ṗk+1 are satellites).

Figure 1. Enriques diagrams D0 and D1.

The clusters of one point of P2 are naturally identified with the points of
P

2. The clusters of two points whose second point is infinitely near the first
one are naturally identified with the points of the tangent bundle of P2. For
clusters with more than two points, there exist varieties of higher dimension
whose points are naturally identified with the desired clusters. These varieties
are known as iterated blowing-ups and were introduced by Steven L. Kleiman
in [15] and [16]. Let Xr−1 be the variety of all ordered clusters of r points of P2
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Figure 2. Enriques diagrams Dk, k > 1.

(cf. [10], [20]). There is a family of surfaces parametrized by it, Xr → Xr−1,
and relative divisors F0, F1, . . . , Fr in Xr such that the fiber over a given
cluster K is the surface SK , and the pullback (or restriction) of Fi to SK is
the total transform Ei of the exceptional divisor of blowing up pi(K).

For every Enriques diagram D the subset of Xr−1 containing exactly the
clusters K whose Enriques diagram is D is an irreducible smooth locally closed
subvariety U(D). This was proved for the Enriques diagrams Di in [20]; the
general case will be treated elsewhere. Also, by [20] we have the sequence of
inclusions

Xr = U(D0) ⊃ U(D1) ⊃ · · · ⊃ U(Dr−1).

A system of multiplicities for an ordered cluster K or Enriques diagram D
with r points is a sequence of integers m = (m1,m2, . . . ,mr). A pair (K,m)
(resp. (D,m)) where K is an ordered cluster (resp. D is an ordered Enriques
diagram) and m a system of multiplicities is called a weighted cluster (resp.
weighted Enriques diagram). A system of multiplicities of the form

(
r︷ ︸︸ ︷

m,m, . . . ,m )

will be denoted by (mr). To each weighted cluster (K,m), we associate a
divisor DK,m = −m1E1 −m2E2 − · · · −mrEr. Denote by E0 the pullback
in SK of a line in P2. The linear system L of the plane curves of degree
d with (virtual, see [3]) multiplicity at least mi at pi ∈ K transforms to
L′ = |dE0 + DK,m| = P(H0(OSK (dE0 + DK,m))) on SK . This allows us to
compute dimL = dimL′ by the Riemann–Roch theorem. It is well–known
that K = −3E0 + E1 + E2 + · · · + Er is a canonical divisor on SK . The
intersection in Pic(SK) is given by Ei · Ej = 0 for i 6= j, E2

0 = 1, E2
i = −1

for i > 0, pa(SK) = 0, and H2(OSK (dE0 +DK,m)) = 0 if d ≥ −2. Hence the
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Riemann–Roch formula gives

h0(OSK (dE0 +DK,m))− h1(OSK (dE0 +DK,m))

=
d(d+ 3)

2
−
∑ mi (mi + 1)

2
+ 1 ,

and the independence of the linear conditions imposed by the points of the
weighted cluster is equivalent to the vanishing of H1(OSr (dE0 + DK,m)).
Therefore our goal, as stated in the introduction, is to prove an H1-vanishing
theorem for the invertible sheafOSK (dE0+DK,m) when K is general in U(D0)
(that is, when K consists of r roots in general position) and when m = (mr).

It turns out that for some systems of multiplicities m 6= m′ the linear
systems |dE0 + DK,m| and |dE0 + DK,m′ | agree for every d, up to fixed
components which are components of the exceptional divisors. Therefore
the corresponding linear systems of plane curves are equal; in particular,
h0(OSK (dE0 + DK,m)) = h0(OSK (dE0 + DK,m′)). In this case we will say
that (K,m) and (K,m′) are equivalent weighted clusters. Given an arbitrary
weighted cluster (K,m), it is possible to remove some components from DK,m

to obtain an equivalent system of multiplicities m′ such that |dE0 + DK,m|
has no fixed part for d� 0. This procedure is called unloading (see [3, 4], [5,
IV.II], or [2]), and we next describe how to obtain m′ from m.

The proximity inequality at pi is

mi ≥
∑

pj prox. to pi

mj .

If Ẽi ⊂ SK is the strict transform of the exceptional divisor of blowing-up
pi, then the proximity inequality is equivalent to Ẽi ·DK,m ≥ 0. A weighted
cluster or Enriques diagram is called consistent if and only if it satisfies the
proximity inequalities at all of its points; in this case Ẽi ·DK,m ≥ 0 for all i > 0
and |dE0 +DK,m| has no fixed part for d� 0. In each step of the unloading
procedure, one unloads part of the multiplicity of a point pi whose proximity
inequality is not satisfied from the points proximate to it (which implies that
Ẽi is a fixed part of every |dE0 + DK,m|). One takes the minimal integer
n with Ẽi · (D − nẼi) ≥ 0 and replaces D by D − nẼi. This increases the
multiplicity of pi by n and decreases the multiplicity of every point proximate
to pi by n. The resulting weighted cluster is equivalent to (K,m) and satisfies
the proximity inequality at pi. A finite number of unloading steps lead to the
desired equivalent consistent cluster (K,m′). An unloading step applied to
a point pi for which mi =

∑
mj − 1 (where the sum is taken over all points

pj proximate to pi) is called tame (see [3, 4.6]). Tame unloadings are of
particular interest to us, since they preserve independence of the conditions,
that is, we have h1(OSK (dE0 +DK,m)) = h1(OSK (dE0 +DK,m′)) after a tame
unloading.
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Recall that, for any cluster K ∈ Xr−1 and i ≥ 0, the pullback to the surface
SK of Fi is the same as the class Ei of the exceptional divisor of blowing up
pi. Given an integer d we define, as in [20],

Jd,m = OXr (dF0 −m1F1 −m2F2 − · · · −mrFr) .

Then Jd,m is an invertible sheaf on Xr and therefore flat over Xr−1, so the
function

K 7−→ h1
(
Jd,m ⊗Xr−1 k(K)

)
= h1 (OSK (dE0 +DK,m))

is upper–semicontinuous on Xr−1. Therefore, if Y is a closed subvariety of
Xr−1, K ∈ Y is a cluster such that (K,m) imposes independent conditions
on curves of degree d, then there is an open subset V ⊂ Y such that every
cluster K ′ ∈ V imposes independent conditions on curves of degree d.

2. Specialization and H1-vanishing

Given a system of multiplicities m = (m1,m2, . . . ,mr) we define sj,k(m) =∑k
i=jmi. Consider systems of the form m = (m1,mr + 1,mr + 1, . . . ,mr +

1,mr, . . . ,mr); such a system is determined by m1 and s = s2,r(m), namely

m(m1, s) = (m1,

t︷ ︸︸ ︷
mr + 1,mr + 1, . . . ,mr + 1,mr, . . . ,mr),

where t and mr are chosen so that s2,r(m(m1, s)) = s; i.e., by Euclidean
division, we have s = mr(r− 1) + t with 0 ≤ t < r− 1. In particular, we have
(mr) = m(m, (r − 1)m).

Lemma 2.1. Let m = m(x, y), m′ = m(x + 1, y − k) and assume that
(x, y) satisfy x ≥ s2,k+1(m) − 1. Let K be a cluster with Enriques diagram
Dk such that (K,m′) imposes independent conditions on curves of degree d.
Then (K,m) also imposes independent conditions on curves of degree d.

Proof. Let z = x − s2,k+1(m) + 1. By the assumption on (x, y), we have
z ≥ 0. Choose z points q1, q2, . . . , qz on the strict transform Ẽ1 ⊂ SK of the
exceptional divisor of blowing up p1(K). Define a system of multiplicities m̄ =
(m1,m2, . . . ,mr, 1, . . . , 1) for the new cluster K̄ = (p1, p2, . . . , pr, q1, . . . , qz);
that is, add to the weighted cluster (K,m) z points of multiplicity one in
the first neighborhood of the root p1(K). Each new point adds a linear con-
dition to the conditions of (K,m), which may or may not be independent;
however, clearly, if all conditions imposed by (K̄, m̄) on curves of degree d are
independent, then those imposed by (K,m) must be independent too. Now
(K̄, m̄) is not consistent; if we perform the unloading procedure to (K̄, m̄),
we see that the equivalent consistent cluster is (K,m′) (plus the points qi
with multiplicity zero, which does not affect the argument), and all unloading
steps are tame. Therefore (K̄, m̄) imposes independent conditions, because
(K,m′) does. �
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We now define recursively systems of multiplicities m1,m2, . . .mr−1, as
follows. We set m1 = (mr) = m(m, (r − 1)m). Suppose we have defined
mk = m(xk, yk). For each integer n ≥ 0, consider the system mk(n) =
m(xk + n, yk − nk). Clearly fk(n) = xk + n− s2,k+2(mk(n)) is an increasing
function. We now choose nk as the minimum integer with nk ≥ 0 and fk(nk) ≥
−1, and define mk+1 = mk(nk).

Theorem 2.2. Let mk = m(xk, yk) be the systems of multiplicities defined
above, and let d be an integer, d ≥ s1,2(mr−1) − 1. Then for K general
in U(Dk), the weighted cluster (K,mk) imposes independent conditions on
curves of degree d.

This has the following immediate corollary:

Corollary 2.3. d1(m, r) = s1,2(mr−1)−1 is a sufficient degree for inde-
pendence of the conditions imposed by r general m–fold points. In other words,
let p1, p2, . . . , pr be points in general position, and assume d ≥ s1,2(mr−1)−1.
Then the linear system L of curves of degree d which have multiplicity at least
m at each point has the expected dimension, namely

dimL =
d(d+ 3)

2
− rm (m+ 1)

2
.

Proof. We have already mentioned that it is enough to find a cluster K ∈
Xr such that (K,m) imposes independent conditions on curves of degree d,
with m = (m,m, . . . ,m). Theorem 2.2, with k = 1, says that a general cluster
in U(D1) has this property. �

Proof of Theorem 2.2. We use descending induction on k. Let k = r − 1
and K ∈ U(Dr−1). Observe that we can assume that (K,mr−1) is consistent.
Indeed, by construction xk ≥ s2,r(mk)− 1, so either (K,mr−1) is consistent,
or an equivalent consistent system of multiplicities is reached by a single tame
unloading step at p1(K), which does not change the value s1,2(mr−1). Now
for consistent weighted clusters (K,m) with K ∈ U(Dr−1) the dimension of
the linear system |dE0 +DK,m′ | is known for all d (cf. [6]), and in particular
it is known that the conditions are independent if and only if d ≥ s1,2(m)−1.

Let now k < r − 1 and suppose we have proved that for K general in
U(Dk+1), the weighted cluster (K,mk+1) also imposes independent conditions
on curves of degree d. As U(Dk+1) ⊂ U(Dk), by semicontinuity we obtain
that (K,mk+1) also imposes independent conditions on curves of degree d
when K is general in U(Dk). We will be done if we prove that, for any given
K ∈ U(Dk), if (K,mk+1) imposes independent conditions, then (K,mk)
imposes independent conditions too. But by definition (xk+1, yk+1) = (xk +
n0, yk − n0k), so applying Lemma 2.1 n0 times gives the desired result. �
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Let d1(m, r) = s1,2(mr−1) − 1 be the minimal degree for which Corollary
2.3 guarantees independence of the conditions imposed by r general m–fold
points. We have given an algorithm to compute this degree, but it is still not
clear whether the resulting values are better than the known bounds on the
degree. It is therefore of interest to give upper bounds for d1(m, r), and in
particular to determine whether the value d1(m, r) is “asymptotically correct”,
that is, of the same order as the known necessary conditions for independence,
in the sense that

lim
m→∞

lim
r→∞

d1(m, r)
m
√
r

= 1 .

Let Ak = kxk + yk = kxk+1 + yk+1. By definition,

d1(m, r) + 1 =
⌈
Ar−1

r − 1

⌉
≤ Ar−1 + r − 2

r − 1
,

and we want to bound Ar−1 above. To do this, we will give recursive upper
bounds on nk, xk and Ak. It is not difficult to see that, given arbitrary integers
x, y,

s2,k+2(m(x, y)) ≤ k + 1
r − 1

(y − k − 1) + k + 1

with equality holding if and only if y ≡ k + 1 (mod r − 1). Therefore

fk(n) ≥ xk −
k + 1
r − 1

yk + n
r − 1 + k(k + 1)

r − 1
− (k + 1)

r − 1− (k + 1)
r − 1

,

and, by the definition of nk,

nk <
−xk + k+1

r−1yk + (k + 1) r−1−(k+1)
r−1 − 1

r−1+k(k+1)
r−1

+ 1

= (Ak + r − 2)(αk+1 − 1)− xk ,

where

αi =
r − 1 + i2

r − 1 + i2 − i
.

The definition of xk+1 then gives xk+1 < (Ak + r− 2)(αk+1 − 1) and Ak+1 =
Ak + xk+1 < (Ak + r − 2)αk+1 − (r − 2). Thus we obtain

d1(m, r) + 1 =
⌈
Ar−1

r − 1

⌉
≤ Ar−1 + r − 2

r − 1
<
Ar−2 + r − 2

r − 1
αr−1

<
Ar−3 + r − 2

r − 1
αr−2αr−1 < · · · <

A1 + r − 2
r − 1

r−1∏
i=2

αi

=
rm+ r − 2
r − 1

r−1∏
i=2

αi,

and we have proved the following result:
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Corollary 2.4. The value

d2(m, r) =

⌈
r(m+ 1)− 2

r − 1

r−1∏
i=2

r − 1 + i2

r − 1 + i2 − i

⌉
− 2

is a sufficient degree for independence of the conditions imposed by r general
m–fold points.

The product P (r) = (r − 1)
∏r−1
i=2 α

−1
i has already been studied in the

literature (see [20] and [11]). In particular, it is known that P (r) =
√
r −

π/8+O(
√
r
−1), so defining α(r) = r/P (r) we have d1(m, r)+1 < (m+1)α(r)

and α(r) =
√
r + π/8 + O(

√
r
−1); therefore d1(m, r) is of the desired order

(and asymptotically correct). It would be interesting to have a more precise
estimate for P (r). Using the upper bound of [20], we prove:

Corollary 2.5. The value

d3(m, r) =
⌈
(m+ 1)

(√
r + 1.9 +

π

8

)⌉
− 2

is a sufficient degree for independence of the conditions imposed by r general
m–fold points.

Proof. By [20, 5.1] we have P (r) >
√
r − 1− π/8 for r ≥ 10, so

d1(m, r) + 1 < (m+ 1)
r

P (r)
<

r(m+ 1)√
r − 1− π/8

,

and it is easy to see that

r√
r − 1− π/8

=
√
r − 1 +

π

8
+

π2 + 64
64
√
r − 1− 8π

.

To complete the proof, note that the constant 1.9 has been chosen so that,
for r ≥ 10,

√
r + 1.9−

√
r − 1 >

π2 + 64
64
√
r − 1− 8π

.

�

To compare d3(m, r) with previously known sufficient degrees, note first
that if m ≥ 13 (which we may assume, because for smaller multiplicities the
dimensions of the linear systems are known) and r ≥ 108, then

(m+ 1)
(√

r + 1.9 +
π

8

)
< (m+ 1)

(√
10
9
r − 1

13

)
≤ (m+ 1)

√
10
9
r − 1,

so for r ≥ 108 it is better to use d3(m, r) than the sufficient degree given by
Xu. The sufficient degree obtained by Ballico equals

−5 + 2m+
√

17− 20m+ 4m2 + 4mr + 4m2 r

2
,
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that is, (m + 1)(
√
r + 1 + 1) + O(

√
m). For fixed r ≥ 12 and large m, this

expression is greater than d3(m, r) since
√
r + 1 + 1 >

√
r + 1.9 + π/8. The

reader may check that this holds whenever m ≥ 28, m2 ≥ r. Altogether,
d3(m, r) is better than the previous known bounds provided r ≥ 108, m ≥ 28
and m2 ≥ r.

3. Comments and remarks

We conclude this paper with some remarks on the method and the results
obtained.

First, the specialization does not depend at all on the homogeneity of the
multiplicities involved, which has been used only to simplify the calculations
leading to the explicit sufficient conditions. It is not difficult to see how to
adapt Lemma 2.1 to the case when m = (m1,m2, . . . ,mr) is arbitrary; then
one would define analogous systems of multiplicities mk and finally obtain a
value d1(m) such that, for d ≥ d1(m), r points in general position with multi-
plicities m1,m2, . . . ,mr impose independent conditions on curves of degree d.
The algorithm can be implemented and the results obtained are significant;
however, it is not clear how to obtain explicit sufficient degrees analogous to
those in Corollaries 2.4 and 2.5.

Secondly, although d1(m, r) behaves asymptotically like (m+1)(
√
r + 1.9+

π/8), if m is small compared to r (i.e., for m around
√
r or smaller) the

difference is important, so it is worthwhile to effectively compute d1(m, r).
This is of interest because m ≤

√
r is the range in which Ballico’s sufficient

degree is lower than (m + 1)
(√
r + 1.9 + π/8

)
, so d ≥ d1(m, r) might be a

better sufficient condition for independence also in these cases. As an example,
consider the case m = 20, r = 401. The conjectures predict that the linear
system of curves of degree d through 401 general 20–fold points is empty
for d ≤ 408 and the conditions are independent for d ≥ 409. The minimal
degree for which we have just proved independence is d1(20, 401) = 417, and
d3(20, 401) = 428, whereas the sufficient degrees of [12], [1] and [21] are 429,
429 and 441, respectively. The importance of these differences becomes even
more evident when we recall that for d ≤ 401 the linear system is known to be
empty [11], so the degrees for which we do not (yet) know its dimension reduce
almost to the half by taking d1(m, r) instead of the other known sufficient
degrees. We would like to thank B. Harbourne for some inspired remarks
that lead us to this example.

Finally, we note that any H1-vanishing result like that proved in this paper
can be applied to prove the existence of curves of low degree with prescribed
singularities, using methods of [8], [1] or [19]. In particular, from Corollary
2.5 one deduces the existence of irreducible curves of every degree d satisfying

d+ 1 ≥ (m+ 1)
(√

r + 1.9 +
π

8

)
,
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with r ordinary singularities of multiplicity m and no other singularity. This
improves previously known results. In the example mentioned above we can
use d1(20, 401) to show the existence of irreducible plane curves of degree 418
with 401 ordinary 20–fold points and no other singularity.
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