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A CLASS OF AUSTERE SUBMANIFOLDS
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To Detlef Gromoll on his 60th birthday

ABSTRACT. Austerity is a pointwise algebraic condition on the second
fundamental form of an Euclidean submanifold and requires that the
nonzero principal curvatures in any normal direction occur in pairs with
opposite signs. These submanifolds have been introduced by Harvey and
Lawson in the context of special Lagrangian submanifolds.

The main purpose of this paper is to classify all austere submanifolds
whose Gauss maps have rank two. This condition means that the image
of the Gauss map in the corresponding Grassmannian is a surface. The
hypersurface case is due to Dajczer and Gromoll and the three dimen-
sional case to Bryant. We show that any such submanifold is, roughly,
a subbundle of the normal bundle of a surface whose ellipse of curvature
of a certain order is a circle. We also characterize austere submanifolds
which are Kaehler manifolds.

Introduction

Austerity is a pointwise algebraic condition on the second fundamental
form of a submanifold in Euclidean space. It requires that the nonzero prin-
cipal curvatures in any normal direction occur in oppositely signed pairs.
Introduced by Harvey and Lawson [HL] in the context of special Lagrangian
submanifolds, the austerity condition is, aside from the case of surfaces, much
stronger than minimality. Immediate examples of austere submanifolds are
holomorphic submanifolds and cones of minimal spherical surfaces. A large
class of non-holomorphic submanifolds are the minimal real Kaehler subman-
ifolds; see [DG2] and [DG4].

Among other results, R. Bryant ([Br]; see also [Bo]) described parametri-
cally the austere submanifolds of dimension three locally. These are subman-
ifolds of “rank two”; i.e., the Gauss map has rank two, or equivalently, the
kernel of the second fundamental form has constant codimension two. Observe
that under this condition austerity and minimality are equivalent.

Received March 29, 2000; received in final form June 27, 2000.
2000 Mathematics Subject Classification. 53B25, 53C40.

(©2001 University of Illinois

735



736 MARCOS DAJCZER AND LUIS A. FLORIT

Our main result is an extension of Bryant’s description to rank two austere
submanifolds of arbitrary dimension. Bryant himself noted the similarity be-
tween his parametrization and the Gauss parametrization from [DG1] when
dealing with hypersurfaces. In this paper we provide two alternative “dual”
classifications. One is the polar parametrization, an extension of the Gauss
parametrization for hypersurfaces of rank two, which performs better for sub-
manifolds in low codimension. The other parametrization reduces to that of
Bryant in the three-dimensional case, and we call it the bipolar parametriza-
tion. In most situations, this parametrization is much easier to compute.

In this paper we proceed as follows. We first observe that austere subman-
ifolds of rank two belong to a much broader class of rank two submanifolds
which we call elliptic. Then we construct the above pair of parametrizations
for all elements in this class. Roughly speaking, we prove that locally an
elliptic submanifold is parametrically determined by a (Euclidean or spheri-
cal) associated polar or bipolar elliptic surface and a function on the surface
which satisfies a certain elliptic PDE. Classically, Euclidean elliptic surfaces
are contained in the larger class of surfaces called nets and were studied by
Eisenhart [Ei] in local coordinates. The defining condition is that all coordi-
nate functions satisfy the same differential equation

02 0? 0? 0 0

@4’23 +C—+D—+E—=0,

A v
Oxdy Oy>? ox dy

where A, ..., E are smooth functions defined on an open subset of the plane.
Ellipticity of the surface means, of course, that AC — B? > 0.

Extending a well-known construction from the theory of minimal surfaces,
one may associate to any elliptic surface a sequence of ellipses of curvature.
It turns out that an elliptic submanifold is austere if and only if the ellipse of
curvature of a certain order of the associated (polar or bipolar) elliptic surface
is a circle.

We should point out that the classification of elliptic submanifolds is es-
sentially a problem of a local nature, thus making the parametric approach
satisfactory. In fact, we prove that, up to a Euclidean factor, complete elliptic
submanifolds may have dimension at most three, and we provide an explicit
three dimensional irreducible example. In higher dimensions, we show that
the set of singular points admits a Whitney stratification by elliptic subman-
ifolds with dimensions decreasing by two.

In their paper [HL], Harvey and Lawson proved that the canonical La-
grangian immersion in CV of the normal bundle of a submanifold in RY
is special Lagrangian if and only if the submanifold is austere. Special La-
grangian submanifolds are of interest because they are not only minimal but
absolutely area minimizing. Here we construct new special Lagrangian sub-
manifolds generalizing those of [HL]. In general, these are not normal bundles
over austere submanifolds, and they have quite interesting singularities.
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We conclude the paper with the study of rank two Euclidean submani-
folds which are Kaehler manifolds. We first show that nonflat irreducible real
Kaehler submanifolds of rank two other than surfaces or hypersurfaces (which
are classified in [DG2]) are austere submanifolds. This result is somewhat un-
expected since the hypersurface situation is quite different. Our main result on
this topic is a complete description of the rank two real Kaehler submanifolds
by means of a Weierstrass—type representation which arose from our bipo-
lar parametrization. The parametrization of the holomorphic submanifolds is
rather simple, and is as follows.

Take a holomorphic curve g: U € C — R?™ = C™ defined on a simply
connected domain, and let ¥: U x C*"~! — R?™ n + 1 < 2m, be given by

= dg = d'g
] -
U(z,w) = Re /w Zdz+j§1w]—zj(z) ,

where 1 is a holomorphic function on U. Then ¥ parametrizes a holomorphic
Kaehler submanifold of rank two and, conversely, any such submanifold can
be parametrized in this way, at least locally.

We conclude this introduction by pointing out that minimal submanifolds
of rank two are also interesting in a quite different context. B. Y. Chen
[Cb] showed that any minimal Euclidean submanifold M™ satisfies pointwise
the inequality 2inf K > n(n — 1)s, where K and s denote, respectively, the
sectional and the scalar curvature of M™. Equality, an intrinsic condition,
holds if and only if the minimal submanifold either has rank two or is totally
geodesic; see also [DF].

1. Elliptic submanifolds

After some preliminaries, we introduce the concept of an elliptic subman-
ifold and analyze in detail the consequences of ellipticity on the structure of
the normal bundle. We then turn our attention to the special case of elliptic
surfaces and other related tools in the construction of our parametrizations.

Throughout this paper, we denote by f: M™ — QN e = 0,1, a submani-
fold of either the Euclidean space RY (e = 0) or the unit Euclidean sphere SV
(e = 1) with substantial codimension N — n. The k-th normal space N,f(x)
of f at x € M™ is defined as

N{(z) = span{a} " (X1, ..., Xpy1) : VX0, ..o, Xy € T M},
where a? cTMx - - xTM — T;‘M7 ¢ > 2, is the symmetric tensor called
the ¢-th fundamental form and given by

(X, Xe) = 7 (vg . ..v§3af(X2,X1)) .
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Here, 7! = I and 7’ stands for the projection onto (leeé. . .@N[_l)lﬂTfLM.
We set oz?c = ay, and make the convention that aj: TM — TM is aj = I.
Whenever necessary, we assume that all spaces N, ,{ form subbundles of the
normal bundle. Clearly, this condition is verified along connected components
of an open dense subset of M™.

From now on, we assume that f: M™ — QN has constant rank 2. This
means that the relative nullity subspaces A(z) C T,, M, defined by

Alw) = {X: af(X,Y)=0, VY € T,M},

form a tangent subbundle of codimension two. Recall that the leaves of the
integrable relative nullity distribution are totally geodesic submanifolds in the
ambient QY.

The cone C'f: M™ x Ry — RN*! of a submanifold f: M™ — SV of rank
two has the same rank since the relative nullity leaves of C'f are the cones of
the relative nullity leaves of f. Moreover, one has Nka = N,f, k>1, upto
parallel transport in RV, Thus, it suffices to consider the Euclidean case
since we had restricted ourselves to submanifolds of RY and SV.

The rank condition and the symmetry of the second fundamental form
imply that the first normal spaces of f satisfy dim N 1f < 3. Theorem 1 in [DT]
says that f is a hypersurface in substantial codimension when dim le =1.
On the other hand, one can show that a submanifold with dim /V. if = 3 is either
a Euclidean surface or the cone over a spherical surface up to an Euclidean
factor. In the remaining case dim le = 2, at any point either there exist
linearly independent “conjugate directions” X, X5 € At Jle, ap(Xy, X))+
ar(Xg,X2) =0, or f admits an “asymptotic direction” 0 # X € AJ‘, ie.,
ap(X,X)=0.

PROPOSITION 1. If f: M™ — QN satisfies dim N{ = 2, then dim N{ < 2
forallk > 1.

Proof. If there exists a pair of conjugate directions, we have

o Xy, X1, Y, V) £ o T (X, X, Ve, Vi)
=7 (V5 Vi (0 (X0, X1) £ 0 (Xe, X2)) ) = 0,

and the proof follows easily. The argument in the case of an asymptotic
direction is similar. (]

Given a submanifold f: M"™ — QY with dim le = 2, we analyze the case
of conjugate X1, X5 € At so that ap(X1, X1) 4+ ap(Xa, X2) = 0 everywhere.
The pairs aX; + bX5, aXs F bX; also satisfy the condition and, up to signs,
there are no others. Thus, the almost complex structure J: At S At (J? =
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—1I) given by JX; = X3 and JX5 = —X; is locally well defined up to sign.
Notice that J is orthogonal only when f is minimal.

DEFINITION 2. We call a submanifold f: M" — QY in codimension
N —n > 2 elliptic if it has rank 2 and there is a (necessarily unique up to
sign) almost complex structure J: A" — A™ such that

(1) af(Z,2)+a;(JZ,JZ) =0, VZeA"

Notice that cones of elliptic spherical submanifolds are trivially elliptic.
Moreover, if 7 = 74 denotes the index of the “last” of the normal subbundles
of f,ie.,

(2) TyM=N{ & &N/,
then >/, dim Nif = N — n since f is by assumption substantial. Set
i} T if N—n iseven,
T =
7—1 if N—n isodd.

DEFINITION 3. Given an elliptic submanifold f: M™ — QN C RN*¢ we
call an element 8 € C°(M™,RV*¢) an s-cross section to f, 1 < s < 7*, if
d3(TM)c N/ & ---@ N/,

at each point, up to parallel transport in RV e,

For the sake of simplicity, we now argue with the help of the pair of normal
vector fields €§, €5 € N}/ defined as
k+1 k

—— ——
&=af"(Z,...,2), &=aT(JE2Z,...,2), k>0

Here, Z € Ng := A" stands for an arbitrary fixed local vector field which does
not vanish at any point. Let Vs C st X N!, 0 < s < 7, be the subspace
defined by

(8) Vo= {1, 12) € N x NT+ (i, €) + (2, €5) = 0= (a2, €1) — {1, 63},
and let Py: C°(M™,RN*€) — NJ x N/ be given by

Pu(®) = ((V28) s+ (VazB)xs ) -

LEMMA 4. With the above notations, we have:

(1) Any nonzero element in Vs is a basis of Nf. Moreover, dim V, = 2 if
and only if diim Nf =2, and Vs = 0 if and only if dim N/ = 1.

(ii) Ps(B) € Vs for any s-cross section B to f. In particular, the ten-
sor P‘)’|Nf+1: st+1 — Vs is injective when s < 7 — 1, and thus an

isomorphism for s < 1 — 1.



740 MARCOS DAJCZER AND LUIS A. FLORIT

Proof. From the proof of Proposition 1, we get N,{ = span{¢F, &5}, k >0,
and part (i) follows immediately from this.
By definition,

P = (ﬁzﬂ“)m and &= <§Z£S)Nf . k>0

k+1 k+1

Let us show that
f"_l = — (%szg)]vf and §§+1 = (%szf) ; 5 ki Z 0.

k41 k+1
We prove only the first equation; the second equation follows by a similar
argument. We compute

= k(2 2) = 7MY(VE L VZap(2, 2))
= " (VZ .. Vzas(J2,J2)) = —okt2(J2,J2.2,... 2)

_ (%Zaf;ﬂuz,z,...,Z)) :

f
Nicy1

and the claim follows.
To prove part (ii) we first verify the conditions in (3). We have

(V28,8) = —(V2B8, V287" = (VyzVzB8,67") = (V2V,28,67")
= —(VyzB,Vz&™") = —(V28.8).
Similarly, (V;z4,&) = (Vz0,£35). To conclude the proof observe that Py |N!+1
is injective by the definition of the N,{’s. O

The following result contains several basic facts which will be very useful
throughout the paper.

ProOPOSITION 5.  With the above notations we have, for 1 < s < 7*:
(i) dim N/ =2 and dim NJ < 2; hence 7* = [(N—n)/2].
(ii) The almost complex structure Jy = J on Ng = A" induces an almost
complex structure J, on each NI such that

Jo(Vx€ s = (VxJo1€) yr = (Vux€)ys, VEENL, X AT,
J§71(%X5)st_l = (%Xjﬁf)N!_l = (%ng)NSf_g VEeN!, X e At
(iii) If B: M™ — RN*€ is an s-cross section to f, then
JHBX) s = (BTX) ys, VX EAT
Proof. Part (i) follows from Lemma 4. For part (ii), define J, on N/ by
(4) Joait (Xn, . X)) = af T (I X0, Xop).
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A simple way to see that J; is well defined is to make use of the formula
(5) o/}(Z‘pl,. .., Z¥%) = cos(Zep;) f_l + sin(Xg;) 5_1,

where Z¥ = cos pZ + sin pJ Z. The rest of the argument is straightforward.
Finally, to prove (iii) observe that Vs = {(y, Jip): u € N/} and use that
Ps(8) € Vs by Lemma 4. O

We now examine the important two—dimensional case. Take X € TL
and A € C*°(L?) on an oriented Riemannian manifold L2. Tt is easy to see
that the spherical or Euclidean surface f: L2 — QN C RV*¢, N >4, whose
coordinate functions are any N +¢ linearly independent solutions (with length
one if € = 1) of the linear elliptic differential equation

(6) Au+ X(u) + edu =0,

is elliptic (except possibly at isolated points) with respect to the complex
structure in L2. Conversely, if one considers on a given elliptic surface f: L? —
QY a metric (, ); which makes its almost complex structure .J orthogonal,
condition (1) means that all coordinate functions are solutions of (6). Now
X € TL and A € C>(L?) are, respectively, the constriction of the symmetric
tensors T =7V — V and (, ) with respect to the metric (, ), i.e.,

(7) X =T(e,e) +T(Je,Je) and A= |e||®>+ ||Je|?, |lells =1.

If f is minimal, taking (, ); = (, ), we get X =0 and \ = 2.

Even though s-cross sections have been defined for submanifolds of arbi-
trary dimension, we confine ourselves to the case of surfaces. In this case, a
complete characterization can be obtained as follows.

Given an elliptic surface g: L? — QXY we denote by ¥ the vector space
of classes of functions ¢ € C°°(L?) satisfying (6), where two functions which
differ by a constant are considered to be equivalent only when ¢ = 0. A

straightforward computation shows that (6) takes the form
(8) (Hess, +ep 1) J = J* (Hess,, +ep 1)

with respect to the metric induced by g.

Now let 7,, 1 < r < 77, stand for the vector space of classes of r-cross
sections where two maps are equivalent if, up to a constant, they differ by a
section of N/, @ - @& N . Given [h] € 7., 1 <7 < s < 77, it follows easily
from (ii) in Lemma 4 that there exist unique sections v, € N;’, r+1<j<s,
such that

(9) E:h+77'+1+.+75

satisfies [h] € 75. We show next that all 7,’s are canonically isomorphic to X.

Given [h] € 7, set h = epg + Z + & where ¢ € C*°(L?), Z € T,L and
d € Tgl L. The vanishing of the Tj;L-component of h.Y, Y € TL, says that
epY + VyZ — AJY = 0. In particular, the map (Y, X) — (VyZ, X) has
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to be symmetric. An easy argument, which for ¢ = 1 uses the fact that the
span{g}-component of h,Y also vanishes, gives Z = Vy and

(10) Hess, +ep 1= Af.

The ellipticity of g yields AYJ = J*AJ. We conclude from (8) and (10) that
© satisfies (6).

Now define a linear map Y: 7, — X by Y([h]) = [¢]. Then Y([h]) = 0
is equivalent to (h)r, = Ve = 0. It follows from (10) that AJ = 0; hence
(h)ys = 0. Lemma 4 in turn yields h € N/, @ --- @ NZ. Hence, T is
injective.

Given [p] € %, there exists a unique 7, € Ny such that A = Hess, +epl.
This follows easily from the fact that dim N{ = 2 and (8). Therefore, h* =
epg + Vi + 71 satisfies [h1] € 7. We conclude from (9) that Y is an iso-
morphism. In particular, we have the following recursive procedure for the
construction of the r-cross sections to an elliptic surface.

PROPOSITION 6. Letg: L? — QN be an elliptic surface. Then any r-cross
section, 1 <r < Tg*, can be given as

(11) hy =€epg+Vo+y +71+ -+,

where ¢ satisfies (6) and is unique (up to a constant in the case € = 0),
Yo is any section of Ny @ --- @ NL, v € Ni is the unique solution of
A9 = Hess, +epl and v; € Nf, 2 < j <r, are the unique sections given by
(9). Conversely, any hy, of the form (11) is an r-cross section.

2. Polar surfaces

By a polar surface to an elliptic submanifold f: M™ — QN~¢< C RY we
mean, roughly speaking, a surface whose Gauss map in the Grassmannian
G(2, N) coincides with the last two dimensional subbundle in the splitting (2)
of the normal bundle. We first prove that any elliptic submanifold carries a
polar surface. Then we show that polar surfaces are elliptic with respect to
an almost complex structure naturally induced by f.

Since our work is of local nature, we may assume that an elliptic submani-
fold f is the saturation of a fixed cross section L? C M™ to the relative nullity
foliation. The almost complex structure J on A™ induces an almost complex
structure J on T'L defined by

(12) PJ=JP,

where P: TL — A™ denotes the orthogonal projection.

We claim that all subbundles in the orthogonal sum decomposition (2)
are parallel in the normal connection (and thus parallel in QY ~¢) along A.
Consequently, each IV, ,{ can be viewed as a plane bundle along L2. The claim
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for V. if follows from the Codazzi equation. We have

(Vras(X.Y)) iyt = (Vxag(T,Y)) 10 =0, VT €A,

(viH*
A similar use of the Codazzi equations of higher order (see [Sp]) yields the
same conclusion for the remaining normal subbundles.

DEFINITION 7. A polar surface to an elliptic submanifold f: M"™ — QN—¢

C R¥ is an immersion of a cross section L? (as above) defined as follows:
(i) When N —n — e is odd, then g: L? — SN¥~1 is the spherical image of
a unit normal field spanning the last one dimensional normal bundle,

ie.,
(13) span{g(e)} = N/ ().
(i) When N —n — € is even, then g: L? — R¥ is any surface such that
(14) Tg(:z:)L = N,{(J?)

up to parallel identification in RY.

PROPOSITION 8. Any elliptic submanifold f admits locally a polar surface.
Moreover, in substantial codimension any polar surface g to f is elliptic with
respect to J and, up to parallel identification,

(15) ng:Nf}_s and Js:Jj;_s, V0 <s<7f.

In particular, g is substantial if and only if f has no Euclidean factor.

Proof. In the case of odd codimension the existence of a polar surface fol-
lows from the definition. When N —n is even, endow L? with the orientation
and a Riemannian metric which makes J orientation preserving and orthogo-
nal. Take a nowhere vanishing smooth local section £ € N . which is constant
along A. To prove the first statement, it suffices to show that there exist
linearly independent 1-forms 6,1 so that the differential equation

(16) dg = 06 +J. €

has solution.

Let v and w be duals to 6 and 1), respectively. The integrability condition
for (16) is
(17) A0 +dp JLE— (V3,64 V5, JEE) dV =0,
where dV stands for the volume element of L?. From (ii) in Proposition 5
and (12) we easily see that the vanishing of the fo_l—component of (17) is

equivalent to w = jv, ie,p =—-0o J. In particular, § and v are linearly
independent when 6 # 0. Take a,b € C°°(L?) and a 1-form 6 such that

Vi€ = VoI, € =as+bJE ¢ and dfy =adV.
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The NS ,-component of (17) yields 8 = 6y + dy, where @ is any solution of the
elliptic equation Ay = div#y — b. This proves the first statement.

For the remainder of the proof we use Proposition 5 several times. From
(13) and (14) it follows that fo*_l = Ny. Considering g as a T}-cross section

to f that is constant along A, and using the fact that Ni} is constant along
A, we easily get

(%jyg* jY)Nf = (%prg* JPY)Nf*

f—l
= (%JPYJi;g*PY)Nf* = _(6Y9*Y)Nf~
Tf—l

This shows that g is elliptic. The equality between normal spaces is now clear.
In addition,

(%X‘HF*SONL,S,I = (%JXg)NSngl = (6st€)Nf+la S NTf;_s = N¢,
3

and

Ji;fs(VX@)Nf* = (Vixp)ne = Js(Vxp)ns, @€ fo*—s+1 = NJ 4,
73-s

so (15) follows for all possible values of s. O

REMARK 9. Notice that Proposition 6 gives an alternative proof for the
existence of polar surfaces to elliptic surfaces.

3. The parametrizations

In this section we describe parametrically elliptic submanifolds by means of
two alternative representations, the polar and bipolar parametrizations, each
of which is determined by an elliptic surface and a solution of a certain elliptic
differential equation.

An interesting feature in the case of the polar parametrization, the one we
describe first, is that the differential equation mentioned above is the same as
that defining the elliptic surface.

THEOREM 10.  Given an elliptic surface g: L?> — QN~¢ and 1 < s < Ty
consider the smooth map U: A, — RY defined by
(18) () =h(z) +6, d€A(z),
where Ag := NfH O P qu and h is any s-cross section to g. Then, at
regular points, M™ = W(Ay) is an elliptic submanifold with polar surface g.

Conversely, any elliptic submanifold f: M™ — RN without local Euclidean
factor admits a local parametrization (18), where g is a polar surface to f.

Proof. We first prove the direct statement. Since h is an s-cross section to
g, it follows that Te(,yM = A,_1(x) and that Ag(e(y)) = As(z). It remains to
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show that W is elliptic. For any s-cross section 8 to g and X € T'L we have,

by Proposition 5,
(%JxﬁJXﬂ)Nil = (ﬁJX (ﬁJXﬁ)Nf) - <§JXJ; (ﬁxﬂ)J\ﬁ'?)N;"_1

= (¥x¥x0)

g9
Ns—l

g
Ns—l

For a local section £ € A, and Y € T, L, set Z = (%y(h—i—f))Ng(z) € Tem)M.
Since h + £ is an s-cross section to g, we have

w(2.2)&) = (Vv (h+9) == (Vo Vur(h+9)

a—1(T) s-1(2)
= —Oz\p(J:,Z, J;?Z)(fw)a

and the ellipticity of ¥ follows.

For the converse, take a polar surface g: L? — QN~¢ to f. Since f has no
Euclidean factor, g is substantial, and hence elliptic. From Proposition 8 we
have Ay = AT‘; and TM = AT;_l along L2. Thus, the cross section h := f|;2
is a Tf-cross section to g. O

Observe that picking a different 4o in (11) only results in a reparametriza-
tion of W(A,). Hence, it is convenient to take 9 = 0 when using the recursive
procedure from Proposition 6 to generate s-cross sections. By doing this one
can see why the polar parametrization can be more effective for submanifolds
in low codimension. For instance, in codimension two it suffices to take 1-
cross sections of the form h, = Vi + 7, where v € Ny is unique satisfying
Ag = Hess,, for a given solution ¢ of (6).

Our next goal is to introduce the bipolar parametrization, but we first
discuss two additional concepts.

DEFINITION 11. We define a bipolar surface to an elliptic submanifold f
to be any polar surface to a polar surface to f.

Notice that the only bipolar surface to an elliptic spherical surface is the
surface itself. When the elliptic surface is Euclidean, the bipolar surfaces are
all surfaces with the same Gauss map.

DEFINITION 12.  Given an elliptic surface g: L? — QY and 0 < s < 7, — 1,
we call dual s-cross section to g any element heC> (L2, RN*¢) satisfying at

each point R
dh (TL) C e span{g} ® N @ --- & N7.

Notice that a dual 0-cross section to an elliptic surface in Euclidean space
is just a bipolar surface whose nature we discussed above. The terminology
is justified by the following observation.
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PROPOSITION 13. Let g: L2 — QY be an elliptic surface with polar surface
g. A dual s-cross section to g is just a ([N/2]—s—1)-cross section to §.

Proof. From (i) in Proposition 5 we have 7; = 77 = [N/2] — 1, and the

proof follows using Proposition 8. O

The exact dual to the polar parametrization is as follows.

THEOREM 10’. Given an elliptic surface g: L? — Qév_e and 0 < s <
7, — 1, consider the smooth map W: As — RN defined by

(19) U(6) = h(z)+9, 6€A(a),
where Ny = ¢ span{g} ® Ny @ --- ® NY_, and h is any dual s-cross section

S

~

to g. Then, at reqular points, M = W(Ay) is an elliptic submanifold with
bipolar surface g. Conversely, any elliptic submanifold f: M™ — RN without
local Euclidean factor admits a local parametrization (19), where g is a bipolar
surface to f.

Proof. The result follows from Theorem 10 and Propositions 8 and 13. O

The above result gives a rather simple and easy to compute parametriza-
tion. In particular, there is no need to go through complicate recursive proce-
dures in order to determine cross sections to the elliptic surface or subbundles
in the decomposition of its normal bundle.

Endow a simply connected elliptic g: L? — QN ¢ with a metric (, ) ; which
makes J orthogonal. Now consider the linear second order elliptic operator

(20) L(p) == Ap — X(p) + (eA — div X)p,
where X € TL, A € C*®(L?) are as in (7), and let ¢ € C°(L?) satisfy
L(p) = 0. If e = 0, take § € C°°(L?) such that df = (dp — pX*) o J. Then
dh:{dgo(ﬁl—l—goJ) if e =0,

((dp —oX*)g+@dg)oJ ife=1,
is a completely integrable first order system of PDEs.

(21)

THEOREM 14.  Consider a simply connected elliptic surface g: L* — QN~¢
and a function ¢ € C>=(L?) satisfying L(¢) = 0. Let h: L?> — RN be the
solution of (21). Then, at regular points, the map ¥: L? x R?ste¢ — RN
defined by

- &g g
o) =he) + tagle) + 3 {1 5o+ 1 520

for0 < s < [(N—¢)/2]—2 and any coordinate system (u,v) for L?, parametrizes
an elliptic submanifold. Conversely, any elliptic submanifold without local Eu-
clidean factor can be locally parametrized in this way.
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Proof. From Lemma 4 we see easily that the vectors
(3j+19/3uj5“)N;77 (5j+19/auj+1)zv].97 0<j<7,,

form a basis of N jg for any coordinate system. On the other hand, in (19) we

may take h to be a dual 0-cross section, without loss of generality. In fact,
by (9) and Proposition 13 any given dual s-cross section to g differs from an
associated (and essentially unique) dual 0-cross section to g by an element
Yo € As.

It remains to show that any dual O-cross section to g is locally of the form
h+ epug, where h is a solution of (21) and u € C*°(L?). In fact, one must have
a 1-form ¢ and a section S € End (T'L) such that

dh =€y g+dgos§.
The integrability condition reduces to the equations
a(Y,82) = «(SY, Z),
(VyS)Z = (Vz9)Y =e(@(Y)Z - (2)Y),
and an additional equation for e = 1,
(Y, Z2)=(SZ,Y) - (SY,Z), VY, ZeTL.

The first equation is equivalent to S = 6 + ¢.J for some 6, € C(L?). Tt is
now easy to see that the other equations become

(22) do = (dp — pX*) o J + €,
and, when € = 1,
(23) div iy oJ + pA=0.

The integrability condition for (22) when ¢ = 0 is (20). On the other hand,
if e =1 we can take 6 = 0 by replacing i by h — 6g. Then (20) follows from
(22) and (23). O

REMARK 15. The Gauss parametrization for hypersurfaces is due to Sbrana
[Sb] and was rediscovered in [DG1]. On the other hand, the parametrization
used by Bryant and Borisenko in the case of hypersurfaces M3 C R* goes
back to Schur and Bianchi [Bil].

4. The singularities

In this section we first show that the classification of complete elliptic
submanifolds reduces to the three dimensional case, and we provide a complete
example in this case. We then describe the structure of the singular set of
elliptic submanifolds of higher dimensions.
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THEOREM 16. Let f: M™ — RY be a complete submanifold that is elliptic
on a dense subset of M™. Then each connected component of an open dense
subset of M™ is isometric to L> x R"3 and f splits accordingly. Moreover,
the splitting is global if M™ is simply connected and does not contain an open
subset L? x R"2,

Proof. The minimum of the dimensions of the relative nullity subspaces of
fis vp = n — 2. Moreover, dim le < 2 everywhere. It follows that the open
subsets Uy = {z € M™: v(z) = 1o} and Uy = {x € M™: dim N{ (z) = 2} are
also dense. This clearly implies that Uy = {x € M™: f satisfies (1)} is open.
Hence, the dense subset M of M™ where f is elliptic is M = Uo NU; NU and
is open.

By a standard result the leaves of minimum relative nullity are complete
when M™ is complete. We recall next some basic facts about the intrinsic
splitting tensor C': A x AT — A" which is defined as

CTX = 7(VXT)AJ_.
From the Codazzi equation, we get

Vrde = AeCr+ AgL,, VTEA, €€ T; M.

In particular,

(24) AeCr = Ch A
Moreover, the Codazzi equation also yields
(25) VSCR:CRCS+CVSR, VS, R e A.

LEMMA 17 ([DG3]). The following statements hold along Uy:
(i) The codimension of ker C in A satisfies codimker C' < 1.
(ii) For any S € A(x) the only possible real eigenvalue of Cs is 0, and
ker Cs is parallel along the velocity field S of the line x +tS.
(iii) Let T be a unit vector field perpendicular to ker C' on the subsetU C Uy
defined by U = {x € Uy: C(x) # 0}. If Crp is invertible and the leaves
of A are complete along U, then U = L3 x R"~3 and f splits.

Returning to the proof of the theorem, we first show that
(26) Cg € span{l,J}, VS e€A.

To see this, observe that condition (1) may be stated as A¢J = J*Ag, for all
€ € Tj M. We easily get (26) using (24) and the fact that dim N{ = 2.

We now follow closely the arguments in the proof of Proposition 2.1 in
[DG3]. Consider the disjoint union Uy = My U My U My, where M is the
closed subset where C = 0 and Ms is the subset where Cr is inverti@g. By
(ii) in Lemma 17, each M; is a union of complete leaves of A. Take z € M NU.
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From (ii) in Lemma 17 and (26) it follows that Cr(x) has no real eigenvalues,
ie., M C My U My. Hence, int(My) U Mz is dense since M is open. By
the de Rham decomposition theorem each connected component of int (M)
is a product L? x R"~2 where f splits. Moreover, by (iii) in Lemma 17 each
component of M, is a product L3 x R"3 on which f splits. This concludes
the proof. O

COROLLARY 18. Let f: M™ — RN be a complete elliptic submanifold.
Then M™ = L3 x R"~3 and f splits accordingly.

Proof. Consider the open subsets U; C M™ where f splits a R"~2 factor
and Uy C M™ along which f splits a R"~3 factor but not a R"~2 factor.
Then a polar surface to f has substantial codimension N —n + 2 on U; and
N —n + 3 on Us,. Since the zeroes of a solution of an elliptic equation are
isolated, it follows that U; and Us cannot have a common boundary point,
and this concludes the proof. O

ExAMPLE 19. The following example due to F. Zheng (private communi-
cation) is a complete irreducible 3-dimensional submanifold which is elliptic
everywhere. Consider the graph f: R?® — R® given by

Fw,y,2) = (z I ki 2“9”2?/2>

1+ 22 ’ 1+ 22
It is easy to verify that
(=y +a2)fo + (@ +y2)fy + (1+2°)f. € Az, y,2).

Since fro = —fyy & TfR3, we have af¢(fs, fo) + af(fy, fy) = 0 and the
sectional curvature satisfies K(fz, fy) < 0. In particular, f has rank 2 at
all points. Finally, since TfR?’ @ span{ foz, foy} = R® everywhere, we obtain

dim N{ = 2.

By an argument already given in the proof of Theorem 14, we may restrict
h in Theorem 10 to be a 7, -cross section, without loss of generality. Then
the singular set of ¥ becomes Agy; C Ag. In fact, from (ii) in Lemma 4 we
have Im ¥, (8,) = As_1(z) for any §, € A; \ A1 and Im ¥, (§,) = As(z) for

0z € Asy1. We thus get a Whitney stratification
(27) As DAs1 D A2 D - D Ays

of the singular set of ¥, and each image W(A;),s +1 < j < 77, is also an
elliptic submanifold.

Given an elliptic submanifold f: M" — RN, n > 4, without Euclidean
factor, let M™ be the extension of f(M™) in RY obtained by extending each
leaf of relative nullity of f to a complete affine Euclidean space R 2. Lo-
cally, this extension is obtained in an obvious way in terms of a polar (or
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bipolar) parametrization. From our next result, we conclude that the singu-
lar set of M™ is an elliptic submanifold in RY of dimension n — 2 with similar
singularities.

PROPOSITION 20. Let W: A, — RYN be an elliptic submanifold of dimen-
sionn > 4 given in terms of the polar parametrization by the use of a 7y -cross
section to a polar surface g. Then VU(Agy1) is the singular set of W(Ay).

Proof. Since f has no local Euclidean factor and n > 4, we obtain

dim N§N7n+2)/2] = 2. This is equivalent to codimker C = 2. We conclude
from (26) that
(28) span{Cr : T € A} = span{I, J}.

Hence, D(z) = {S € A(x) : Cs(z) = I} is a codimension 2 affine subspace
of A(z) at any x € L?. By (25), the operator Cg(t) for S € D(z) satisfies
the Ricatti equation VsCs = C% along the line z + ¢S. Hence, Cs(t) =
Cs(0)(I —tCs(0))~! is singular, precisely, at t = 1. Thus, the submanifold is
singular at 4+ .5. We conclude from (27) that the set of singular points forms
an affine codimension 2 subbundle of the nullity bundle. O

5. Austere and special Lagrangian submanifolds

In this section we give a description of the austere elliptic submanifolds. In
particular, this leads to the construction of a new family of special Lagrangian

submanifolds with interesting singularities.
DEFINITION 21. Given an elliptic submanifold f: M"™ — QY we define

the kth-order curvature ellipse 5,{(:5) C N,{(w), 0<k<r7}; atx€M"as
Sg(x) = {al;Jrl(Z“”, o Z¥): Z¥ =cospZ +sinpJZ and ¢ € [0,27)},
where Z € A™ () has unit length and satisfies (Z, JZ) = 0.

It follows from (5) that Eg(x) is, in fact, an ellipse. Notice that Sg(x) is
the same for different points in a leaf of relative nullity.

THEOREM 22. Let f: M™ — RN be an elliptic submanifold with polar
surface g and bipolar surface §. Then,
f is austere <— g[%N—n)/2] s a circle < €[§(n_2)/2] s a circle.
Proof. Observe first that f is minimal if and only if Sg is a circle. On the
other hand, from (4) and (5) we have
(29) 5,5 (z) is a circle <= J is orthogonal

for all k. The result now follows from Proposition 8. O
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The bipolar parametrization in the minimal case extends that given by
Bryant [Br] to higher dimensions. Observe that the three dimensional situa-
tion considered by Bryant is quite special in the sense that the bipolar surface
has to be minimal.

REMARKS 23. (1) In the following section we discuss an explicit recursive
procedure which yields the (necessarily minimal) Euclidean surfaces whose
ellipses of curvature are all circles up to an arbitrary order. In particular, the
polar surface to such a surface has circular curvature ellipses from some order
on.

(2) It was shown in [DG1] that any simply connected minimal submanifold
of rank 2 admits a 1-parameter associated family of isometric deformations
which are also minimal.

It is easy to see that the canonical immersion into CN = RN @ RY of the
normal bundle of a submanifold f: M™ — R given by

F(0.) = (f(2),02), 0 € Ty M,

is Lagrangian with respect to the complex structure J(X,Y) = (=Y, X).
Moreover, it was proved in [HL] that F is special Lagrangian if and only if f
is austere. We parametrize the special Lagrangian immersions associated to
our austere submanifolds using the above results and notations.

Given an elliptic surface g with €9 a circle, set XN = (N9)* = A, & A,
and define maps @, d: XN - N as

(6, 4 65) = (h(x) + 64,0,) and (8, + 6,) = (65, A(x) + 8,),

where h and h are, respectively, a 7 -cross section and dual O-cross section
to g. These are special Lagrangian submanifolds which generalize those of [HL)]
and [Bo]. In fact, they belong to a more general class of special Lagrangian
immersions, to be discussed next, which in general are not normal subbundles
over austere submanifolds. Moreover, they have rank 4 and are ruled by

Euclidean spaces of codimension 2.

THEOREM 24. With the above notations, the map o XN — CN given by
(30) B(8; +82) = (h(x) + 6, h(w) +b.)

is special Lagrangian at regular points. Moreover, the set of singular points of
D is A1 @D As—1, which has a Whitney stratification

XéN D) As+1 ) stl D) A8+2 @ st2 Do
Proof. Being special Lagrangian is a condition on the Gauss map only; see

[HL]. Since trivially ® and ® have the same Gauss map, the first statement
follows. The remainder of the proof is straightforward. O
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6. Elliptic real Kaehler submanifolds

In this section we first show that all rank two Euclidean isometric immer-
sions of nonflat irreducible Kaehler manifolds, other than surfaces, are either
hypersurfaces or austere submanifolds. We then completely describe the latter
submanifolds by means of a Weierstrass—type representation.

THEOREM 25. Let f: M?" — RN, n > 2, N —2n > 2, be a locally
substantial rank two isometric immersion of a nowhere flat Kaehler manifold
without local Fuclidean factor. Then f is austere.

Proof. Let R and J’ denote the curvature tensor and the Kaehler structure
of M?". By our rank assumption, the relative nullity A of f coincides with
the nullity of R. From the identity J'o R(X,Y) = R(X,Y)oJ’ and the Gauss
equation, we obtain that A and A™ are J'-invariant. We only need to show
that M?" is elliptic with respect to the Kaehler structure J'| AL on a dense

subset of M?2". We have
(31) Cpr = J/CT, VT € A.

In fact, Cjir X = _(VXJ/T)AJ_ = —J/(VXT)AJ_ = J'CrX, proving (31) as
desired.

Let U C M?" be an open subset where le has constant dimension. If
dim N{ = 1, we obtain from Theorem 1 in [DT] that f(U) is a hypersurface
in substantial codimension, which has been ruled out. Suppose now that
dim N/ = 3. From (24), we easily get span{Cy : T € A} C span{I}. This
and (31) yield C' = 0, a contradiction to the assumption on Euclidean factors.
Thus, we have dim le = 2 on an open dense subset of M?". In particular,
using the fact that C' # 0, (24) and (31), we easily see that, at each point,
span{Cr : T € A} is a plane in the vector space of 2 x 2 real matrices. Using
again dim le = 2, we easily deduce that there is T € A such that Cr = I.
Hence, Cyr = J'| , 1 by (31). We conclude the proof using (24). O

It was shown in [DR] that any minimal immersion of a Kaehler manifold in
Euclidean space is pluriharmonic. If it is already non-holomorphic, then it can
be made the real part of a holomorphic isometric immersion, its holomorphic
representative, and admits an associated 1-parameter family of non-congruent
isometric deformations; see [DG2]. There exist many hypersurfaces of rank
2 and sectional curvature K < 0, which are Kaehler manifolds but are not
minimal; cf. [DG2]. This is possible because (28) does not necessarily hold
when first normal spaces are one-dimensional.

Following [DG4], we call an elliptic surface m-isotropic when the ellipses
of curvature up to order m are circles. The holomorphic curves in C? are
precisely the (p — 1)-isotropic surfaces in R??; cf. [La] or [Cc]. We have the
following characterization.
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PROPOSITION 26. Let f: M?* — RN, n > 2, be an elliptic submanifold
without local Euclidean factor. Then M?" is Kaehler if and only if a bipolar
surface § to f is (n—1)-isotropic. Moreover, f is holomorphic if and only if
g is a holomorphic curve.

Proof. To prove the converse in the first statement, we consider a polar sur-
face g: L? — RN to f. Foreach x € L?, set Q, = Nf; (z)®---®NZ (z). Hence,

Qy = Ty(z)M up to parallel transport along RY. Define J’ € End(£2,) by
J/:']T; @...@Jw.

Because tangents spaces to f(M) are constant along the relative nullity leaves,
we may extend J’ to the whole space M?" by parallel transport. We have
J'? = —1 and, by the hypothesis on the curvature ellipses and (29), J' is
orthogonal. Take { € N/ and X € T'L. Using Proposition 5 and the orthog-
onality of J', we get

VxJ'6 = =(VxTi&)ns_, + Tk(VxEng + Jt1(VxEny = J'Vx&.

Since J’ was extended to M™ by parallel transport, it is easy to see that
VJ' =0, ie., (M?" J') is Kaehler.
We now prove the direct statement. At each point, define

Aps1 = {(V2X) Lt XEALZEAT), k>0,

(Ate-eay)

The identification A™ = NY. from Proposition 8 easily yields
7

Ak:Nf;M, 0<k<n-1

Since J = +J/| Al by Theorem 25 and f has no Euclidean factor, using

Proposition 5 and the parallelism of .J/, we easily see that +J' = jT}« ®- - ~@lg.
This completes the proof of the first statement. The second statement in the
proposition follows from similar arguments. O

A complete description of m-isotropic Euclidean surfaces was given in
[DG4] using results due to C. C. Chen [Cc|, and is as follows. On a simply
connected domain U C C, a minimal surface §: U — R has the Weierstrass
representation

z
(32) = Re / iz,

where the Gauss map v: U — CV of § is given by

=2 (=% +6),20),
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with 3 holomorphic and ¢: U — C¥~2 meromorphic; see [HO] for details.
From [Cc], we have that § is m-isotropic if and only if

(¢/a¢/) == (¢m7¢m) = 07

where ( , ) stands for the standard symmetric inner product in CN=2. To
construct any m-isotropic surface, start with a nonzero holomorphic

ap: U — CN—2(m+1)
Assuming that a,.: U — C2"tP, 0 < r < m, has been defined already, set
Opry1 = 67"+1 (1 - 72”2(1 + d)z)a 2¢7") )

where ¢, = [ “aydz and B,41 # 0 is any holomorphic function. Then the
elliptic surface with Gauss map v = ay,, i.e., § = Re ¢,,, is m-isotropic.
Given a minimal surface §: U — RY with Gauss map 7, it is immediate that
the non-constant dual O-cross sections to § are the minimal surfaces which
can be represented as

z
(33) h= Re/ Yydz,

where 1) # 0 is an arbitrary holomorphic function on U. We have the following
result.

THEOREM 27.  Consider a (n—1)-isotropic surface §: U — RN with Gauss
map vy defined on a simply connected domain U C C, and let v be a holomor-
phic function on U. Then U: U x C"~' — RN given by

z n—2 d]’y
(34) U(z,w) = Re / Pydz + jgo wj+1@(z)

18, at reqular points, a Kaehler austere submanifold of rank two with bipolar
surface §. Conversely, any real Kaehler submanifold f: M?** — RN of rank
two has locally a Weierstrass representation (34).

Proof. This result follows from Theorem 14, Proposition 26 and (33). O

REMARKS 28. (1) The elements in the Whitney stratification (27) are now
elliptic Kaehler submanifolds.

(2) The parametrization (34) when starting with just a minimal surface
yields a large family of elliptic submanifolds.
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