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ON THE BARBAN-DAVENPORT-HALBERSTAM THEOREM:
XVIII

C. HOOLEY

Abstract. We consider sequences, of positive density C, of positive
integers s that are postulated to have the property that

S(x; a, k) =
∑
s≤x

s≡a,mod k

1 = f(a, k)x+O
(
x log−A x

)
for any positive constant A. Let

G(x,Q) =
∑
k≤Q

∑
0<a≤k

E2(x; a, k) (Q ≤ x),

where E(x; a, k) = S(x; a, k)− f(a, k)x.

Then previously we had shewn that

G(x,Q) = D{1 + o(1)}x2 +O
(
x2 log−A x

)
(Q/x→ 0).

When D = 0, many particular examples of which are known, this for-

mula supplies little information about G(x,Q) and about how small it
can be. The first result obtained in this paper is the lower bound

G(x;Q) ≥
1

12
{3C − 2C2 + min2(C, 1− C) + o(1)}Q2 +O(x2 log−A x)

that is best possible when C = 1
2

or 1.
The other subject of the paper is the sum

Gλ(x,Q) =
∑
k≤Q

∑
0<a≤λk

E2(x; a, k) (λ < 1)

and its connection with G(x,Q). If G(x,Q)/Q2 be bounded, it is demon-
strated that the expected limiting equality ofGλ(x,Q) and λG(x,Q) can
be false. On the other hand, it is shewn that this equality holds in the

appropriate sense for any sequence of Q for which G(x,Q)/Q2 →∞.
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1. Introduction

In articles1 III,IX,X,XIV of this series and also in [3] we revealed various
properties related to the subject of the title that were possessed by strictly
increasing sequences (of positive density) of positive integers s obeying a pri-
mary condition of the type

S(x; a, k) =
∑
s≤x

s≡a,mod k

1 = f(a, k)x+O{∆k(x)}(1)

for values of k that may be small compared with x. Save in XIV where the
consequences of sharp forms of ∆k(x) were explored, the remainder term was
taken to be of the form O(x log−A x) for any positive constant A in order to
provide an environment analogous to that furnished by the prime numbers in
the other members of the series. Hence, since all ancillary conditions previ-
ously imposed were shewn in X to be superfluous in the deduction of the main
conclusions reached, we resume our researches on the sequences s under the
sole assumption that they conform to

Criterion V. For any positive constant A,

S(x; a, k) = f(a, k)x+O
(
x log−A x

)
,

where

f(0, 1) = C > 0.(2)

Before we describe our present intentions, it is necessary to look back and
briefly recapitulate the main findings in X, although the reader is referred to
that paper, IX, and parts of XIV—or to our survey [8]—for a fuller appreci-
ation of what has gone before. The first conclusion in X was that, if

E(x; a, k) = S(x; a, k)− f(a, k)x(3)

and

G(x,Q) =
∑
k≤Q

∑
0<a≤k

E2(x; a, k) =
∑
k≤Q

H(x, k), say,(4)

then under Criterion V the sequence s possesses a theorem of Barban-Daven-
port-Halberstam type that asserts that

G(x,Q) = O(Qx) +O
(
x2 log−A x

)
(Q ≤ x)(5)

for any positive constant A; moreover it is then seen that in fact (5) and
Criterion V are equivalent because |E(x; a, k)| ≤ G

1
2 (x,Q) for k ≤ Q <

1We refer to these articles by the Roman numerals indicating their positions in the series;
their full particulars are given in the list of references at the end.
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x log−A x. From this and a further analytical argument, it was then shewn
that the upper bound could be replaced by the more exact formula

G(x,Q) = D1{1 + o(1)}Qx+O
(
x2 log−A x

)
(Q/x→ 0)(6)

of so called Barban-Montgomery type. There thus emerged two classes of
sequences answering to the non-vanishing or vanishing of D1, it having been
shewn in IX by special examples that each actually existed. Although it is only
for sequences in the first class that a genuine asymptotic formula immediately
arises, many familiar sequences such as that of the square-free numbers (see,
for example, Croft [1]) belong to the second class and can be shewn to possess
formulae in which the formal main term in (6) is superseded by an expression
such as

D2{1 + o(1)}Q1+αx1−α (0 < α < 1)

with D2 > 0. In fact, such replacement formulae are always available when
f(a, k) has a sufficiently smooth and predictable behaviour, as was demon-
strated by Vaughan [11] for a variety of sequences for which was postulated
the asymptotic behaviour of a sum indirectly containing this function.

Even so, the occurrence of an explicit asymptotic formula for G(x,Q) for
sequences in the second class may be atypical because it was found in XIV
that there are sequences in this class for which the term o(1) in (6) fluctuates
between O(Q2−εxε) and Q1+εx1−ε as x → ∞ and Q/x varies. Thus, the
goal of obtaining an asymptotic formula being in general illusory, we shall
now follow the only credible alternative course of seeking a lower bound for
G(x,Q) when Q is not too small compared with x and shall shew that what we
obtain is inextricably connected with our second theme to be shortly unfolded.
This bound is reminiscent of Roth’s well known lower bound in [10] (see, also,
Montgomery [9]) but is not directly connected with it.

We prove in Theorem 1 below that, for any sequence of density C > 0
answering to Criterion V, we have

G(x,Q) ≥ 1
12
{3C − 2C2 −min2(C, 1− C) + o(1)}Q2 +O

(
x2 log−A x

)
(Q/x→ 0)

and then shew that for C = 1
2 and 1 this is best possible in the sense that

there is actually some sequence of such density for which the sign of equality
may replace that of inequality. For other values of C it seems likely that
the bound is capable of improvement; this, however, is as far as we take this
particular matter apart from some associated results, since we have yet to
evolve a fully satisfactory treatment and since we are anxious to proceed to
our second subject.
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We also take the already verified formula

G(x,Q) =
1
12
{1 + o(1)}Q2 + o(x2 log−A x)

for the natural numbers and proceed to sketch a direct and simple proof of
this to serve as a templet for the production of a counter example in future
speculations. These concern such sums as

Gλ(x,Q) =
∑
k≤Q

∑
0<a≤λk

E2(x; a, k) =
∑
k≤Q

Hλ(x, k)(7)

for λ ≤ 1 and the not unnatural conjective that

Gλ(x,Q) ∼ λG(x,Q)

over suitable domains of x,Q, and λ. But, in the special case C = 1, our
alternative method of calculating G(x,Q) demonstrates that

Gλ(x,Q) ∼ 1
12
λ(2− 3λ+ 2λ2)Q2

so that there must be some limit to our expectations. Actually, as we shall
see below, the abatement required is very slight because all we shall need is
that

G(x,Q)/Q2 →∞ .(8)

In the meanwhile, however, an exact interpretation of the meaning to be
attached to this condition will have been given in a prior discussion, which
amongst other things will shew that its failure to hold is tantamount to the
existence of an asymptotic formula of the type

G(x,Q) = D2{1 + o(1)}Q2 +O
(
x2 log−A x

)
.(9)

These remarks are the prelude to our second theme about whether the pat-
tern of the distribution of S(x; a, k)—or, at least, its dispersion—be affected
by a restriction in the residue classes, mod k, that are to be counted. We thus
follow the precedent set in XI where we investigated the parallel question for
primes and the effect on the Barban-Montgomery formula by a curtailment
of the reduced residue classes appearing within it. Yet, although the basic
structure of the already complicated method in XI is retained, the proof here
is much more taxing than before because (i) we need to estimate some sums
whose antecedents in XI had obvious values, (ii) the generality of f(a, k) as
compared with the specificity of 1/φ(k) in XI places more demands on the
analysis, and (iii ) there is a need to produce sharp remainder terms when
D1 = 0 to cater for the possibility that G(x,Q) may be very small compared
with Qx. Indeed, to dilate on the last point, some care is required in order
that Gλ(x,Q), or its precursors in the analysis, can be realistically likened to
a multiple of the elusively sized G(x,Q) whenever condition (8) is imposed.
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There are places where the exposition might have been slightly shortened by
citing extracts from XI. But the overall treatment is sufficiently complicated
for such a procedure to be a serious distraction for the reader, and therefore,
apart from summarizing some of the results from X and XIV in a preface,
we have produced a self-contained account in which we indicate from time to
time the similarities and dissimilarities of our exposition to that of XI.

We should remark that we shall proceed indirectly to the sum Gλ(x,Q) by
way of an intermediate theorem for sums of the type

G∗(x, u;Q1, Q2) =
∑

Q1<k≤Q2

k
∑

0<a≤u

E2(x; a, k),

which are themselves associated with situations where there is a truncation
in the range of residue classes. In the same way, we would treat sums of the
type

G∗(x, u1, u2;Q1, Q2) = G∗(x, u2;Q1, Q2)−G∗(x, u1;Q1, Q2),

whose assessments could lead to results on the sums

Gλ,µ(x,Q) =
∑
k≤Q

∑
µk<a≤(λ+µ)k

E2(x; a, k)(10)

that we mention at the end.
Finally, the weak form of the remainder term in Criterion V—chosen, as

said before, for comparability with the prime number theorem for arithmetical
progressions—limits the usefulness of our results for large moduli k to those
values that exceed x log−A x for any chosen large A. Yet, if we sharpen our
hypothesis on the remainder term as in XIV or if we consider known sequences
for which the remainder term is definitely smaller, then we can obtain our
results with a smaller lower bound for k.

2. Notation

Owing to the length of the memoir it is not feasible to lay down a completely
consistent notation. But the meaning of all symbols should be clear from their
context in view of the following guide.

The letters (adorned or unadorned with marks such as superscripts) a, b, c,
l, r, and s are usually non-negative integers, although l is normally positive; k,
d and m are positive integers; y, u, v, w are positive numbers; x is a positive
number to be regarded as tending to infinity, all stated inequalities being valid
when it takes sufficiently large values.

The letters Bi are specific constants whose values are immaterial to the
investigation; A,A1 are any positive absolute constants that need not be con-
nected, while A2, A3, . . . are positive absolute constants whose association
with each other and with A,A1 will be plain from the text; ε is an arbitrarily
small number that is not necessarily the same on each occasion.
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The constants implied by the O-notation depend at most on ε and on
those values of A,Ai that are relevant to each occasion. As usual (a, b), [a, b]
respectively denote the positive highest common factor and least common
multiple of a and b when these are defined; d(m) is the number of divisors of
m.

3. Prologue

Assuming throughout that Criterion V is observed, we summarize those
findings of IX,X, and XIV that we shall need in the sequel. First, letting

M(k) =
∑

0<a≤k

f2(a, k)(11)

and defining the function w(a, l) by

f(a, k) =
1
k

∑
l|k

w(a, l) or w(a, l) =
∑
d|l

µ

(
l

d

)
df(a, d)(12)

as in X, (10) and (12), we have

M(k) =
1
k

∑
l|k

N(l) =
1
k

∑
l|k

lal, say,(13)

where initially we know that

N(l) =
∑

0<a≤l

w(a, l)f(a, l)(14)

by X, (16), (17), and (18). But also, as in XIV (22), we have

N(l) =
1
l

∑
0<a≤l

w2(a, l) ≥ 0(15)

and then that the series
∞∑

1=l

N(l) =
∞∑

1=l

1
l

∑
0<a≤l

w2(a, l)(16)

is (absolutely) convergent (see top of p. 6 in X). Moreover, if

F (s) =
∞∑
k=1

M(k)
ks+1

,

then

F (s) = ζ(s+ 1)Φ(s),

where the function

Φ(s) =
∞∑
l=1

al
ls
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is regular for σ > −1 and has a value

Φ(−1) = C1, say,(17)

at s = −1. Next, slightly rephrasing the derivation of the asymptotic formula
in X through IX, we meet the sum

T ∗(u) =
1
2

∑
l<u

(
1− l

u

)2

M(l)(18)

and eventually express G(x,Q) in terms of

I∗(u) = Φ(0) log u+
{

Φ′(0) +
(
γ − 3

2

)
Φ(0)

}
+

Φ(−1)
u

− 2T ∗(u)(19)

by means of the formula

G(x,Q) = {C − Φ(−1)}Qx+ x2I∗(x/Q) +O
(
x2 log−A x

)
(20)

= (C − C1)Qx+ x2I∗(x/Q) +O
(
x2 log−A x

)
.

From this then follows (6) with

D1 = C − C1 ≥ 0(21)

because it was shewn in IX (argument there used is valid for generalized case
in X) that

I∗(u) = o(1/u)(22)

as u→∞ (in XIV a better estimate was derived on the assumption of sharper
bounds for 4k(x) in (1)).

We shall also need the trivial and related estimates

S(x; a, k) = O(x/k) +O(1), f(a, k) = O(1/k)(23)

that represent a slight extension of those stated in X (8). To these, for d|k,
we then add the fresh and last relation

f(a, d) =
∑

0<λ≤k/d

f(a+ λd, k)(24)

that follows from Criterion V and the equation

S(x; a, d) =
∑

0<λ≤k/d

S(x; a+ λd, k)

after dividing by x and letting x→∞.
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4. Summation formulae and the lower bound for G(x,Q)

Certain summations based on the Euler-Maclaurin formula will be needed
for the production of the lower bound for G(x,Q) and in certain aspects of
the later analysis. In preparation, let us introduce the (weighted) periodic
Bernoulli functions φ1(t), φ2(t), φ3(t) that are, respectively, defined as

1
2
− t′, 1

2
t′ − 1

2
t′2 − 1

12
,

1
4
t′2 − 1

6
t′3 − 1

12
t′ =

1
12
t′(1− t′)(2t′ − 1)

for t′ = t − [t], using the first two of these to state the Euler-Maclaurin sum
formula in the form∑

a≤r≤b

g(r) =
∫ b

a

g(t)dt+ g(b)φ1(b) +
1
2
g(a)− b

a
[g′(t)φ2(t)]

+
∫ b

a

g′′(t)φ2(t)dt

when b exceeds an integer a and g(t) is of an appropriate type. Then, taking

g(t) =
1
t
(v − t)2

in the primary application so that

g′(t) = −v
2

t2
+ 1 and g′′(t) =

2v2

t3
,

we deduce that, for v ≥ 1,

∑
l<v

(v − l)2

l
=
∫ v

1

(v − t)2dt

t
+

1
2

(v − 1)2 +
1
12

(v2 − 1) + 2v2

∫ v

1

φ2(t)dt
t3

(25)

= v2 log v − 2v(v − 1) +
1
2

(v2 − 1) +
1
2

(v − 1)2

+
1
12

(v2 − 1) + 2v2

∫ v

1

φ2(t)dt
t3

= v2 log v − 11
12
v2 + v − 1

12
+ 2v2

∫ v

1

φ2(t)dt
t3

= v2 log v + v2

(
−11

12
+ 2

∫ ∞
1

φ2(t)dt
t3

)
+ v − 1

12
− 2v2

∫ ∞
v

φ2(t)dt
t3

= v2 log v + v2

(
−11

12
+ 2

∫ ∞
1

φ2(t)dt
t3

)
+ v +O(1)
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in view of the preliminary inequality∣∣∣∣∫ ∞
v

φ2(t)dt
t3

∣∣∣∣ < A′
∫ ∞
v

dt

t3
= O

(
1
v2

)
(26)

that we shall shortly need to improve. But, since∑
l≤w

1
l

= logw + γ +O

(
1
w

)
for w ≥ 1, we also know through a double integration that∑

l<v

(v − l)2

l
= v2 log v +

(
γ − 3

2

)
v2 +O(v log 2v),

which when compared with the last line of (25) shews first that

− 11
12

+ 2
∫ ∞

1

φ2(t)dt
t3

= γ − 3
2

and then that∑
l<v

(v − l)2

l
= v2 log v +

(
γ − 3

2

)
v2 + v − 1

12
− 2v2

∫ ∞
v

φ2(t)dt
t3

(27)

= v2 log v +
(
γ − 3

2

)
v2 + v − 1

12
− 2v2K1(v)

= v2 log v +
(
γ − 3

2

)
v2 + v −K2(v), say.

To harness this equation to the method of bounding G(x,Q) from below
we need to shew that

K2(v) >
1
24

> 0.(28)

Now it is readily seen that the maxima and minima of φ3(t) occur when

t ≡ 1
2
±
√

3
6
,mod 1,

with the implication that

|φ3(t)| ≤ 1
12

(
1
2

+
√

3
6

)(
1
2
−
√

3
6

) √
3

3
=

1
12

(
1
4
− 1

12

) √
3

3
=

1
72

√
3

3
.

Placed in the equation

K1(v) =

∞[
v

φ3(t)
t3

]
+ 3

∫ ∞
v

φ3(t)dt
t4

obtained by partial integration, this inequality gives

K1(v) > − 1
36

√
3

3
1
v3

> − 1
54v3

> − 1
48v3
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with the required result that

K2(v) =
1
12

+ 2v2K1(v) >
1
12
− 1

24
=

1
24

for v ≥ 1; also, of course

K2(v) =
1
12

+ o(1)(29)

as v →∞.
Passing on to the question of a lower bound for G(x,Q) when Q = o(x), we

need only consider the case where D1 = 0 because otherwise the asymptotic
formula (6) at once supplies, for any positive constant D′1, an inequality

G(x,Q) = {D1 + o(1)}Qx+O
(
x2 log−A x

)
> D′1Q

2 +O
(
x2 log−A x

)
(30)

of the type we seek. In the situation we are now placed where C = C1, the
formula (20) takes the form

G(x,Q) = x2I∗(x/Q) +O
(
x2 log−A x

)
,(31)

where we remind ourselves that I∗(u) is given by formula (19) for u ≥ 1. Found
by a contour integration method, the latter formula is then to be utilized by
alternatively evaluating the sum

2u2T ∗(u) =
∑
n≤u

(u− n)2M(n)

by means of (13) and (27). Accordingly, we find that

2u2T ∗(u) =
∑
lm≤u

(u− lm)2am
l

=
∑
m≤u

m2am
∑
l≤u/m

(u/m− l)2

l

=
∑
m≤u

m2am

{
u2

m2
log

u

m
+
(
γ − 3

2

)
u2

m2
+
u

m
−K2

( u
m

)}

= u2
∑
m≤u

am

(
log

u

m
+
(
γ − 3

2

)
+
m

u

)
−
∑
m≤u

m2amK2

( u
m

)
,

whence, by (19),

u2I∗(u) =
∑
m>u

am

(
log

u

m
+
(
γ − 3

2

)
+
m

u

)
u2 +

∑
m≤u

m2amK2

( u
m

)
.(32)

In both sums on the right of (32) the coefficients of am are positive because
of (28) and because γ > 1

2 and η − 1− log η ≥ 0 for η ≥ 1. Also

a1 = N(1) = w2(0, 1) = f2(0, 1) = C2
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by (13), (15), (12), and (2). Therefore, taking u1 = u
1
2 for convenience,

letting u → ∞, and first using a simple argument, we deduce from (29) and
the non-negativity of am that

u2I∗(u) ≥ 1
12
{1 + o(1)}

∑
m≤u1

m2am(33)

≥ 1
12
{1 + o(1)}

a1 + 2
∑

1<m≤u1

mam


=

1
12
{1 + o(1)}

−a1 + 2
∑
m≤u1

mam


=

1
12
{1 + o(1)} (−a1 + 2Φ(−1) + o(1))

=
1
12
{1 + o(1)}

(
2C1 − C2 + o(1)

)
=

1
12
{2C − C2}+ o(1)

after an appeal to (17). From this and (31) and then from (20) we thus
establish the inequality

G(x,Q) >
1
12
{2C − C2 + o(1)}Q2 + o

(
x2 log−A x

)
(x/Q→∞).(34)

There is thus a lower bound of definite order of magnitude Q2 for G(x,Q),
a fact that will be invaluable when we come to discuss the behaviour of the
analogues of G(x,Q) that are defined over restricted ranges of summation.
That this is best possible for the cases C = 1 and C = 1

2 is easily seen
by taking in turn the sequence of natural numbers and the sequence of odd
numbers, for which the equations in §3 give successively

f(a, k) = 1/k; w(a, k) = 1 or 0 according as k = 1 or k > 1,

a0 = C2; ak = 0 if k > 1; C1 = a0 = 1 = C

in the former instance and

f(a, k) =

 1/2k, if k odd,
1/k, if k even and a even,
0, if k even and a odd;

w(a, k) = 1 if k = 1; w(a, 2) = ±1
2

; w(a, k) = 0 if k > 2;

a1 = C2; a2 =
1
8

; ak = 0 if k > 2;

C1 = a1 + 2a2 =
1
4

+
1
4

=
1
2

= C
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in the latter. Consequently, on consulting (29) and (32), we confirm that
in these two cases we may replace the sign of inequality in (34) by that of
equality.

Yet for other values of C the inequality is certainly not best possible because
we can sharpen it by introducing an element into the analysis that for the sake
of simplicity had been previously ignored when C = C1. To implement this
improvement, let us note that we can write

f(0, 2) =
1
2

(C + b), f(1, 2) =
1
2

(C − b)

where certainly

|b| ≤ C, 1− C(35)

because f(0, 2) + f(1, 2) = C and 0 ≤ f(a, 2) ≤ 1
2 . Hence, in this notation, we

have w(a, 2) = ± b and a2 = 1
2b

2 with the consequence that first

C = C1 = Φ(−1) = C2 + b2 +
∑
m≥3

mam

= C2 + b2 +
∑

3≤m≤u1

mam + o(1)

and then∑
m≤u1

m2am = C2 + 2b2 +
∑

3≤m≤u1

m2am ≥ C2 + 2b2 + 3
∑

3≤m≤u1

mam

= C2 + 2b2 + 3(C − C2 − b2) + o(1)

= 3C − 2C2 − b2 + o(1).

Because of (35) and the first part of (33), this yields

u2I∗(u) >
1
12
{3C − 2C2 −min2(C, 1− C)}+ o(1),

and, as in the derivation of (34), we establish

Theorem 1. Let the sum G(x,Q) be defined as in the Introduction. Then,
for any sequence conforming to Criterion V, we have

G(x,Q) ≥ 1
12
{D3(C) + o(1)}Q2 +O

(
x2 log−A x

)
(x/Q→∞)

where

D3(C) =
{

5C − 3C2 − 1, if C ≥ 1
2 ,

3C − 3C2, if C ≤ 1
2 .

The improvement over (34) represented by this theorem is moderately no-
ticeable when the value of C is not close to 0, 1

2 , or 1, the coefficient of 1
12Q

2
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for C = 1
4 being now, for example, 9

16 in place of the previous 7
16 . Neverthe-

less, unless C = 1
2 or 1, Theorem 1 is probably still not best possible and

therefore remains a subject for a further study we cannot undertake here.
Our work so far is not unconnected with our future need to differentiate in

the case D1 = 0 between situations within ranges of the type

Q = o(x), Q > xlog−A1x(36)

where G(x,Q)/Q2 is bounded or otherwise. First let us suppose, for a se-
quence answering to the condition D1 = 0, that

lim
n→∞

u2I∗(u)

is finite so that there is a sequence of numbers u2 tending to infinity for which

u2
2I
∗(u2) < 2E

for some constant E . Next, employing the values u = u2 in (32) to find that∑
m≤u2

m2am < 48E

in virtue of (28) and the non-negativity of v − 1 − log v for ≥ 1, we deduce
that the series

∞∑
m=1

m2am

is convergent. Moreover, since the first sum on the right of (32) is then

O

(
u
∑
m>u

mam

)
= O

(∑
m>u

m2am

)
= o(1)

as u→∞, we infer by (29) that

lim
u→∞

u2I∗(u) =
1
12

∞∑
m=1

m2am

and incidentally uncover by a previous routine the asymptotic formula

G(x,Q) =
1
12

( ∞∑
m=1

m2am + o(1)

)
Q2 +O

(
x2 log−A x

)
of the type (9) mentioned in the Introduction. However, for sequences for
which D1 = 0 but which are not of the above type,

lim
u→∞

u2I∗(u) =∞,

and we therefore conclude from formula (20) (with a sufficiently large value
of A) that within a range (36) the quantity G(x,Q)/Q2 related to a partic-
ular sequence is either always bounded or always unbounded; indeed, in the
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former case, it even tends to the limit 1
12Φ(−2), while the set of sequences

corresponding to the latter case can be augmented by those for which D1 > 0.
Instances of the former phenomenon are easy to find for many densities C;

for example, for C = 1
3 , we cite the set of natural numbers divisible by 3.

Lastly, since we alluded in the Introduction to our having isolated ex-
amples where G(x,Q) oscillated in size between Q2−εxε and Q1+εx1−ε, we
remark that the minima in meaningful fluctuations cannot go as low in order
of magnitude as Q2.

5. Constraints on the asymptotic formula for Gλ(x,Q)

Having divided the sequences appertaining to Criterion V into two cate-
gories, we go on to shew by means of an example that the expected relation
between G(x,Q) and Gλ(x,Q) can be false for members of the first category
for which G(x,Q)/Q2 is bounded in the sense described above.

In this example we take the sequence of natural numbers and consider the
attached asymptotic formula that stems from the discussion after (34), the
proof of which for such a simple sequence seems unnecessarily circuitous in
view of its reliance on the mechanisms of IX, X, and XIV. We therefore in this
special case sketch a direct treatment of such a nature that it is also applicable
to the sum Gλ(x,Q).

First, for convenience, we may assume that x is an integer because, by an
elementary identity in probability theory, we have in (4) that

H(x, k) =
∑

0<a≤k

(
S(x; a, k)− x

k

)2

=
∑

0<a≤k

(
S([x]; a, k)− x

k

)2

=
∑

0<a≤k

(
S[x]; a, k)− [x]

k

)2

+
(x− [x])2

k

and hence that

G(x,Q) = G([x], Q) +O

∑
k≤Q

1
k

 = G([x], Q) +O(log x)

when Q ≤ x. For any appropriate k, let us then write x = b + sk, where
0 ≤ b < k, and thereby express S(x; a, k) for 0 < a ≤ k as the number of
solutions in non-negative integers r of the inequality

0 < a+ rk ≤ b+ sk,

inferring that

S(x; a, k) =
{
s+ 1, if 0 < a ≤ b,
s, if b < a ≤ k
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and then that

S(x; a, k)− x

k
=
{

1− b/k, if 0 < a ≤ b,
−b/k, if b < a ≤ k.(37)

Therefore

H(x, k) = b

(
1− b

k

)2

+ (k − b) b
2

k2
= k

b

k

(
1− b

k

)
,(38)

in which b is determined uniquely by k and x.
The summation of H(x, k) over values of k corresponding to the most

influential segment of G(x,Q) depends on the distribution of the numbers
b/k, to come close to which we examine the fractions x/k and the intervals
between them under the assumption that Q = o(x) exceeds, say, x

7
8 . For

this purpose, let Q1 = [Q] and attempt to define the integers Qs, rs and the
consequential set Ss of increasing positive fractions

x

Qs
,

x

Qs − 1
, . . . ,

x

Qs − rs
iteratively by demanding that the last member of Ss be the greatest fraction
x/(Qs − rs) for which

x

Qs − rs
− x

Qs
≤ 1(39)

and by then defining Qs+1 to be Qs − rs − 1. For any subscript s we reach
for which Qs > x

3
4 , it is possible to proceed to the set Ss and then to Qs+1

because (39) implies that

rs =
Q2
s

x+Qs
=
Q2
s

x

{
1 +O

(
Qs
x

)}
(40)

with the corollary that

rs = o(Qs) <
1
3
Qs;(41)

also, since in this case rs ≥ 1
2x

1
2 , we must after a finite number of stages reach

a first value Qt > 1
2x

3
4 for which Qt is less than x

3
4 . Having thus constructed

the sets Ss, we see that the numbers x/k in each one are approximately evenly
distributed and intuit from (38) that∑

Qs+1<k≤Q,

H(x, k)
k

=
∑

Qs+1<k≤Qs

[x
k

] (
1−

[x
k

])
= Rs,(42)

is approximately equal to

(Qs −Qs+1)
∫ 1

0

w(1− w)dw =
1
6

(Qs −Qs+1),

with an appropriate consequence for G(x,Q).
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Let us now be rather more precise and take into account the effect of the
length

Ik,s =
x

k(k − 1)
=

x

Q2
s

{
1 +O

(
rs
Qs

)}
of an interval that is either between x/k and x/(k− 1) in Ss, or between x/k
and the first member x/(k − 1) of Ss+1. Then, since

rsIk,s =
Q2
s

x

{
1 +O

(
Qs
x

)}
x

Q2
s

{
1 +O

(
Qs
x

)}
= 1 +O

(
Qs
x

)
in virtue of (40), we may affect the summand in the intermediate constituent
of (42) by a factor rsIk,s provided that we add a compensating term

O

(
rsQs
x

)
= o(rs)

or, in other words,

rs
∑

Qs+1<k≤Qs

Ik,s

[x
k

] (
1−

[x
k

])
= Rs + o(rs)(43)

is an approximation to

rs

∫ x/Qs+1

x/Qs

[t](1− [t])dt(44)

by the theory of Riemann integration. It being readily seen that the difference
between (43) and (44) is O(1), we deduce from (42) that∑
Qs+1<k≤Qs

H(x, k) = rs{Qs +O(rs)}
∫ x/Qs+1

x/Qs

[t](1− [t])dt+ o(rsQs)

= rs{Qs +O(rs)}
{∫ 1

0

w(1− w)dw +O

(
1
rs

)}
+ o(rsQs)

= rsQs

∫ 1

0

w(1− w)dw + o(rsQs)

=
1
12
{Q2

s − (Qs − rs − 1)2 + o{Q2
s − (Qs − rs − 1)2},

whence

G(x,Q)−G(x,Qt) = G(x,Q1)−G(x,Qt)

=
1
12
{1 + o(1)}(Q2

1 −Q2
t ) =

1
12
{1 + o(1)}Q2

by the previous choice of Qt. Since trivially G(x,Qt) = O(Q2
t ), we then con-

clude that

G(x,Q) =
1
12
{1 + o(1)}Q2
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under the aforementioned conditions on Q and x.
We thus recoup the formula in a form that reflects the fact that the nat-

ural numbers obey the formula in Criterion V with a much more accurate
remainder term. But, from our present point of view, the advantage of the
new approach is that it also enables us to produce an asymptotic formula for
Gλ(x,Q).

In outlining the treatment of Gλ(x,Q), we assume that λ is any fixed
constant less than 1 and go back to the formula (37). Then, since the
residue a, mod k, in the conditions of summation pertaining to the defini-
tion of Hλ(x, k) in (7) is subject to the inequality 0 < a ≤ λk, it is natural to
consider the cases (i) b ≥ λk, (ii) b < λk separately. In case (i) the inequality
0 < a ≤ b holds so that E(x; a, k) = 1− b/k, whereas in case (ii)

E(x; a, k) =
{

1− b/k, if 0 < a ≤ b,
−b/k, if b < a ≤ k,

the upshot being that Hλ(x, k)/k equals

λ

(
1− b

k

)2

or
b

k

(
1− b

k

)2

+
(
λ− b

k

)
b2

k2

according as b ≥ λk or b < λk. We therefore expect the previous argument to
demonstrate that ∑

Qs+1<k≤Qs,

Hλ(x, k)
k

is asymptotic to

(Qs −Qs+1)

(
λ

∫ 1

λ

(1− w)2dw +
∫ λ

0

{w(1− w)2 + (λ− w)w2}dw

)

= (Qs −Qs+1)

(
1
3
λ(1− λ)3 +

∫ λ

0

(w − 2w2 + λw2)dw

)

=
1
6
λ(2− 3λ+ 2λ2)(Qs −Qs+1),

wherefore, summing over s, we foresee that

Gλ(x,Q) ∼
1
12
λ(2− 3λ+ 2λ2)Q2.

It being routine to make this conclusion rigorous, we conclude that

Gλ(x,Q) � λG(x,Q)

in the situation delineated above.
Therefore, of the two situations described in the antepenultimate paragraph

of §4, the former where G(x,Q)/Q2 is bounded is one in which we cannot
always assert that Gλ(x,Q) can be likened to λG(x,Q). Consequently, in our
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forthcoming investigation of Gλ(x,Q), we shall ultimately assume that the
latter situation obtains and, for the sake of clarity, define it again through the
condition that

G(x,Q)/Q2 →∞(45)1

for all values of x and Q satisfying

Q = o(x), Q > x log−A1 x(45)2

for any positive constant A1.
However, until we arrive at §16, we shall neither need to assume this hy-

pothesis nor even that Q and x conform to (45)2, a similar comment being
apposite for the symbol Q2 that replaces Q in G∗(x, u;Q1, Q2).

6. Lemmata based on sum formulae

The narrative in XI was interspersed with various estimates for sums that
for the most part were proved by contour integration. Now needing parallel
estimates of greater delicacy in the estimation of Gλ(x,Q), we eschew the
previous methods that no longer readily meet our requirements and instead
use the formulae of §§3 and 4 to establish at once a number of lemmata.

First, as an enhancement of Lemma 2 in XI, we have

Lemma 1. If 0 < h < 1 and y ≥ 1, then

1
2

∑
l<y

(y − l)2

l
− 1

2

∑
l<y−h

(y − h− l)2

l

=
1
2
{y2 log y − (y − h)2 log(y − h)}

+
1
2
B1{y2 − (y − h)2}+

1
2
h+O

(
h

y

)
where B1 = γ − 3

2 .

Dismissing the case where y − h ≤ 1 because then y < 2 and the left-side
of the formula is O(h2), we see otherwise from (27) that the proposed result
is correct provided that

y2K1(y)− (y − h)2K1(y − h) = O(h/y),

which estimate follows from the mean-value theorem and the equation

d

dv
v2K1(v) = 2vK1(v)− v2φ2(v)

v3
= O

(
1
v

)
(v > 1)

that stems from the continuity of φ2(t) and from an inequality for K1(v) latent
in §4.
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Secondly, for the proof of an analogue of Lemma 3 in XI and also for our
later analysis, we need the auxiliary

Lemma 2. As u→∞,
d

du

(
u2I∗(u)

)
= O(1).

From its genesis through a twice performed integration, u2I∗(u) has a con-
tinuous first differential coefficient that may be calculated even at integral
values of u by differentiating both series in (32) term by term (consider right-
hand continuity). Indeed, by the last two lines of (27),

d

du
(u2I∗(u)) = 2u

∑
m>u

am

(
log

u

m
+ (γ − 3

2
) +

m

u

)
+
∑
m>u

(u−m)am

− 4u
∑
m≤u

amK1

( u
m

)
− 2u2

∑
m≤u

am
m
K ′1

( u
m

)
and then, by (26) and (16),

d

du
(u2I∗(u) = O

(∑
m>u

mam

)
+O

 1
u

∑
m≤u

m2am


= O

( ∞∑
m=1

mam

)
= O(1),

which equality is what was asserted.
We then have

Lemma 3. Let T ∗(v) be defined as in (18). Then, for 0 < h < 1 and
y ≥ 1, we have

y2T ∗(y)− (y − h)2T ∗(y − h) =
1
2

Φ(0){y2 log y − (y − h)2 log(y − h)}

+
1
2
B2{y2 − (y − h)2}+O(h),

where B2 = Φ′(0) + (γ − 3
2 )Φ(0).

It being enough to consider the case where y − h > 1 as in the proof of
Lemma 1, we need to shew that

y2I∗(y)− (y − h)2I∗(y − h) = O(h)

on account of (19). But the left-side of this is

h

{
d

du
(u2I∗(u))

}
u=y−θh

(0 < θ < 1),

which is O(h) by Lemma 2.
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Lastly, for the unweighted version

T (v) =
∑
l≤v

M(l)

of the sum T ∗(v), we require an elementary estimate that is more accurate
than those stated in IX and X. This is given in

Lemma 4. For y ≥ 1, we have∑
l≤y

M(l) = Φ(0) log y + Φ′(0) + γΦ(0) +O

(
log 2y
y

)
.

By (13) and the convergence at s = −1 of the Dirichlet’s series defining
Φ(s), the left-side of the stated formula equals∑
km≤y

ak
m

=
∑
k≤y

ak
∑

m≤y/k

1
m

=
∑
k≤y

ak

{
log

y

k
+ γ +O

(
k

y

)}

= Φ(0) log y + Φ′(0) + γΦ(0) +O

∑
k>y

ak log 2k

+O

1
y

∑
k≤y

kak


= Φ(0) log y + Φ′(0) + γΦ(0) +O

(
log 2y
y

∞∑
k=1

kak

)

= Φ(0) log y + Φ′(0) + γΦ(0) +O

(
log 2y
y

)
,

as proposed.

7. Initial analysis of G∗(x, u;Q1, Q2)

The primary object Gλ(x,Q) of our second study is approached through
the medium of the sum

G∗(x, u;Q1, Q2) =
∑

Q1<k≤Q2

k
∑

0<a≤u

E2(x; a, k),

to which the major part of the investigation is devoted under the assumptions2

u < Q1, x log−A1 x < Q1 < Q2 ≤
1
2
x.(46)

Here we have already initiated a convention to the effect that the insertion
of a superscript asterisk in a given notation for a sum over k means that its
summand is to be affected by a weight k, an understanding that facilitates our
moving to and fro between weighted and unweighted sums during our analysis

2The upper bound 1
2
x instead of x is laid down for convenience rather than necessity;

this point, however, is anyway ultimately irrelevant because of our use of (45).
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of one of the entities into which G∗(x, u;Q1, Q2) is now split by means of (3).
The resulting decomposition being given by

G∗(x, u;Q1, Q2) =
∑

Q<k≤Q2

k
∑

0<a≤u

(
f2(a, k)x2(47)

− 2xf(a, k)S(x; a, k) + S2(x; a, k)
)

= x2
∑

Q1<k≤Q2

k
∑

0<a≤u

f2(a, k)

− 2x
∑

Q1<k≤Q2

k
∑

0<a≤u

f(a, k)S(x; a, k)

+
∑

Q1<k≤Q2

k
∑

0<a≤u

S2(x; a, k)

= x2G∗1(x, u;Q1, Q2)− 2xG∗2(x, u;Q1, Q2) +G∗3(x, u;Q1, Q2), say,

we then go on in the following Sections to estimate the sums therein according
to ascending order of difficulty.

8. The sum G∗1(x, u;Q1, Q2)

The sum G∗1(x, u;Q1, Q2) differs from its analogues in earlier papers of the
series in that its treatment is neither immediate nor completely obvious, the
basis of its estimation being a comparison between the sum

G†1(x, u;Q1, Q2) =
∑

Q1<k≤Q2

k2
∑

0<a≤u

f2(a, k)

and the sum

G$
1(x;Q1, Q2) =

∑
Q1<k≤Q2

k
∑

0<a≤k

f2(a, k)

that is a weighted version of a sum appearing implicitly in X (see (9) therein).
First, for any number Q′2 lying between Q1 and Q2, (12) implies that

G†1(x, u;Q1, Q
′
2) =

∑
Q1<k≤Q′2

∑
0<a≤u

∑
l1|k;l2|k

w(a, l1)w(a, l2)

=
∑

Q1<k≤Q′2

∑
l1|k;l2|k

∑
0<a≤u

w(a, l1)w(a, l2),

the innermost sum in which equals∑
0<b≤l1
0<c≤l2

w(b, l1)w(c, l2)H(b, c; l1, l2;u)(48)



602 C. HOOLEY

where H(b, c; l1, l2;u) is the number of solutions of the simultaneous congru-
ences

a ≡ b, mod l1, a ≡ c, mod l2,

satisfying the inequality 0 < a ≤ u. Hence, since H(b, c; l1, l2, l2;u) equals

u

[l1, l2]
+O(1)

or zero according as b− c ≡ 0, mod (l1, l2), or otherwise,3

G†1(x, u;Q1, Q
′
2) =

∑
Q1<k≤Q′2

∑
[l1,l2]|k

∑
0<b≤l1
0<c≤l2

b−c≡0,mod (l1,l2)

w(b, l1)w(c, l2)

(49)

×
(

u

[l1, l2]
+O(1)

)
=

∑
[l1,l2]≤Q′2

∑
0<b≤l1
0<c≤l2

b−c≡0,mod (l1,l2)

w(b, l1)w(c1l2)

×
(

u

[l1, l2]
+O(1)

)(
Q′2 −Q1

[l1, l2]
+O(1)

)
= u(Q′2 −Q1)

∑
[l1,l2]≤Q′2

1
[l1, l2]2

∑
0<b≤l1
0<c≤l2

b−c≡0,mod (l1,l2)

w(b, l1)w(c, l2)

+O

(u+Q′2)
∑

[l1,l2]≤Q2

1
[l1, l2]

∑
0<b≤l1
0<c≤l2

b−c≡0,mod (l1,l2)

|w(b, l1)||w(c, l2)|


= u(Q′2 −Q1)

∑
A

+O
(
Q′2
∑

B

)
, say.

The evaluation of
∑
A need not yet be pursued although a treatment is

possible by using our method of estimating
∑
B , to begin which we set l1 =

l′1d, l2 = l′2d, where (l′1, l
′
2) = 1. Then the square of the sum over a, b, and c

3In what immediately follows it is helpful to note that the O term depends only on l1
and l2 when u is given.
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in the consequent equation∑
B

=
∑

dl′1l
′
2≤Q

′
2

(l′1,l
′
2)=1

1
dl′1l
′
2

∑
0<a≤d

∑
b≡c≡a,mod d

0<b≤dl′1;0<c≤dl′2

|w(b, dl′1)||w(c, dl′2)|

does not exceed ∑
0<a≤d

∑
b≡a,mod d

0<b≤dl′1

w2(b, dl′1)
∑

c≡a,mod d
0<c≤dl′2

1



×

 ∑
0<a≤d

∑
c≡a,mod d

0<c≤dl′2

w2(c, dl′2)
∑

b≡a,mod d
0<b≤dl′1

1


= l′1l

′
2

∑
0<b≤dl′1

w2(b, dl′1)
∑

0<c≤dl′2

w2(c, dl′2)

by the Cauchy-Schwarz inequality. Therefore

∑
B
≤

∑
dl′1l
′
2≤Q′2

1

dl
′ 12
1 l
′ 12
2

 ∑
0<b≤dl′1

w2(b, dl′1)
∑

0<c≤dl′2

w2(c, dl′2)

 1
2

,

whence, by symmetry,∑
B
≤ 2

∑
dl′1l
′
2≤Q′2

1

dl
′ 12
1 l
′ 12
2

∑
0<b≤dl′1

w2(b, dl′l)(50)

= 2
∑

dl′1≤Q′2

1

dl
′ 12
1

∑
0<b≤dl′1

w2(b, dl′1)
∑

l′2≤Q′2/dl′1

1

l
′ 12
2

= O

Q′ 122

∑
dl′1≤Q′2

1
d

3
2 l′1

∑
0<b≤dl′1

w2(b, d1l
′
1)


= O

Q′ 122

∑
l≤Q′2

d(l)
l

∑
0<b≤l

w2(b, l)


= O

Q′ 12 +ε
∑
l≤Q′2

1
l

∑
0<b≤l

w2(b, l)

 = O
(
Q′

1
2 +ε
)

in virtue of (16). Combined with (49), this then yields the preliminary esti-
mate

u(Q′2 −Q1)
∑

A
+O

(
Q
′ 32 +ε
2

)
(51)
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for G†1(x, u;Q1, Q
′
2).

But it is plain that G$
1(x;Q1, Q

′
2), whose value we already essentially know

from X, can be calculated in comparable terms by a slight adjustment to the
above argument. Indeed, by suppressing a factor k but substituting k for u
as a limit of summation, we find that G$

1(x;Q1, Q
′
2) is a sum over k, l1, l2 of

1
k

∑
0<b≤l1
0<c≤l2

w(b, l1)w(c, l2)H(b, c; l1, l2; k)

that is an analogue of (48), wherein now for b− c ≡ 0, mod (l1, l2) we have

H(b, c; l1, l1, l2; k) =
k

[l1, l2]

because l1|k and l2|k. Therefore, following through the reasoning that led to
(49) and (50), we easily discover the equation

G$
1(x;Q1, Q

′
2) = (Q′2 −Q1)

∑
A

+O
(∑

B

)
= (Q′2 −Q1)

∑
A

+O
(
Q

1
2 +ε
2

)
that is a counterpart of (51).

Consequently, as we might expect,

G†1(x, u;Q1, Q
′
2) = uG$

1(x;Q1, Q
′
2) +O{u+Q′2)Q′

1
2 +ε}

= uG$
1(x;Q1, Q

′
2) +O(Q′

3
2 +ε),

or, in other words, the sum

G‡1(x, u;Q1, Q
′
2) =

∑
Q1<k≤Q′2

k

k ∑
0<a≤u

f2(a, k)− u
∑

0<a≤k

f2(a, k)


is O(Q′

3
2 +ε

2 ). Hence, since then

∑
Q1<k≤Q2

k ∑
0<a≤u

f2(a, k)− u
∑

0<a≤k

f2(a, k)

 =
∫ Q2

Q1

dG‡1(x, u;Q1, v)
v

=

Q2[
Q1

G‡1(x, u;Q1, v)
v

]
+
∫ Q2

Q1

G‡1(x, u;Q1, v)
v2

= O
(
Q

1
2 +ε
2

)
+O

(∫ Q2

Q1

dv

v
1
2−ε

)
= O

(
Q

1
2 +ε
2

)
,
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we infer from (47) and (11) that

G∗1(x, u;Q1, Q2) = u
∑

Q1<k≤Q2

∑
0<a≤k

f2(a, k) +O
(
Q

1
2 +ε
2

)
= u

∑
Q1<k≤Q2

M(k) +O
(
Q

1
2 +ε
2

)
.

The sum over M(k) being determined through Lemma 4, we thus attain our
goal by concluding that

G∗1(x, u;Q1, Q2) = uΦ(0) log
Q2

Q1
+O

(
u logQ1

Q1

)
+O

(
Q

1
2 +ε
2

)
(52)

= uΦ(0) log
Q2

Q1
+O

(
Q

1
2 +ε
2

)
in view of (46).

9. Estimation of G∗2(x, u;Q1, Q2)

The treatment of G∗2(x, u;Q1, Q2) has something in common with its name-
sake in XI, although the transition from the previously occurring primes to
the general sequence of numbers s inevitably entails the appearance of fresh
techniques.

First, akin to the dissection in XI (11), there is the decomposition expressed
by

G∗2(x, u;Q1, Q2) =
∑

Q1<k≤Q2

k
∑

0<a≤u

f(a, k)S(u; a, k)

(53)

+
∑

Q1<k≤Q2

∑
0<a≤u

f(a, k){S(x; a, k)− S(u; a, k)}

= G$
2(u;Q1, Q2) +G†2(x, u;Q1, Q2), say,

whose first constituent is given by

G$
2(u;Q1, Q2) =

∑
Q1<k≤Q2

k
∑
s≤u

f(s, k)(54)

because the variables of summation therein conform to the condition a ≤ u ≤
Q1 < k by (46). This is a weighted variant of the sum∑

k≤Q

∑
s≤u

f(s, k)(55)

that has the semblance of the sum∑
k≤Q

Ψk(x) =
∑
k≤Q

∑
s≤x

f(s, k)
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we estimated in X (20) as

x
∑
k≤Q

M(k) +O

(
x

logA x

)
.(56)

But here u < Q so that, using the notation of X for ease of explanation,
we must consider how (56) can be extended when the previously imposed
condition Q ≤ x is relaxed. The first change needed being that the first item
in X (8) must be augmented by

S(x; a, k) = O(1) (k > x)

as in (23), we see that for l > x the formula for W (x, l) must also contain the
term

O

 ∑
0<a≤l

|w(a, l)|

 ,

which creates the extra component

O


∑
m≤Q

1
m

 ∑
x<l≤Q

1
l

∑
0<a≤l

|w(a, l)|


= O

logQ
∑
l≤Q

1
l

∑
0<a≤l

|w(a, l)|


in X (17) when it is placed in X (14). Since, for any ξ > 1,∑

l≤ξ

1
l

∑
0<a≤l

|w(a, l)|

2

(57)

≤

∑
l≤ξ

1
l

∑
0<a≤l

1

∑
l≤ξ

1
l

∑
0<a≤l

|w(a, l)|2
 = O(ξ)

by the Cauchy-Schwarz inequality and (16), we must add O(Q
1
2 logQ) to the

right of (56), whence (55) is seen to be

u
∑
k≤Q

M(k) +O

(
u

logA x

)
+O

(
Q

1
2 logQ

)
= u

∑
k≤Q

M(k) +O

(
x

logA x

)
after a reversion to the notation of the present paper. Thus, knowing that

∑
k≤Q

∑
s≤u

f(s, k)− uM(k)

 = O

(
u

logA x

)
(Q ≤ Q2)
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and deducing that

∑
Q1<k≤Q2

k

∑
s≤u

f(s, k)− uM(k)

 = O

(
uQ2

logA x

)
by partial summation, we infer from (54) and Lemma 4 that

G$
2(u;Q1, Q2) = u

∑
Q1<k≤Q2

M(k) +O

(
uQ2

logA x

)
(58)

= u(Q2 −Q1)Φ(0) +O(u logQ2) +O
(
uQ2 log−A x

)
= u(Q2 −Q1)Φ(0) +O

(
x2 log−A x

)
.

We draw near to the second constituent G†2(x, u;Q1, Q2) of G∗2(x, u;Q1, Q2)
by way of the sums

J†2(x, u;Q) = G†2(x, u;Q, x)

for

u < Q, x log−A1 x < Q ≤ 1
2
x,(59)

between which and G†2(x, u;Q1, Q2) there is the relation

G†2(x, u;Q1, Q2) = J†2(x, u;Q1)− J†2(x, u;Q2)(60)

implied by (53). Next, a suitable parameter

ξ = log2A+2 x(61)

having been introduced, the sum J†2(x, u;Q) is then itself split into two pieces
by expressing (12) as

kf(a, k) =
∑
d|k

w(d) =
∑
d|k
d>ξ

w(d) +
∑
d|k
d≤ξ

w(d)(62)

= kf1(a, k) + kf2(a, k), say,

and using the decomposition

J†2(x, u;Q) = J†2,1, (x, u;Q) + J†2,2(x, u;Q),(63)

where the sums

J†2,i(x, u;Q) =
∑

Q<k≤x

k
∑

0<a≤u

fi(a, k){S(x; a, k)− S(u; a, k)}(64)

are ripe for assessment.
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By (64) and (62),

J†2,1(x, u;Q) = O

x∑
k≤x

1
k

∑
0<a≤x

∑
d|k
d>ξ

|w(a, d)|



= O

x ∑
ξ<d≤x

∑
0<a≤x

|w(a, d)|
∑
k≤x

k≡0,mod d

1
k


= O

x log x
∑

ξ<d≤x

1
d

∑
0<a≤x

|w(a, d)|


= O

x2 log x
∑
d>ξ

1
d2

∑
0<a≤d

|w(a, d)|


owing to the periodicity of w(a, d), mod d. The square of the sum in the last
line in this does not exceed ∑

d>ξ
0<a≤d

1
d3


∑
d>ξ

1
d

∑
0<a≤d

|w(a, d)|2
 = O

∑
d>ξ

1
d2

 = O

(
1
ξ

)

by the Cauchy-Schwarz inequality and (16), whence we arrive at the estimate

J†2,1(x, u;Q) = O

(
x2 log x
ξ

1
2

)
= O

(
x2

logA x

)
(65)

for the less important part of J†2(x, u;Q).
If we regard J†2,2(x, u;Q) as a triple iterated sum in which the innermost

sum is over values of s for which u < s ≤ x, then the conditions of summation
therein are tantamount to the constraints

0 < s− a = lk, a+ lQ < s ≤ x, l < x/Q, 0 < a ≤ u(66)

on a, k, s, and a positive integer l with the implication that not only a ≤ u
but also a ≤ x − lQ. Hence, bringing in the definition of f1(a, k) in (62) so
that the first item in (66) implies that s− a ≡ 0, mod ld, we infer that

J†2,2(x, u;Q) =
∑
d≤ξ

∑
l<x/Q

∑
0<a≤vl

w(a, d)
∑

a+lQ<s≤x
s≡a,mod ld

1,

in which

vl = min(u, x− lQ)(67)
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and the innermost sum is

(x− a− lQ)f(a, ld) +O
(
x log−A1−2A−1 x

)
by Criterion V. Since the remainder term here is seen to induce a contribution
to J†2,2(x, u;Q) of

O

 x2

Q logA1+2A+1 x

∑
d≤ξ

∑
0<a≤x

|w(a, d)|


= O

 x3

Q logA1+2A+1 x

∑
d≤ξ

1
d

∑
0<a≤d

|w(a, d)|


= O

(
x3ξ

1
2

Q logA1+2A+1 x

)
= O

(
x2 logA1+A+1 x

logA1+2A+1 x

)
= O

(
x2

logA x

)

by (57), (59), and (61), the estimate

J†2,2(x, u;Q) =
∑
d≤ξ

∑
l<x/Q

∑
0<a≤vl

w(a, d)f(a, ld)(x− a− lQ)(68)

+O

(
x2

logA x

)
=
∑
d≤ξ

∑
l<x/Q

∑
l,d

+O
(

x2

logA x

)
=
∑

c
+O

(
x2 log−A x

)
, say,

then emerges for our consideration.
Next

∑
l,d

=
∑

0<b≤d

w(b, d)
∑

0<b1≤ld
b1≡b,mod d

f(b1, ld)
∑

0<a≤vl
a≡b1,mod dl

(x− a− lQ)

=
∑

0<b≤d

w(b, d)
∑

0<b1≤ld
b1≡b,mod d

f(b1, ld)
(

(x− lQ− 1
2vl)vl

dl
+O(x)

)
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=
(x− lQ− 1

2vl)vl
dl

∑
0<b≤d

w(b, d)
∑

0<b1≤ld
b1≡b,mod d

f(b1, ld)

+O

x ∑
0<b≤d

|w(b, d)|
∑

0<b1≤ld
b1≡b,mod d

f(b1, ld)


=

(x− lQ− 1
2vl)vl

dl

∑
0<b≤d

w(b, d)f(b, d) +O

x ∑
0<b≤d

|w(b, d)|f(b, d)


=

(x− lQ− 1
2vl)vlN(d)
dl

+O

x
d

∑
0<b≤d

|w(b, d)|


by (24), (14), and (23). The effect of the remainder term here being to donate

O

x2

Q

∑
d≤ξ

1
d

∑
0<b≤d

|w(b, d)|

 = O

(
x2ξ

1
2

Q

)
= O

(
x logA+A1+1 x

)
(69)

= O
(
x2 log−A x

)
to
∑
C because of (57) and (46), we must then sum the first term over l to

get

N(d)
d

1
2

∑
l≤(x−u)/Q

u(2x− 2lQ− u)
l

+
1
2

∑
(x−u)/Q<l<x/Q

(x− lQ)2

l


= Q2N(d)

d

1
2

∑
l<x/Q

(x/Q− l)2

l
− 1

2

∑
l<(x−u)/Q

((x− u)/Q− l)2

l


on availing ourselves of the definition of vl in (67). This, by Lemma 1, is

Q2N(d)
2d

{
x2

Q2
log

x

Q
− (x− u)2

Q2
log

x− u
Q

+
B1x

2

Q2
− B1(x− u)2

Q2
+
u

Q
+O

(u
x

)}
=
N(d)

2d

{
x2 log

x

Q
− (x− u)2 log

x− u
Q

+B1x
2

−B1(x− u)2 + uQ+O

(
uQ2

x

)}
,
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and we therefore first deduce from (68) and (69) that

J†2,2(x, u;Q) =
1
2

{
x2 log

x

Q
− (x− u)2 log

x− u
Q

+B1x
2

−B1(x− u)2 + uQ+O

(
uQ2

x

)}∑
d≤ξ

N(d)
d

+O

(
x2

logA x

)
and then from (63) and (65) that

J†2(x, u;Q) =
1
2

{
x2 log

x

Q
− (x− u)2 log

x− u
Q

+B1x
2

(70)

−B1(x− u)2 + uQ+O

(
uQ2

x

)}∑
d≤ξ

N(d)
d

+O

(
x2

logA x

)
because N(d) is non-negative.

Finally, since

∑
d≤ξ

N(d)
d

= Φ(0) +O

1
ξ

∑
d>ξ

N(d)

 = Φ(0) +O

(
1
ξ

)
,

(60) and (70) yield

G†2(x, u;Q1, Q2) =
1
2

{{
x2 − (x− u)2

}
log

Q2

Q1
− 1

2
u(Q2 −Q1)

+O
(
uQ2

2

x

)}∑
d≤ξ

N(d)
d

+O

(
x2

logA x

)
=

1
2

Φ(0)
{
x2 − (x− u)2

}
log

Q2

Q1
− 1

2
u(Q2 −Q1)Φ(0)

+O

(
uQ2

2

x

)
+O

(
xu log x

ξ

)
+O

(
x2

logA x

)
,

from which we gain the requisite equation

G∗2(x, u;Q1, Q2) =
1
2

Φ(0)
{
x2 − (x− u)2

}
log

Q2

Q1
+

1
2
u(Q2 −Q1)Φ(0)(71)

+O

(
uQ2

2

x

)
+O

(
x2

logA x

)
with the aid of (61), (53), and (58).

10. The earlier analysis of G3(x, u;Q1, Q2)

We reach some of the harder parts of the analysis now that we meet the
sum G∗3(x, u;Q1, Q2) that is contained in (47). To mollify the resistance it
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offers we first move over to the unweighted sum G3(x, u;Q1, Q2) given by

G3(x, u;Q1, Q2) =
∑

Q1<k≤Q2

∑
0<a≤u

S2(x; a, k)

in accordance with the conventions laid down at the beginning of §7, then
letting

J3(x, u;Q) = G3(x, u;Q, x)(72)

when Q is still either Q1 or Q2 as in (46) so that

G3(x, u;Q1, Q2) = J3(x, u;Q1)− J3(x, u;Q2)(73)

much as in (60). Then the square S2(x; a, k) in J3(x, u;Q) is equal to the
number of solutions of the conditions

s1 − a = l2k, s2 − a = l1k, a ≤ s1, s2 ≤ x(74)

in numbers s1, s2 and non-negative integers l1, l2, since the stipulation (59)
implies that positive numbers congruent to a, mod k, are not less than a.
These solutions fall into six mutually exclusive categories characterized by
the features

(i) s1 = s2 = a; (iv) s1 = s2 > a, l1 = l2 > 0;
(ii) s1 = a, s2 > a; (v) 0 < l2 < l1;
(iii) s1 > a, s2 = a; (vi) 0 < l1 < l2;

(75)

from which it is deduced that

J3(x, u;Q) = J§3(x, u;Q) + 2J‡3(x, u;Q) + J$
3 (x, u;Q) + 2J†3(x, u;Q)(76)

where J§3 , J‡3 , J$
3 , J†3 are, respectively, the contributions of categories (i),

(ii), (iv), (v) to J3 and are the name-children of the entities appearing in the
analogous equation (26) in XI. Of these, the final is not only the most difficult
but is actually harder to treat than before, while in partial compensation the
penultimate one becomes easier because there is no longer a weighting factor
(corresponding to log2 p) to be taken into account.

The sum J§3(x, u;Q) can be eliminated from the work at once, since (75)
(i), (74), and (73) imply that

J§3(x, u;Q1)− J§3(x, u;Q2) =
∑

Q1<k≤Q2

∑
s≤u

1 = O(uQ2)(77)

by Criterion V. But each of the other sums deserves an individual Section
before the assessment of the last one is initiated, where it is to be understood
that in future the symbol l, with or without subscript, will denote a positive
integer.
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11. Estimation of J‡3(x, u;Q)

By (75) (ii), (73), and (74), J‡3(x, u;Q) is the number of solutions in s1, s2,
and l of the conditions

s1 ≤ u, s2 ≡ s1, mod l, l < x/Q, s1 + lQ < s2 ≤ x

because in particular the stipulation that k > Q is equivalent to l < x/Q in
the present setting. Therefore, having been reminded of the definition of vl
in (67), we have

J‡3(x, u;Q) =
∑
l<x/Q

∑
0<s1≤vl

∑
s1+lQ<s2≤x
s2≡s1,mod l

1

=
∑
l<x/Q

∑
0<s1≤vl

{
(x− lQ− s1)f(s1, l) +O

(
x

logA+A1 x

)}

=
∑
l<x/Q

∑
0<s1≤vl

(x− lQ− s1)f(s1, l) +O

(
x3

Q logA+A1 x

)

= J‡‡3 (x, u;Q) +O

(
x2

logA x

)
, say,

by Criterion V and (59). But, by reasoning based yet again on Criterion V
and on partial summation, the inner sum in J‡‡3 (x, u;Q) is

∑
0<b≤l

f(b, l)
∑

0<s1≤vl
s1≡b,mod l

(x− lQ− s1)

= vl

(
x− lQ− 1

2
vl

) ∑
0<b≤l

f2(b, l)

+O

 x2

logA+A1 x

∑
0<b≤l

f(b, l)


= vl

(
x− lQ− 1

2
vl

)
M(l) +O

(
x2

logA+A1 x

)

on account of (11). Therefore, by (59) again,
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J‡3(x, u;Q) =
∑
l<x/Q

vl

(
x− lQ− 1

2
vl

)
M(l) +O

(
x2

logA x

)
=

1
2

∑
l≤(x−u)/Q

u(2x− 2lQ− u)M(l)

+
1
2

∑
(x−u)/Q<l<x/Q

(x− lQ)2M(l) +O

(
x2

logA x

)

= Q2

1
2

∑
l<x/Q

(
x

Q
− l
)2

M(l)− 1
2

∑
l<(x−u)/Q

(
x− u
Q
− l
)2

M(l)


+O

(
x2

logA x

)
,

from which is taken the equation

J‡3(x, u;Q) =
1
2

Φ(0)
(
x2 log

x

Q
− (x− u)2 log

x− u
Q

)
+

1
2
B2

{
x2 − (x− u)2

}
+O(uQ) +O

(
x2

logA x

)
by means of Lemma 3.

We thus conclude that

J‡3(x, u;Q1)− J‡3(x, u;Q2) =
1
2

Φ(0)
{
x2 − (x− u)2

}
log

Q2

Q1
(78)

+O(uQ2) +O
(
x2 log−A x

)
.

12. Estimation of J$
3 (x, u;Q)

The assessment of J$
3 may be truncated because it shares several features

with that of earlier sums. Being the number of solutions in a, s, and l of the
conditions

a ≤ u, s ≡ a, mod l, l < x/Q, a+ lQ < s ≤ x

by (75) (iv), it equals∑
l<x/Q

∑
0<a≤vl

∑
a+lQ<s≤x
s≡a,mod l

1

=
∑
l<x/Q

∑
0<a≤vl

(x− lQ− a)f(a, l) +O

(
x2

logA x

)
,
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in the last line of which the inner sum equals∑
0<b≤l

f(b, l)
∑

0<a≤vl
a≡b,mod l

(x− lQ− a)

=
1
2

∑
0<b≤l

f(b, l)
{
vl(2x− 2lQ− vl)

l
+O(x)

}

=
1
2
f(0, 1)

vl(2x− 2lQ− vl)
l

+O(x)

=
1
2
C
vl(2x− 2lQ− vl)

l
+O(x)

by (2). Therefore, by Lemma 1,

J$
3 (x, u;Q) =

1
2
CQ2

 ∑
l<x/Q

(x/Q− l)2

l
−

∑
l<(x−u)/Q

((x− u)/Q− l)2

l


+O

(
x logA1 x

)
+O

(
x2

logA x

)
=

1
2
C

(
x2 log

x

Q
− (x− u)2 log

x

Q

)
+

1
2
CB1

{
x2 − (x− u)2

}
+O(uQ) +O

(
x2 log−A x

)
,

whence

J$
3 (x, u;Q1)− J$

3 (x, u;Q2) =
1
2
C
{
x2 − (x− u)2

}
log

Q2

Q1
(79)

+O(uQ2) +O
(
x2 log−A x

)
.

13. Estimation of J†3(x, u;Q)—the preliminary stages and the
initial application of the circle method

The earlier part of the treatment of J†3(x, u;Q) may be described succinctly
because it follows that of its counterpart in §8 in XI, although a new and
seemingly thorny trail must be blazed as soon as we arrive at the singular
series in the application of the circle method.

First, if in the conditions of summation defining J†3(x, u;Q) we set l1 = l′1δ,
l2 = l′2δ, where

(l′1, l
′
2) = 1,(80)

then the first two items in (74) are tantamount to the pair

s1 ≡ s2 ≡ a, mod δ,(81)
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and

l′1 {(s1 − a)/δ} = l′2 {(s2 − a)/δ} ,

the last of which may be restated as

l′1s1 − l′2s2 − l′3a = 0, (l′3 = l′2 − l′1).(82)

Secondly, the conditions related to k translate into the implication

l2 < l1 < x/Q(83)

and the two sets of requirements

a+ l1Q < s2 ≤ x, a+ l2Q < s1 ≤ x,

the second one of which is implied by the first when (83) (or (82)) is in place.
We can therefore complete the first phase of the calculation by deducing that

J†3(x, u;Q) =
∑

δ<x/Q

∑
l′2<l

′
1<x/(Qδ)

(l′1,l
′
2)=1

P (x, u,Qδl′1; l′1, l
′
2; δ),(84)

the inner summand in which is defined by letting Θ = Θδ,l′1,l
′
2

indicate the
conjunction of (81) and (82) and by then setting

P (x, u;T, l′1, l
′
2; δ) =

∑
Θ

0<a≤u;a+T<s2≤x

1 (x log−A1 x < T ≤ x)(85)

as a sum over the variables a, s1, s2.
Much as in IX, the next stage is to enlist the circle method to estimate

P (x, u, T ; l′1, l
′
2; δ), although this still cannot be easily applied directly because

of the connection between the domains of summations over each of s1, s2, a.
We therefore, for any values of t1, t2 such that 0 < t1 < t2 ≤ x, introduce the
associated sums

P1(x, t1, t2; l′1, l
′
2; δ) =

∑
Θ

0<a≤t1;t2<s2≤x

1

and consider the sums P2(x, t1, t2; l′1, l
′
2; b, δ) that appear in the dissection

P1(x, t1, t2; l′1, l
′
2; δ) =

∑
0<b≤d

∑
s1≡s2≡a≡b,mod δ

(86)

=
∑

0<b≤d

P2(x, t1, t2; l′1, l
′
2; b, δ)
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made possible by (81). Then, the exponential sums

g1(θ) = g1,b(θ) = g1,b,δ(θ) =
∑
s1≤x

s1≡b,mod δ

e2πil′1s1θ,

g2(θ) = g2,b(θ) = g2,b,δ(θ) =
∑

t2<s2≤x
s2≡b,mod δ

e−2πiil′2s2θ,

g3(θ) = g3,b(θ) = g3,b,δ(θ) =
∑

0<a≤t1
a≡b,mod δ

e−2πil′3aθ

(87)

having been brought into play, the treatment of P2(x, t1, t2; l′1, l
′
2; b, δ) com-

mences by expressing it as ∫ 1

0

g1(θ)g2(θ)g3(θ)dθ(88)

in the usual way.
The division of the region of integration into Farey arcs and the conse-

quential definition of the minor arcs is best described by reproducing almost
verbatim the account given of the corresponding matters in XI, §8. Assuming
throughout that

l′2 < l′1 < (logA1 x)/δ ≤ logA1 x and δ ≤ logA1 x(89)

in conformity with (59), we choose a sufficiently large absolute constant A2 and
use a Farey dissection of order M = x log−A2 x that has the property that
each θ in the range of integration belongs to one and only one arc, mod 1
(apart from the end points) of the form

|θ − h/k| ≤ ϑh,k/(Mk),(90)

where k ≤ M , 0 < h ≤ k, (h, k) = 1, and 1/2 ≤ ϑh,k ≤ 1. Next, by (87),
g3(θ) = O(1/‖δl′3θ‖) so that

|g3(θ)| > A3x log−A2 x(91)

only when δl′3θ = m + ψ for some (non-negative) integer m and for |ψ| <
1
2x
−1 logA2 x, namely, only when

θ =
m

δl′3
+ φ and |φ| < logA2 x

2xδl′3
=

1
2Mδl′3

and hence certainly only when θ lies within an arc (90) for which k|δl′3. All
such arcs are then dilated to form the set M of major arcs

|θ − h/k| < 1/M, k|δl′3,(92)
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which are non-intersecting because here k ≤ logA1 x by (89); the complement
of M in the range of integration then forms the set m, on which (91) is false.
The effect of m on the integral (88) is then determined to be∫

m

g1(θ)g2(θ)g3(θ)dθ = O

{
x

logA2 x

(∫ 1

0

|g1(θ)|2dθ
) 1

2
(∫ 1

0

|g2(θ)|2
) 1

2
}

= O

 x

logA2 x

∑
s≤x

1

 = O

(
x2

logA2 x

)
,

the cumulative contribution of m to P1(x, t1, t2; l′1, l
′
2, δ) via (86) being

O

(
x2δ

logA2 x

)
= O

(
x2

logA2−A1 x

)
= O

(
x2

logA4 x

)
(93)

for A4 = A2 −A1.
Still following for a short time longer the flow in XI, we almost treat matters

on the major arcs as we would for a binary form and disengage the function
g3(θ) from the integral by performing the summation over a outside the in-
tegral sign. Accordingly the integral of g1(θ)g2(θ)g3(θ) over M is expressed
as ∑

0<a≤t1
a≡b,mod δ

∫
M

g1,b(θ)g2,b(θ)e−2πil′3aθdθ,

to which the contribution of the arc centred on h/k is∑
0<a≤t1

a≡b,mod δ

e−2πihal′3/k

∫ 1/M

−1/M

g1,a(h/k + φ)g2,a(h/k + φ)e−2πil′3aφdφ(94)

=
∑

0<a≤t1
a≡b,mod δ

e−2πihal′3/kI
(1)
l′3,a

, say.

But now we must begin to part company with the previous treatment for two
reasons. The first is that here it is convenient to deduce from (86) that the
total impact of the above arc on P1(x, t1, t2; l′1, l

′
2; δ) is∑

0<a≤t1

e−2πihal′3/kI
(1)
l′3,a

;(95)

the second is that, since we no longer have an earlier authority for formulae
for the exponential sums in the integrand of I(1)

l′3,a
, we are obliged to continue

by investigating sums of the type

g(h/k + φ, y) = ga(h/k + φ, y) =
∑
s≤y

s≡a,mod δ

e2πisl(h/k+φ)
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for 0 ≤ y ≤ x, (h, k) = 1, and an integer l of magnitude less than logA1 x.
Beginning with the case where φ = 0, we have

g(h/k, y) =
∑

0<c≤k

e2πiclh/k
∑
s≤y

s≡a,mod δ
s≡c,mod k

1

=
∑

0<c≤k
(δ,k)|(a−c)

e2πiclh/k
∑
s≤y

s≡c∗,mod [δ,k]

1,

where c∗ is the unique root, mod [δ, k], of the congruences

r ≡ a, mod δ, r ≡ c, mod k,(96)

when these are compatible. Therefore, by Criterion V and (96) and then by
(92),

g(h/k, y) =
∑

0<c≤k
c≡a,mod (δ,k)

e2πiclh/k

{
yf(c∗, [δ, k]) +O

(
x

log2A1+A2+A6 x

)}(97)

= y
∑

0<c≤k
c≡a,mod (δ,k)

f(c∗, [δ, k])e2πiclh/k +O

(
kx

log2A1+A2+A6 x

)

= yΥa(h/k, l) +O

(
x

logA1+A2+A6 x

)
, say,

in which evidently

Υa(h/k, l) = O

 ∑
0<c≤k

c≡a,mod (δ,k)

1
[δ, k]

 = O

(
k

(δ, k)[δ, k]

)
= O(1).(98)



620 C. HOOLEY

From this and an application of partial summation, we then deduce that

g(h/k + φ, y) =
∫ y

0

e2πilφzd {g(h/k, z)}

(99)

= Υa(h/k, l)
∫ y

0

e2πilφzdz +
∫ y

0

e2πilφzd

{
O

(
x

logA1+A2+A6 x

)}
= Υa(h/k, l)

∫ y

0

e2πilφzdz +O

(
x

logA1+A2+A6 x

)
+O

(
xy|l||φ|

logA1+A2+A6 x

)
= Υa(h/k, l)

∫ y

0

e2πilφzdz +O

(
x

logA6 x

)
whenever |φ| ≤ 1/M = (logA2 x)/x as in the integral in (94), to which we now
return.

Let us now set

υ1(φ) =
∫ x

0

e2πil′1φz1dz1, υ2(φ) =
∫ x

t2

e−2πil′2φz2dz2,

where evidently υ1(φ), υ2(φ) are both O(x) and O(1/|φ|). Then, by (94), (99)
and (98),

I
(1)
l′3,a

= Υa(h/k, l′1)Υa(h/k,−l′2)
∫ 1/M

−1/M

υ1(φ)υ2(φ)e−2πial′3φdφ(100)

+O

(
x2

M logA6 x

)
= Υa(h/k, l′1)Υa(h/k,−l′2)

∫ ∞
−∞

υ1(φ)υ2(φ)e−2πial′3φdφ

+O(M) +O

(
x2

M logA6 x

)
= Υa(h/k, l′1)Υa(h/k,−l′2)

∫ ∞
−∞

υ1(φ)υ2(φ)e−2πial′3φdφ

+O

(
x

logA4 x

)
= Υa(h/k, l′1)Υa(h/k,−l′2)I(2)

l′1,l
′
2,a

+O(x log−A4 x), say,

so long as A6 in (97) be chosen large enough (in fact it suffices to take A6 =
2A2 − A1). Next, on being interpreted as a double integral with variables
of integration z1, z2, the product v1(φ)ψ2(φ) in the integrand of I(2)

l′1,l
′
2,a

is
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transformed by the substitution

Z1 = l′1z1 − l′2z2, Z2 = z2

of absolute modulus l′1 so that it becomes a Fourier transform of the type

1
l′1

∫ ∞
−∞

Φ(Z1)e2πiZ1φdZ1.

Consequently, since the limits t2 and x for z2 imply that 0 ≤ z1 ≤ x when
both l′1z1 − l′2z2 − l′3a = l′1(z1 − a)− l′2(z2 − a) and a ≤ t1 ≤ t2, we see that

I
(2)
l′1,l
′
2,a

=
1
l′1

Φ(al′3) =
x− t2
l′1

after a short examination, whence

I
(1)
l′3,a

= Υa(h/k, l′1)Υa(h/k, l′2)
x− t2
l′1

+O

(
x

logA4 x

)
(101)

by (100).
The effect of the remainder term above on the proceedings is easily settled.

Indeed, on a single arc (92), its influence is

O

(
t1x

logA4 x

)
= O

(
x2

logA4 x

)
by (95), wherefore its total contribution to P1(x, t1, t2; l′1, l

′
2; δ) via the major

arcs is inferred to be

O

 x2

logA4 x

∑
k|δl′3

φ(k)

 = O

(
x2δl′3

logA4 x

)
(102)

= O

(
x2

logA4−A1 x

)
= O

(
x2

logA7 x

)
by (92) and a summation over the appropriate values of h and k.

As for the explicit term in (101), its placement in (95) followed by a sum-
mation over all values of h and k answering to the major arcs produces the
element

P3(x,t1, t2; l′1, l
′
2; δ)(103)

=
x− t2
l′1

∑
k|δl′3

∑
0<a≤t1

∑
0<h≤k
(h,k)=1

Υa(h/k, l′1)Υa(h/k,−l2)e−2πihal′3/k

=
x− t2
l′1

∑
k|δl′3

∑
0<a≤t1

Y (a, k)

=
x− t2
l′1

P4(x, t1; l′1, l2; δ), say,
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in P1(x, t1, t2; l′1, l
′
2; δ). The sum P4(x, t1; l′1, l

′
2; δ) in this is essentially a com-

position of singular series but, not being amenable to the methods of XI
owing to the generality of the function f(a, l), warrants a Section to itself for
its treatment.

14. Estimations of P4(x, t1; l′1, l
′
2; δ)

First, by (103) and (97),

Y (a, k) =
∑

0<h≤k
(h,k)=1

∑
0<c1,c2≤k

c1≡c2≡a,mod (δ,k)

e2πi(l′1c1−l
′
2c2−l

′
3a)h/kf(c∗1, [δ, k])f(c∗2, [δ, k])

(104)

=
∑

0<c1,c2≤k
c1≡c2≡a,mod (δ,k)

f(c∗1, [δ, k])f(c∗2, [δ, k])
∑

0<h≤k
(h,k)=1

e2πi(l′1c−l
′
2c2−l

′
3a)h/k,

in which the inner sum is the Ramanujan sum

ck(l′1c1 − l′2c2 − l′3a) =
∑
d|k

d|(l′1c1−l
′
2c2−l

′
3a)

µ

(
k

d

)
d.

Hence, by transforming the variables of outer summation in (104) into
numbers c∗1, c∗2 implicitly defined by (96), we deduce that

Y (a, k) =
∑
d|k

µ

(
k

d

)
d

∑
0<c∗1 ,c

∗
2≤[δ,k]

c∗1≡c
∗
2≡a,mod δ

l′1c
∗
1−l
′
2c
∗
2−l
′
3a≡0,mod d

f(c∗1, [δ, k])f(c∗2, [δ, k])

=
∑
d|k

µ

(
k

d

)
d
∑(1)

a,k,d,δ
, say,

and then gain through (103) the equation

P4(x, t1; l′1, l
′
2; δ) =

∑
k|δl′3

∑
d|k

µ

(
k

d

)
d
∑

0<a≤t1

∑(1)

a,k,d,δ
(105)

=
∑
k|δl′3

∑
d|k

µ

(
k

d

)
d
∑(2)

t1,k,d,δ
, say,

whose further development depends on a close examination of the conditions
of summation in

∑(1)
a,k,d,δ.

Setting

c∗1 = a+ e1, c∗2 = a+ e2,
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for a given value of a in the above conditions of summation, we require that

e1 ≡ 0, mod δ, e2 ≡ 0, mod δ,(106)

and

l′1e1 ≡ l′2e2, mod d,(107)

because from l′3 = l′1 − l′2 in (82) we infer that l′1c
∗
1 − l′2c∗2 − l′3a = l′1(c∗1 −

a)− l′2(c∗2 − a). To solve (107) let (l′1, d) = d1 and (l′2, d) = d2 with the initial
consequence that we may write

l′1 = d1l
′′
1 , l′2 = d2l

′′
2 ,(108)

where

d1d2|d, (l′1, d2) = (l′2, d1) = (l′′1 , d/d1d2) = (l′′2 , d/d1d2) = 1(109)

by (80). Then, since d1|l′2e2 and d2|l′1e1 in (107), we may also say that e1 =
d2e
′
1, e2 = d1e

′′
2 so that l′1e

′
1 ≡ l′′2e′2, mod d/d1d2, the incongruent solutions of

which, mod d/d1d2, are provided by

e′1 ≡ l′′2ρ, mod d/d1d2, e′2 ≡ l′′1ρ, mod d/d1d2

for 0 ≤ ρ < d/d1d2. The corresponding solutions of (107) being

e′1 ≡ l′2ρ, mod d/d1d2, e′2 ≡ l′1ρ, mod d/d1d2,(110)

by (105), we then need to select those values of ρ for which these determina-
tions are compatible with (106) and thus arrive at the simultaneous conditions

δ1|l′2ρ, δ2|l′1ρ

on putting

δ1 = (δ, d/d1), δ2 = (δ, d/d2).(111)

Since d1|l′1 and d2|l′2, these conditions imply and are implied by

δ3|ρ

where

δ3 = (δ, d/d1d2),(112)

and we may thus restrict attention to the solutions of (110) that are of the
form

e1 ≡ l′2δ3σ, mod d/d1, e2 ≡ l′1δ3σ, mod d/d2,(113)

for 0 ≤ σ < d/d1d2δ3.
Our path from this initial result will be eased if we record at once some

simple relations between the entities δ, d, d1, d2, and those defined in (111)
and (112). The first is that d/d1d2δ3 is a divisor of both d/d1δ1 and d/d1δ2,



624 C. HOOLEY

the second that δ3 is a divisor of both δ1 and δ2, while the third is the slightly
less obvious

δ1δ2 = (δ, d)δ3,

which implies that

[δ, d][δ, d/d1d2] = [δ, d/d1][δ, d/d2].(114)

Also [δ, d]/[δ, d/d1] and [δ, d]/[δ, d/d2] are co-prime integers.
Let us write δ†1 = δ/δ1, δ†2 = δ/δ2 to assist us in the calculation of the si-

multaneous solutions of (106) and (107). Then the first part of (106) demands
that

e1 = δe†1 = δ1δ
†
1e
†
1

for some integer e†1 that must then satisfy the congruence

δ†1e
†
1 ≡ (l′2δ3/δ1)σ, mod d/d1δ,

stemming from (113), where the co-primality of δ†1 and d/d1δ1 deduced from
(111) means that there is a number δ

†
1 such that δ†1δ

†
1 ≡ 1, mod d/d1δ1. Hence

e†1 ≡ (l′2δ3/δ1)δ
†
1σ, mod d/d1δ1,

and thus

e1 ≡ (l′2δ3/δ1)δ
†
1δσ ≡ σV1, mod [δ, d/d1], say,(115)

the corresponding solution in e2 being

e2 ≡ (l′1δ3/δ2)δ
†
2δσ ≡ σV2, mod [δ, d/d2], say,(116)

where δ†2δ
†
2 ≡ 1, mod d/d2δ2. But for these formulae to participate profitably

in the expression to be unfolded for
∑
a,k,d,δ it is needful to compare V1

and V2 to the modulus [δ, d/d1d2], to which end we write δ†3 = δ/δ3 and
define δ

†
3, mod d/d1d2δ3, by δ†3δ

†
3 ≡ 1, mod d/d1d2δ3. Then, interpreting δ

†
1

as the multiplicative inverse of δ†1, mod d/d1d2δ3, we move from the equality
δ†3 = (δ1/δ3)δ†1 to the congruence

δ
†
1 ≡ (δ1/δ3)δ

†
3, mod d/d1d2d3,

so that

V1 ≡ l′2δδ
†
3, mod [δ, d/d1d2],

and also

V2 ≡ l′1δδ
†
3, mod [δ, d/d1d2]
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in like manner. If now we appeal to the conditions k|l′3δ and d|k in the
summations in (105), we have [δ, k]|l′3δ and conclude that

V2 − V1 ≡ l′3δδ
†
3 ≡ 0, mod [δ, d/d1d2],(117)

by using (82).
Having elicited the simultaneous solutions of (106) and (107) as (115) and

(116) and then taking their incongruent determinations, mod [δ, k], we revert
to (105) to discover that

∑(1)

a,k,d,δ
=

∑
0≤σ<d/d1d2δ3

∑
0≤r<[δ,k]/[δ,d/d1]∑

0≤s<[δ,k]/[δ,d/d2]

f(a+ σV1 − r[δ, d/d1], [δ, k])

× f(a+ σV2 + s[δ, d/d2], [δ, k])

and then get

∑(2)

t1,k,d,δ
=
(

t1
[δ, k]

+O(1)
)∑(2)

k,k,d,δ
,(118)

whither we come by the periodicity of f(b, [δ, k]), mod [δ, k], as a function of
b. Next because of the presence of the residue a in the argument in the first
factor in the summand of

∑(2)
k,k,d,δ quâ a quadruple sum over a, r, s, σ, this

argument can attain any value j, mod [δ, k], whence

∑(2)

k,k,d,δ
=

∑
0<j≤[δ,k]

f(j, [δ, k])
∑

0≤σ<d/d1d2δ3

(119)

∑
0≤r<[δ,k]/[δ,d/d1]

∑
0≤s<[δ,k]/[δ,d/d1]

f(j + σ(V2 − V1)

+ r[δ, d/d1] + s[δ, d/d2], [δ, k]).

Moreover, by a double application of principle (24) enunciated in §3, the
innermost sum equals

f(j + σ(V2 − V1) + r[δ, d/d1], [δ, d/d2])

=
∑

0≤s<[δ,d]/[δ,d/d2]

f(j + σ(V2 − V1) + r[δ, d/d1] + s[δ, d/d2], [δ, d]),
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its sum over the given range of r being

∑
0≤r<[δ,k]/[δ,d/d1]
0≤s<[δ,d]/[δ,d/d2]

f(j + σ(V2 − V1) + r[δ, d/d1] + s[δ, d/d2], [δ, d])

(120)

=
[δ, k]
[δ, d]

∑
0≤r<[δ,d]/[δ,d/d1]
0≤s<[δ,d]/[δ,d/d2]

f(j + σ(V2 − V1) + r[δ, d/d1] + s[δ, d/d2], [δ, d]).

In this, by (114) and neighbouring comments,

r[δ, d/d1] + s[δ, d/d2]
[δ, d/d1d2]

=
[δ, d/d1][δ, d/d2]
[δ, d][δ, d/d1d2]

(
r

[δ, d]
[δ, d/d2]

+ s
[δ, d]

[δ, d/d1]

)
=
(
r

[δ, d]
[δ, d/d2]

+ s
[δ, d]

[δ, d/d1]

)
runs through all residues, to the modulus

[δ, d]2/[δ, d/d2][δ, d/d1] = [δ, d]/[δ, d/d1d2],

whereupon we infer that (120) equals

[δ, k]
[δ, d]

∑
0≤q<[δ,d]/[δ,d/d1d2]

f(j + σ(V2 − V1) + q[δ, d/d1d2], [δ, d])

=
[δ, k]
[δ, d]

f(j + σ(V2 − V1), [δ, d/d1d2]) =
[δ, k]
[δ, d]

f(j, [δ, d/d1d2])

in virtue of (117). Hence, completing the two outer summations over σ and
j in (119), we conclude that∑(2)

k,k,d,δ
=

[δ, k]d
[δ, d]d1d2δ3

∑
0<j≤[δ,k]

f(j, [δ, d/d1d2])f(j, [δ, k])

=
[δ, k]d

[δ, d]d1d2δ3

∑
0<j1≤[δ,d/d1d2]

f(j, [δ, d/d1d2])

∑
0<j≤[δ,k]

j≡j1,mod [δ,d/d1d2]

f(j, [δ, k])

=
[δ, k]d

[δ, d]d1d2δ3

∑
0<j1≤[δ,d/d1d2]

f2(j1, [δ, d/d1d2])

=
[δ, k]d

[δ, d]d1d2δ3
M([δ, d/d1d2])

in the notation of (11).



ON THE BARBAN-DAVENPORT-HALBERSTAM THEOREM: XVIII 627

Everything is in place for the construction of the estimate we need for
P4(x, t1, t2; l′1, l

′
2; δ). By (105), (118), and the last equation above,

P4(x, t1, t2; l′1, l
′
2; δ) = t1

∑
k|δl′3

∑
d|k

µ

(
k

d

)
d2

[δ, d]d1d2δ3
M([δ, d/d1d2])

+O

∑
k|δl′3

[δ, k]
∑
d|k

d2

[δ, d]d1d2δ3
M([δ, d/d1d2]

 ,

the remainder term in which we infer to be

O

δ∑
k|δl′3

k
∑
d|k

1

 = O
{
δ(δl′)1+ε

}
= O

(
log3A1 x

)
from relations (11) and (23). On the other hand, the explicit term is

t1
∑

drs=δl′3

d2

[δ, d]d1d2δ3
M([δ, d/d1d2])µ(r)

= t1
∑
d|δl′3

d2

[δ, d]d1d2δ3
M([δ, d/d1d2])

∑
rs=δl′3/d

µ(r)

= t1

(
d2

[δ, d]d1d2δ3
M([δ, d/d1d2])

)
d=δl′3

= t1l
′
3M(δl′3)

because when d = δl′3 we have (i) [δ, d] = δl′3, (ii) d1d2δ3 = d1d2(δ, d/d1d2) =
(δd1d2, d) = (δd1d2, δl

′
3) = δ by the co-primality of l′1l

′
2 and l′3, and (iii)

[δ, d/d1d2] = [δ, (δ/d1d2)l′3] = δl′3. Therefore

P4(x, t1; l′1, l
′
2; δ) = t1l

′
3M(δl′3) +O

(
log3A1 x

)
(121)

on the continuing assumption that (89) holds.

15. Estimate for P (x, u, T ; l′1, l
′
2; δ) and return to J†3(x, u;Q)

From (103) and (121) we deduce that

P3(x, t1, t2; l′1, l
′
2; δ) = t1(x− t2)

l′3M(δl′3)
l′1

+O
(
x log3A1 x

)
and then from (102) and (93) that

P1(x, t1, t2; l′1, l
′
2; δ) = t1(x− t2)

l′3M(δl′3)
l′1

+O

(
x2

logA8 x

)
,(122)

at which point we rejoin the road traversed in XI, §8 in order to draw out the
behaviour of P (x, u, T ; l′1, l

′
2; δ).
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Making this part of the journey in a slightly more economical manner than
before, we introduce the integrals

P5(x, u, T ; l′1, l
′
2; δ) = P5(x, u, T ) =

∫ x

T

P (x, u, T1)dT1

and ∫ x−T

0

P1(x,min(u, t), t+ T )dt,

which are identical because, by (85) and the definition following it, the former
is ∫ x

T

∑
Θ

0<a≤u;a+T1<s2≤x

1 · dT1 =
∑
Θ

0<a≤u;a+T<s2≤x

∫ s2−a

T

dT1

=
∑
Θ

0<a≤u;a+T<s2≤x

(s2 − a− T )

and the latter∫ x−T

0

∑
Θ

0<a≤u
a≤t;t+T<s2≤x

1 · dt =
∑
Θ

0<a≤u
a+T<s2≤x

∫ s2−T

a

dt

=
∑
Θ

0<a≤u;a+T<s2≤x

(s2 − a− T ).

Therefore, by the estimate (122) just obtained,

P5(x, u, T ) =
l′3M(δl′3)

l′1

∫ x−T

0

min(u, t)(x− T − t)dt(123)

+O

(
x2(x− T )

logA8 x

)
=
l′3M(δl′3)

l′1
I(x, u, T ) +O

(
x2(x− T )

logA8 x

)
,

where, for u > x− T ,

I(x, u, T ) =
∫ x−T

0

t(x− T − t)dt =
1
6

(x− T )3
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but where, for u < x− T ,

I(x, u, T ) =
∫ u

0

t(x− T − t)dt+
∫ x−T

u

u(x− T − t)dt

=
∫ x−T

0

t(x− T − t)dt−
∫ x−T

u

(t− u)(x− T − t)dt

=
∫ x−T

0

t(x− T − t)dt−
∫ x−u−T

0

t′(x− u− T − t′)dt′

=
1
6

(x− T )3 − 1
6

(x− u− T )3.

Since it is readily verified that I(x, u, T ) is twice differentiable with respect
to T with a second derivative that is O(x − T ), the sum P (x, u, T ) can now
be calculated from the estimate (123) for its Césaro mean by means of a ‘de
la Vallée Poussin differentiation’. If 0 < H < x− T, T , then the inequality

1
H
{P5(x, u, T )− P5(x, u, T +H)} ≤ P (x, u, T )

≤ 1
H
{P5(x, u, T −H)− P5(x, u, T )}

with (11) and (23) implies that

P (x, u, T ) = − l
′
3M(δl′3)
l′1

∂

∂T
I(x, u, T ) +O(Hx) +O

(
x2(x− T )
H logA8 x

)
.

Hence, the choice of H as (x − T ) log−
1
2A8 x being legitimate in the light of

the condition stated in (85), we conclude that

P (x, u, T ) =
1
2
l′3M(δl′3)

l′1
I1(x, u, T ) +O

(
x2

log
1
2A8 x

)
,(124)

in which

I1(x, u, T ) =
{

(x− T )2, if u ≥ x− T,
(x− T )2 − (x− u− T )2, if u < x− T .

Equipped with (124), we are at long last able to develop (84), remarking
on account of the condition in (82) that l′3 can replace l′2 in the summatory
conditions and thus obtaining the equation

J†3(x, u;Q) =
∑

δ<x/Q

∑
l′3<l

′
1<x/Qδ

{
1
2
l′3M(δl′3)

l′1
I1(x, u,Qδl′1) +O

(
x2

logA9 x

)}

because the number Qδl′1 therein exceeds x log−A1 x by (59). Then, if we take
a short cut instead of the previous unnecessarily roundabout route, we reach
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this Section’s conclusion by shewing that

J†3(x, u;Q) =
∑

δ<x/Q

∑
l′3<l

′
1<x/Qδ

{
1
2
δl′3
δl′1

M(δl′3)I1(x, u,Qδl′1) +O

(
x2

logA9 x

)}(125)

=
1
2

∑
l3<l1<x/Q

{
l3M(l3)
l1

I1(x, u,Ql1) +O

(
x2

logA9 x

)}

=
1
2

∑
l3<l1<x/Q

l3M(l3)
l1

I1(x, u,Ql1) +O

(
x2

logA9−A1 x

)

= J††3 (x, u;Q) +O

(
x2

logA x

)
, say,

in the knowledge that l′1, l′3 indicated co-prime integers, it being clear that
any value of A may be taken by our having chosen A2 and then A6 sufficiently
large.

16. Estimations of J††3 (x, u;Q) and G3(x, u;Q1, Q2)

Again following for a while the road taken in XI (§9), we discern the sum

U(v) =
1
2

∑
l3<l1<v

(v − l1)2l3M(l3)
l1

that is present in the relation

J††3 (x, u;Q) = Q2{U(y)− U(y − h)},(126)

where y = x/Q, h = u/Q and where therefore

h < 1, y − h > 1(127)

by (59). An investigation of U(v) must then follow, the principal difficulty
being to take advantage of the smoothing element that is latent in the sum.

Dropping the subscript from l3 to lighten the notation, we have

U(v) =
1
2

∑
l<v

lM(l)
∑

l<l1<v

(v − l1)2

l1
=

1
2

∑
l<v

lM(l)V (v, l), say,(128)

and
1
2
V (v, l) =

1
2
V1(v, v)− 1

2
V1(v, l),(129)

where
1
2
V1(v, w) =

1
2

∑
l≤w

(v − l)2

l
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and

R2(v) =
1
2
V1(v, v)− 1

2
v2 log v − 1

2

(
γ − 3

2

)
v2 − 1

2
v = O(1)(130)

by our basic summation formula (27). Next, for any positive integer w, we
also have the formula

1
2
V1(v, w) =

1
2
v2
∑
l≤w

1
l
− v

∑
l≤w

1 +
1
2

∑
l≤w

l

=
1
2
v2
∑
l≤w

1
l
− vw +

1
4
w2 +

1
4
w,

whence first, on comparing these two formulae for v = w, we find that∑
l≤w

1
l

= logw + γ +
1

2w
+

2R2(w)
w2

and then that
1
2
V1(v, w) =

1
2
v2

(
logw + γ +

1
2w

+
2R2(w)
w2

)
− vw +

1
4
w2 +

1
4
w.

Therefore, by this, (129), and (130), we secure an equation

1
2
V (v, l) =

1
2
v2 log

v

l
− 3

4
v2 + vl − 1

4
l2 − v2

4l
(131)

+
1
2
v − 1

4
l +R2(v)− v2R2(l)

l2

that is the analogue of the equation following (83) in XI. But, in exploiting
this formula, we must again strike out on an entirely new path because our
previous method is not sufficiently sensitive to meet our new needs.

We orientate ourselves by turning toward the identities

l

(
1
2
v2 log

v

l
− 3

4
v2 + vl − 1

4
l2
)

=
3
4

∫ v

l

(t− l)2dt− v2

4

∫ v

l

(t− l)2dt

t2
(132)

and

l

(
v2

4l
− 1

2
v +

1
4
l

)
=

1
4

(v − l)2.(133)

The former is not merely a felicitous accident but has an explicable genesis
within the present scene, although its treatment is most expeditiously con-
ducted by verifying that its right side is equal to

1
4

(v − l)3 − v2

4

v[
t

t− 2l log t− l2

t

]
.
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At any rate, whatever its origin, (132) is taken with (128), (131), and (133)
to give

U(v) =
3
4

∑
l<v

M(l)
∫ v

l

(t− l)2dt− v2

4

∑
l<v

M(l)
∫ v

l

(t− l)2

t2
dt

− 1
4

∑
l<v

(v − l)2M(l) +R2(v)
∑
l<v

lM(l)− v2
∑
l<v

R2(l)M(l)
l

=
3
4

∫ v

1

∑
l<t

(t− l)2M(l)dt− v2

4

∫ v

1

1
t2

∑
l<t

(t− l)2M(l)dt

− 1
4

∑
l<v

(v − l)2M(l) +R2(v)
∑
l<v

lM(l)− v2
∑
l<v

R2(l)M(l)
l

in the first place. Hence, by (130) and the definition of T ∗(t) in (18),

U(v) =
{

3
2

∫ v

1

t2T ∗(t)dt− v2

2

∫ v

1

T ∗(t)dt
}
− 1

2
v2T ∗(v)

(134)

+

R2(v)
∑
l<v

lM(l) + v2
∑
l≥v

R2(l)M(l)
l

− v2
∞∑
l=1

R2(l)M(l)
l

= U1(v)− U2(v) + U3(v) +B3v
2, say,

the first three constituents in which will be subject to the differencing process
of (126).

We readily confirm that

U3(y)− U3(y − h) = {R2(y)−R2(y − h)}
∑
l<y−h

lM(l)

+
{
y2 − (y − h)2

} ∑
l≥y−h

R2(l)M(l)
l

+
∑

y−h≤l<y

lM(l)
{
R2(y)− y2R2(l)

l2

}
,

the first two terms in which are

O

h
y

∑
l<y

1

 = O(h) and O

hy ∑
l≥y−h

1
l2

 = O(h)

by (23), (127), (130), and Lemma 1. Also, since h < 1, the third term is zero
unless the interval [y−h, y) contain a single integer l = y−θh with 0 < θ ≤ 1,
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in which case, by Lemma 1 and (130) again, this term is merely

O {R2(y)−R2(l)}+O

(
hR2(l)
l

)
= O

(
h

y

)
.

Thus

U3(y)− U3(y − h) = O(h).(135)

The next constituent in (134) to be differenced is the subject of Lemma 3,
which states that

U2(y)− U2(y − h) =
1
4

Φ(0)
{
y2 log y − (y − h)2 log(y − h)

}
(136)

+
1
4
B2

{
y2 − (y − h)2

}
+O(h).

The most important part of U(v) is U1(v). By (19) (see Lemma 3 for value
of B2), this equals

3
4

∫ v

1

{
Φ(0)t2 log t+B2t

2 + Φ(−1)t
}
dt

− v2

4

∫ v

1

(
Φ(0) log t+B2 +

Φ(−1)
t

)
dt

+
v2

4

∫ v

1

I∗(t)dt− 3
4

∫ v

1

t2I∗(t)dt

=
3
4

v

1

[
1
3

Φ(0)t3 log t− 1
9

Φ(0)t3 +
1
3
B2t

3 +
1
2

Φ(−1)t2
]

− v2

4

v

1

[
Φ(0)t log t− Φ(0)t+B2t+ Φ(−1) log t

]
+
v2

4

∫ v

1

I∗(t)dt− 3
4

∫ v

1

t2I∗(t)dt

=
1
6

Φ(0)v3 − 1
4

Φ(−1)v2 log v +
{
v2

4

∫ v

1

I∗(t)dt− 3
4

∫ v

1

t2I∗(t)
}

+B3v
2 +B4

=
1
6

Φ(0)v3 − 1
4

Φ(−1)v2 log v + U4(v) +B3v
2 +B4, say,

wherefore

U1(y)− U1(y − h) =
1
6

Φ(0)
{
y3 − (y − h)3

}
(137)

− 1
4

Φ(−1)
{
y2 log y − (y − h)2 log(y − h)

}
+ U4(y)− U4(y − h) +B3

{
y2 − (y − h)2

}
.
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The difference U4(y) − U4(y − h) represents an indispensable aspect of
the analysis that the formulation of equation (132) was designed to uncover.
Requiring some delicacy in its treatment, especially as we shall need to differ-
entiate between the cases where D1 in (6) is zero and non-zero, it can at this
stage only undergo an initial metamorphosis in preparation for further work
when the sum G∗3(x, u;Q1, Q2) is considered in the next Section. Accordingly,
deploying (22) and Lemma 2 with their implications regarding I∗(t) and its
derivatives, we merely transform U4(y)− U4(y − h) into

hU ′4(y) +
1
2
h2U ′′4 {y − θ(h, y)},

where

0 < θ(h, y) < h(138)

in conformity with our earlier suppositions embedded in (127). Hence

U4(y)− U4(y − h) =
1
2
h

(
y

∫ y

1

I∗(t)dt− y2I∗(y)
)

(139)

+
1
4
h2

(∫ y1

1

I∗(t)dt− y1I
∗(y1)− y2

1

dI∗(y1)
dy1

)
y1=y−θ(h,y)

=
1
2
h

(
y

∫ y

1

I∗(t)dt− y2I∗(y)
)

+
1
4
h2

∫ y−θ(h,y)

1

I∗(t)dt+O(h2).

We are ready to regress to (126) by way of (134), (135), (136), (137), and
(139), which imply that

U(y)− U(y − h) =
1
6

Φ(0){y3 − (y − h)3}(140)

+
1
4
{Φ(0)− Φ(−1)}{y2 log y − (y − h)2 log(y − h)}

+
1
2
h

(
y

∫ t

1

I∗(t)dt− y2I∗(y)
)

+
1
4
h2

∫ y−θ(h,y)

1

I∗(t)dt+B5{y2 − (y − h)2}+O(h).
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Therefore, taking Q in (126) to be Q1 and Q2 with the corresponding values
of y and h, we deduce that

J††3 (x, u;Q1)− J††3 (x, u;Q2) =
1
6

Φ(0)
(

1
Q1
− 1
Q2

){
x3 − (x− u)3

}
− 1

4
{Φ(0) + Φ(−1)}

{
x2 − (x− u)2

}
log

Q2

Q1
+

1
2
ux

∫ x/Q1

x/Q2

I∗(t)dt

− 1
2
ux2

{
1
Q1

I∗
(
x

Q1

)
− 1
Q2

I∗
(
x

Q2

)}
+

1
4
u2

∫ x/Q1−θ(x/Q1,u/Q1)

x/Q2−θ(x/Q2,u/Q2)

I∗(t)dt+O(uQ2)

because the terms corresponding to the penultimate item in (140) annihilate
themselves. From this then flows

J††3 (x, u;Q1)− J††3 (x, u;Q2)(141)

=
1
6

Φ(0)
(

1
Q1
− 1
Q2

){
x3 − (x− u)3

}
− 1

4
{Φ(0) + Φ(−1)}

{
x2 − (x− u)2

}
log

Q2

Q1

+
1
2
u

[
x

∫ x/Q1

x/Q2

I∗(t)dt− x2

{
1
Q1

I∗
(
x

Q1

)
− 1
Q2

I∗
(
x

Q2

)}]

+O

(
u2 log

2Q2

Q1

)
+O(uQ2)

=
1
6

Φ(0)
(

1
Q1
− 1
Q2

){
x3 − (x− u)3

}
− 1

4
{Φ(0) + Φ(−1)}

{
x2 − (x− u)2

}
log

Q2

Q1

+
1
2
uG4(x;Q1, Q2) +O(uQ2), say,

through (22) and (138) and then through the inequalities u < Q1 and
log 2Q2/Q1 = O(Q2/Q1).

The peak represented by G3(x, u;Q1, Q2) has at last been almost crested
because (73), (76), (77), (78), (79), and (141) altogether provide us with
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G3(x, u;Q1, Q2) = O(Q2u) + Φ(0)
{
x2 − (x− u)2

}
log

Q2

Q1
(142)

+
1
2
C
{
x2 − (x− u)2

}
log

Q2

Q1

+
1
3

Φ(0)
(

1
Q1
− 1
Q2

){
x3 − (x− u)3

}
− 1

2
{Φ(0) + Φ(−1)}

{
x2 − (x− u)2

}
log

Q2

Q1

+ uG4(x;Q1, Q2) +O(Q2u) +O

(
x2

logA x

)
=

1
3

Φ(0)
(

1
Q1
− 1
Q2

){
x3 − (x− u)3

}
+

1
2

(C + Φ(0)− Φ(−1))
{
x2 − (x− u)2

}
log

Q2

Q1

+ uG4(x, u;Q1, Q2) +O(uQ2) +O

(
x2

logA x

)
.

17. The asymptotic formula for G∗(x, u;Q1, Q2)

The evaluation of G∗(x, u;Q1, Q2) results from (142) and what has gone
before. First, proceeding from G3(x, u;Q1, Q2) to G∗3(x, u;Q1, Q2) by partial
summation, let us transform (142) into

G∗3(x, u;Q1, Q2) =
1
3

Φ(0)
{
x3 − (x− u)3

}
log

Q2

Q1
(143)

+
1
2

(C + Φ(0)− Φ(−1))
{
x2 − (x− u)2

}
(Q2 −Q1)

+ u

∫ Q2

Q1

tdG4(x;Q1, t) +O(uQ2
2) +O

(
x2Q2

logA x

)
=

1
3

Φ(0)
{
x3 − (x− u)3

}
log

Q2

Q1

+
1
2

(C + Φ(0)− Φ(−1))
{
x2 − (x− u)2

}
(Q2 −Q1)

+ uG∗4(x;Q1, Q2) +O(uQ2
2) +O

(
x3

logA x

)
, say,

which furnishes an estimate for the third constituent in the formula (47) for
G∗(x, u;Q1, Q2). With expressions (52) and (71) for the first and second
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constituents, this produces the preliminary estimate

G∗(x, u;Q1, Q2)

(144)

= Φ(0)
[
x2u− x

{
x2 − (x− u)2

}
+

1
3
{
x3 − (x− u)3

} ]
log

Q2

Q1

+
[
− Φ(0)ux+

1
2
{C + Φ(0)− Φ(−1)}

{
x2 − (x− u)2

} ]
(Q2 −Q1)

+ uG∗4(x;Q1, Q2)

+O
(
x2Q

1
2 +ε
2

)
+O(uQ2

2) +O
(
x3 log−A x

)
=

1
3

Φ(0)u3 log
Q2

Q1
+ {C − Φ(−1)}ux(Q2 −Q1)

− 1
2
{C + Φ(0)− Φ(−1)}u2(Q2 −Q1) + uG∗4(x;Q1, Q2)

+O(uQ2
2) +O

(
x3 log−A x

)
= {C − Φ(−1)}u(Q2 −Q1)x+ uG∗4(x;Q1, Q2)

+O(uQ2
2) +O

(
x3 log−A x

)
provided that we still recall the given conditions (46).

It remains to examine the entity G∗4(x;Q1, Q2) that is defined by means of
(19), (141) and (143). Recollecting that I∗(u) certainly has a continuous first
differential coefficient, we first set

Ξ(s1) = x2I∗ (x/s1)

and through the substitution s1 = x/s evaluate the first entity

x

∫ x/Q1

x/t

I∗(s)ds

in G4(x;Q1, t) as ∫ t

Q1

Ξ(s1)ds1

s2
1

when Q1 ≤ t ≤ Q2. Hence

G4(x,Q1, t) =
∫ t

Q1

Ξ(s1)ds1

s2
1

+
Ξ(t)
t
− Ξ(Q1)

Q1
=
∫ t

Q1

Ξ′(s1)ds1

s1
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and we conclude that

G∗4(x : Q1, Q2) =
∫ Q2

Q1

Ξ′(t)dt = Ξ(Q2)− Ξ(Q1)(145)

= x2I∗ (x/Q2)− x2I∗ (x/Q1) .

At long last our theorem on G∗(x, u;Q1, Q2) is available when in addition
to (46) we assume that Q2 = o(x) in accordance with (45)2 and the succeeding
comment, although there are two cases to consider. In the first case where
D1 = C−Φ(−1) > 0, we merely extract from (145) and (22) the order relation

G∗4(x;Q1, Q2) = o(Q2x)

and then draw from (142) the asymptotic formula

G∗(x, u;Q1, Q2) = D1u(Q2 −Q1)x+ o(uQ2x) +O
(
x3 log−A x

)
,

which may be stated alternatively as

G∗(x, u;Q1, Q2) = u {G(x,Q2)−G(x,Q1)}+ o(uQ2x) +O
(
x3 log−A x

)(146)

= uG(x;Q1, Q2) + o(uQ2x) +O
(
x3 log−A x

)
according to (6) and an obvious notation. In the other case, the first main
term in (144) is now zero but, for Q = Q1 or Q2,

x2I∗(x/Q) = G(x,Q) +O
(
x2 log−A x

)
by (20), for which reasons we then get

G∗(x, u;Q1, Q2) = u {G(x,Q2)−G(x,Q1)}+O(uQ2
2)(147)

+O
(
x3 log−A x

)
= uG(x;Q1, Q2) +O(uQ2

2) +O
(
x3 log−A x

)
through (145).

Of similar appearance, these two formulae when taken together seem to con-
firm our speculations about the connection between the sums G∗(x, u;Q1, Q2)
and G(x;Q1, Q2) for the larger values of Q1 and Q2. Yet some care needs to
be taken in their interpretation ere strict assertions are made. In the first
case, for instance, it is enough to assume, for any chosen positive constant
A1, that condition (46) is slightly strengthened by insisting that

u > x log−A1 x; u < Q1 <
1
2
Q2; Q2 = o(x),(148)
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in which event, taking A = 2A1 + 1, we know from (6) that

G(x;Q1, Q2) >
1
3
D1Q2x+O

(
x2

logA x

)
>

1
4
D1Q2x

with the result that

G∗(x, u;Q1, Q2) = uG(x;Q1, Q2) + o(uQ2x) +O

(
uQ2x

log x

)
(149)

= uG(x;Q1, Q2) + o(uQ2x)

∼ uG(x;Q1, Q2).

In the second case more discretion must be exercised because we have
demonstrated in XIV that the magnitude of G(x,Q) can then fluctuate fairly
violently. To accommodate this point it in fact suffices to fortify (46) by the
stipulations

u > x log−A1 x; u < Q1 < Q2
2/x; Q2 = o(x)(150)

together with the condition laid down in (45).
With these conditions and the value 2A1 +1 for A, it is seen from the basic

Barban-Davenport-Halberstam type formula (5) that

G(x,Q1) = O(Q1x) +O
(
x2 log−A1 x

)
= O(Q1x) = O(Q2

2)

and hence that

{G(x,Q2)−G(x,Q1)} /Q2
2 →∞,

from which again (149) follows in the light of the first condition in (150) that
asserts that

x3 log−2A1−1 x = o(uQ2
2) = o

[
u {G(x,Q2)−G(x,Q1)}

]
.

In summation, our deductions in this section amount to

Theorem 2. Defining E(x; a, k) as in the Introduction, let us write

G(x;Q1, Q2) =
∑

Q1<k≤Q2

∑
0<a≤k

E2(x; a, k)

and

G∗(x, u;Q1, Q2) =
∑

Q1<k≤Q2

k
∑

0<a≤u

E2(x; a, k);

let also A,A1 be any chosen positive constants. Then, under the condition
(46), we have either

G∗(x, u;Q1, Q2) = uG(x;Q1, Q2) + o(uQ2x) +O
(
x3 log−A x

)
or

G∗(x, u;Q1, Q2) = uG(x;Q1, Q2) +O(uQ2
2) +O

(
x3 log−A x

)
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according as the constant D1 in the asymptotic formula (6) of X be non-zero
or zero.

The asymptotic equality

G∗(x, u;Q1, Q2) ∼ uG(x;Q1, Q2)

holds if either

(a) D1 > 0 and (148) above be given (condition (45) then holds)

or

(b) D1 = 0 and both (45) and (150) above be given.

18. Asymptotic formulae for Gλ(x,Q) and Gµ,λ(x,Q)

Theorem 2 is the penultimate milestone on our journey. It has shed light
on the situation we have been exploring but is too hemmed in by subsidiary
conditions to be altogether satisfactory as a final result. Its main importance
is that it provides a portal for a theorem on Gλ(x,Q) that is subject to less
qualification and that is almost fully complementary to our conclusions in the
earlier §5.

The situation in which we shall work is still that described by the restraints
on x,Q given in (45)2 so that G(x,Q)/Q2 →∞ by (45)1. Then, for concise-
ness, we largely ignore the case D1 > 0 because this is the easier to treat and
because within it the unboundedness of G(x,Q)/Q2 is guaranteed.

With this proviso, we set

γ(x,Q) = G(x,Q)/Q2 and η =
1√

γ(x,Q)
,(151)

where, in particular, we have

η > (A′Q/x)
1
2 > log−A1 x(152)

by the basic theorem (5). Next, by an obvious extension of earlier notation,
let us write

Gλ(x;Q1, Q2) =
∑

Q1<k≤Q2

∑
0<a≤λk

E2(x; a, k) = Gλ(x,Q2)−Gλ(x,Q1)(153)

for λ < 1, at which point we slightly weaken earlier conventions regarding the
connections between Q1, Q2, and Q. Also, again by the basic theorem, we
have

Gλ(x,Q′) ≤ G(x,Q′) = O(Q′x) +O
(
x2 log−3A1 x

)
so that

Gλ(x,Q′) = λG(x,Q′) +O
(
x2 log−3A1 x

)
(154)
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whenever Q′ ≤ x log−3A1 x. Then, to form some kind of appropriate comple-
ment of (154) for larger values of Q′, we assume in the first place that

λ ≤ 1− 1√
γ(x,Q)

= 1− η = ρ, say,(155)

and then let R be the least positive integer such that

(1 + η)−RQ ≤ x log−3A1 x,(156)

denoting the left-side of the inequality by Q1 and then unrolling the sequence

P0 = Q1, P1 = (1 + η)Q1, . . . , PR = (1 + η)RQ1 = Q.

Thus prepared, we form the inequalities

1
Pr+1

∑
Pr<k≤Pr+1

k
∑

0<a≤λPr

E2(x; a, k) ≤ Gλ(x;Pr, Pr+1)

≤ 1
Pr

∑
Pr<k≤Pr+1

k
∑

0<a≤λPr+1

E2(x; a, k),

in the last member of which λPr+1 = λ(1 + η)Pr ≤ (1− η2)Pr < Pr. Hence,
in the language of (153), we have

1
Pr+1

G∗(x, λPr;Pr, Pr+1) ≤ Gλ(x;Pr, Pr+1) ≤ 1
Pr
G∗(x, λPr+1;Pr, Pr+1),

which through (147) yields both

Gλ(x;Pr, Pr+1) ≤ 1
Pr

{
λPr+1G(x;Pr, Pr+1) +O(λP 3

r+1) +O

(
x3

log7A1 x

)}
= (1− η)λG(x;Pr, Pr+1) +O(λP 2

r ) +O

(
x3

P0(1 + η)r log7A1 η

)
and

Gλ(x;Pr, Pr+1) ≥ 1
Pr+1

{
λPrG(x;Pr, Pr+1) +O(λPrP 2

r+1) +O

(
x3

log7A1 x

)}
> (1 + η)λG(x;Pr, Pr+1) +O(λP 2

r ) +O

(
x3

P0(1 + η)r log7A1 η

)
.
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Summing these inequalities for all indices r from 0 to R− 1, we deduce that

Gλ(x;Q1, Q) = λG(x;Q1, Q) +O {ληG(x;Q1, Q)}

+O

(
λQ2

∞∑
r=0

1
(1 + η)2r

)
+O

(
x2

log4A1 x

∞∑
r=0

1
(1 + η)r

)
= λG(x;Q1, Q) +O {ληG(x,Q)}

+O

(
λQ2

η

)
+O

(
x2

η log4A1 x

)
= λG(x;Q1, Q) +O

{
λQG

1
2 (x,Q)

}
+O

(
x2 log−3A1 x

)
in view of (156), (151), and (152). If now we add to this the equation (154)
formed with the value Q′ = Q1, we then conclude that

Gλ(x,Q) = λG(x,Q) +O
{
λQG

1
2 (x,Q)

}
+O

(
x2 log−3A1 x

)
.(157)

This has been established under the supposition λ ≤ ρ stated in (155).
But, in the other case where 1− η = ρ < λ < 1 we have

Gρ(x,Q) ≤ Gλ(x,Q) ≤ G(x,Q),

while also

Gρ(x,Q) = ρG(x,Q) +O
{
ρQG

1
2 (x,Q)

}
+O

(
x2 log−3A1 x

)
= λG(x,Q) +O {ηG(x,Q)}+O

{
λQG

1
2 (x,Q)

}
+O

(
x2 log−3A1 x

)
= λG(x,Q) +O

{
λQG

1
2 (x,Q)

}
+O

(
x2 log−3A1 x

)
and similarly

G(x,Q) = λG(x,Q) +O {ηG(x,Q)} = λG(x,Q) +O
{
λQG

1
2 (x,Q)

}
.

Thus (157) subsists in the formerly excluded range of λ and is therefore true
when D1 = 0 and (45)2 is given.

A somewhat similar method can manage the case D1 > 0 with the formula

Gλ(x,Q) = λG(x,Q) + o(λQx) +O
(
x2 log−2A1 x

)
= λD1Qx+ o(λQx) +O

(
x2 log−2A1 x

)
as its outcome. Therefore, since the final remainder terms in both this and
(157) are o{λG(x,Q)} when λ > log−A1 x, we obtain the result we sought in
the form of

Theorem 3. For any sequence satisfying Criterion V, let

Gλ(x,Q) =
∑
k≤Q

∑
0<a≤λk

E2(x; a, k).
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Then, if the sequence conform to condition (45), we have

Gλ(x,Q) ∼ λG(x,Q)

whenever x log−A1 x < λ ≤ 1, Q > x log−A1 x, and Q = o(x).

In interpreting this result, the reader may care to be reminded that a
discussion of condition (45) and its opposite is given in §4.

To be complete, our work should be extended to cover the sums Gµ,λ(x,Q)
that were defined in equation (10) of the Introduction. This can be done by
a moderately transparent generalization of our analysis, which was restricted
to the special case µ = 0 to avoid further complications and to expose more
clearly the principle behind the method. Suffice it then to now state

Theorem 4. Under the conditions of Theorem 3, we have

Gλ,µ(x,Q) ∼ λG(x,Q).
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