
CONVERGENCE ON FILTERS AND SIMPLE EQUICONTINUITY

BY

JOHN W. BRACE

Convergence on filters is conceived s replacement for simple uniform
convergence [5, Dictionnire]. Besides retaining the notable characteristic of
simple uniform convergence, preservation of continuity, the new convergence
is intimately related to the linear topological structure of function spces.
The first section defines the concept of convergence on filter nd shows

that it leads to necessary nd sufficient condition for filter of functions
continuous t point x to converge t x to function which is lso continuous
there. The second section develops the ssocited uniformity nd shows that
the topology of lmost uniform convergence is the special cse of convergence
on 11 ultr filters [2], [3]. The lst of the four pplictions given in Section
three cn be considered s u localization of the method used in obtaining
Stone-(ech compctifiction.

Section four presents weakened form of equicontinuity clled simple
equicontinuity. The interesting properties which it hs in common with
equicontinuity re displayed. It is used to characterize the relatively com-
pact sets for the topology of pointwise convergence in the spce of continuous
functions. The result is n nlogue of Ascoli’s theorem [9]. Combining
the present result with Ascoli’s theorem leds to nother characterization of
compact sets.
The last section examines simple equicontinuity in a locally convex linear

topological space. It terminates in a strengthened form of the Alaoglu-
Bourbaki theorem in which simple equicontinuity replaces equicontinuity
[6], [8].

1. Convergence on a filter

Throughout this pper G(S, E) denotes spce of functions whose common
domain is set S nd whose ranges re in the Husdorff uniform spce E.
The spce E of ll functions from S into E is denoted by J(S, E).
The concept of simple uniform convergence originated with Dini [7]. To

observe its relationship to convergence on filter, consider the filter of
Definition 1.2 s the filter of neighborhoods of the point So in Definition 1.1.
Besides the obvious replacement of the sequence {f,} by the filter 9, note that
no pointwise convergence is required in 1.2 nd every refinement of the filter

9 will lso converge on .
1.1 DEFINITION. (Simple Uniform Convergence) [5, Dictionnire]. A se-
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quence {fn} of functions defined on a topological space S with values in a
uniform space E is simply uniformly convergent at a point So of S to a function
f0 if it converges pointwise on a neighborhood of So and for every entourage V
of E and positive integer no there exist a neighborhood U of So and an integer
n >= no such that (f(s), fo(s) is in V for all s in U.

1.2 DEFINITION. (Convergence on a Filter) A filter composed of subsets
of G(S, E) converges to a function fo on a filter of subsets of S if for every
entourage U of E there is a D in such that for each f in D there is an F/in
T with the property that (f(s), fo(s) is in U for all s in

The basic relationship between convergence on a filter and continuous
functions is given in the following theorem. It is interesting to note that
pointwise convergence of the filter of functions may occur only at So.

1.3 THEOREM. Let be a filter in G(S, E) where S is a topological space and
e;ery g in is continuous at So in S. The filter converges at the point So to a

function fo which is continuous at So if and only if it converges to fo on the filter
of neighborhoods of So.

Proof. Assume f0 is continuous at So and for each entourage U from E
there is an F in such that (f(so), fo(so) is in U for all f in F. Since f and f0
are both continuous at So there is a neighborhood V/ of So which places
(f(s), f0(s) in U for all s in V/.
For the converse consider an arbitrary entourage U from E. There is a

G in , an f in G, a neighborhood V of So, and an entourage W from E such
that W W W U, and (f(s), fo(s)) and (f(s), f(so)) are in W for all
sin V. Thus (fo(s),fo(so)) isin Uforallsin V and f is continuous at so
The above theorem can be considered as a localization of Arzela’s theorem

on quasi-uniform convergence [1], [2]. In the same manner many results
through out this paper are localizations of items found in references [2], [4].

2. The topology of convergence on a filter

2.1 THEOREM. Let be a fixed filter in S and denote by ’tt all sets of the
form U(V, T) {(f, g) there is an Fig in such that (f(s), g(s) is in V for
all s in F/g}, V ranging over a base for the entourages of E. Then in G(S, E)
the class of all filters which converge on the filter has an associated topology
obtained from the uniformity having ’tt as a base. It is called the topology of
convergence on the filter . The topology is Hausdorff if and only if for each
pair, f and g, of functions in G(S, E) there exists an entourage V from E such
that for every F in there is an s in F such that (f s ), g s is not in V.

Proof. The fact that the sets U(V, ) form a base for the entourages of a
uniformity can be seen by observing that if V, V’ and W are entourages from
E and V’ o V’ V, then

U(V’, ) U(V’, T) U(V, T) and U(V, T) n U(W, T) U(V n W, ).
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Assuming that 9 is a filter in G(S, E) converging to fo on the filter , there
exists for each entourage V from E a G in 9 such that for each g in G there is
anFg in with the property that (g(s),fo(s)) is in V for all s inFg. In other
words, 9 converges to f0 for the topology associated with the uniformity.
The converse is also immediate.
The necessary and sufficient condition for the topology to be Hausdorff is

verified by observing that it is equivalent to saying that the intersection of all
sets of the form U(V, ) is the diagonal of G(S, E) X G(S, E).

2.2 THEOREM. IfE is a locally convex linear topological space and G(S, E) is
a linear space of functions, then the topology of convergence on a filter makes
G(S, E) a locally convex topological group. The topology is linear if and
only if for every f in G(S, E) and every neighborhood V of the zero element of
E, there exist an F in and a positive integer n such that f(F) c nV. (Note
this does not in general imply thatf is bounded on some member of .)

Proof. Let W(V, ) be a neighborhood of the zero function as determined
by the entourages in Theorem 2.1. In other words, for each f in W(V, )
there is a Fs in fi; such that f(s) is in V for all s in Fs. When V is a closed
convex circled neighborhood of the zero of E, cW(V, ) W(cV, ) for
all scalars c, and dW(V, ) W(V, ) for all scalars d, ]d] -< 1. It also
follows that W(V, if) is convex because if f and g are in W(V, if), and c and
d are non-negative numbers such that c + d 1, there exists an F in ff such
that f(s) and g(s) are in V for all s in F. Thus cf(s) + dg(s) is in V for all
sinF.
The above information about the sets of the type W( V, if) makes it straight-

forward to verify that G(S, E) is a topological group for the resulting topology.
In order to see when the topology is linear consider an arbitrary f in G(S, E)

and W(V, ) as above. If there exist an F in and a positive integer n
such thatf(F) c nV thenfis in nW(V, ) and the topology is linear. Reverse
the argument for the converse.

In the above theorems the uniform structure and topology on G(S, E)
were obtained by considering convergence on a single filter. There is no
problem in extending these results to convergence on a family of filters. The
results and their proofs are omitted due to their close analogy to the same
situation in the theory of uniform convergence [9].
The final theorem of this section gives the relationship between the topology

of almost uniform convergence [2] and the topology of convergence on a
specific family of filters.

2.3 THEOREM. On G(S, E) the uniformity obtained from convergence on all
ultra filters in S is the same as the uniformity of almost uniform convergence on S.

2.4 COROLLARY. On G(S, E) the topology of convergence on all ultra filters in
S is the same as the topology of almost uniform convergence.

Proof of Theorem 2.3. Let V be an entourage from E and consider a



subset Q(V) of G(S, E) G(S, E) having the following two properties.
(i) For every finite set (fl, gl), (f, g2), (fk, gk) from the complement of
Q(V) there is an s in S such that (f(s), g(s)) is not in V for i 1, 2, k.
(ii) There is no proper subset of Q(V) having property (i). The family of
sets of the form Q(V), V ranging over the entourages from E, is a base for
the uniformity on G(S, E) which is associated with the almost uniform con-
vergence on S.

Consider an arbitrary ultra filter ff in S and the entourage U(V, if) from
the uniformity of convergence on . Let l(fl, gl), (fk, gk)} be a finite
set from the complement of U(V, ). For each F in if, (fi(F), gi(F)) is
not a subset of V for i 1, 2, ,/. Since ff is an ultra filter there is an
F0 in ff such that the intersection of (f(F0), g(Fo)) and V is empty for
i 1, 2, k. Thus U(V, ) contains an entourage from the uniformity
of almost uniform convergence on S.

For the converse consider a set Q(V) from the base for the uniformity of
almost uniform convergence on S as described at the beginning of this proof.
For each finite set {(f, g), ..., (f, g)} from the complement of Q(V)
let

F {s: sinS, (f(s),g(s)) not in Vfori 1, 2, ..., ]}.

Denote by if0 an ultra filter in S containing all such sets. Thus U(V, if0)
is a subset of Q(V) and the proof is completed.

3. Applications
The first theorem of this section utilizes convergence on filters to charac-

terize continuous vector-valued functions as the limit of finite linear combina-
tions of scalar-valued functions with the coefficients being taken from the
vector space. Convergence on a filter can be used to preserve only partial
continuity as is seen in Theorem 3.2 for the case of upper semi-continuous
functions. Theorem 3.3 is an example where convergence on a filter preserves
discontinuities. The last theorem of the section is concerned with continuous
extensions of functions.

3.1 THEOREM. Consider a mapping T from a normal space S into a linear
topological space E with real or complex scalars. Let C(S, [0, 1]) denote all
continuous functions with domain S and range the closed unit interval. T is
continuous if and only if there is a set A composed of finite linear combinations
of functions from C(S, [0, 1]) with coeilcients from E such that T is a cluster
point of A for the topology of convergence on all convergent filters of neighborhoods
in S.

Proof. Let {if1, ff, fi;k} be a finite collection of filters of neighborhoods
converging to the distinct points s, s., s respectively, and let V denote
a neighborhood of the zero element of E. Assuming the continuity of T
along with the normality of S it is known that there exists a finite collection
{F, F2, ..., F} of subsets of S such that their closures are pairwise dis-
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joint, F is in and T(F) T(s) is a subset of V for i 1, 2, it. It
also follows that there is a finite set {fl, f2, "’, f} of functions from
C(S, [0, 1]) such that f(s) 1 for all s in F and f(s) 0 for all s in F.,
ji.

Let K(s) = T(si)f(s) and observe that K(s) T(s) is in V for s
in the union of the F’s, i 1, 2, ,/. In this manner the required set is
constructed.
The converse follows from Theorem 1.3.

3.2 THEOREM. Let be a filter of real-valued functions which are upper semi-
continuous at a point So of their domain. If the filter converges to fo on the
filter of neighborhoods of So, then fo is upper semi-continuous at So.

Proof. Given an arbitrary positive number there exist G in , g in G,
and F in such that

g(s) -fo(s) < /3 and g(s) g(so) < /3

for all s in F. Putting this information together one has the following:

fo(s) fo(so) <= fo(s) g(s) + g(s) g(so) % g(so) fo(so) <
for all s in F. In other words, f0 is upper semi-continuous at So.

3.3 THEOREM. Let fo be a meromorphic function on a domain D and let
be a filter of meromorphic functions with the same domain. Consider a point

Zo in D and a filter ff composed of the neighborhoods of Zo with Zo deleted. The
filter converges to fo on the filter ff if and only if either (a) Zo is not a pole of
fo there is a G in such that Zo is not a pole of g for all g in G and the filter
converges to fo(zo) at Zo or (b) fo has a pole at Zo with principal part P, there is a
G in such that the principal part of g at Zo is P for all g in G, and the filter base
having sets of the form {g(z0) P(zo) g in G} for all G in converges to
fo(zo) (zo).

Proof. Assume convergence on the filter. Given a positive number v there
is a G in such that for each g in G there exists an F in ff with the property
that [g(z) fo(z) < for all z in Fo. Thus either g and f0 are both con-
tinuous or both have the same principal part at z0 for all g in G. The con-
tinuity of either g or g P at z0 leads to the pointwise convergence at z0

The converse follows from Theorem 1.3.
To place the following theorem in perspective one should view the Stone-

(ech compactification of a completely regular space X as the embedding of X
in a topological space such that all ultra filters converge and all continuous
real-valued functions on X with bounded ranges can be continuously extended
over the closure of X. The present theorem gives a necessary and sufficient
condition for a localization in which only one filter in X is considered and a
less restrictive class of functions is utilized.

3.4 THEOREM. Consider a linear space G(S, R) of real-valued functions and
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a filter of subsets of S. The topology of convergence on is linear if and only if
S is a dense subset of a topological space X, every ultra filter in X which contains

converges to a point of X, and every function in G(S, R) can be continuously
extended over X.

Proof. Assuming the topology is not linear, there is an f in G(S, R) such
that for every positive integer m and every F in ff there can be found an s in
F for which If(s) > m. Let

BF,m {8:8 in F, If(s) > m}.

Consider an ultra filter in S which contains these sets. Regardless of how S
is embedded f can not be continuously extended to the limit of that ultra
filter.

For the converse let X be the union of the set S and a set which is in one to
one correspondence with the family of all ultra filters in S which contain ft.
Consider a point x in X. If it is in the subset S, define its neighborhoods to
be all subsets of X containing it. If it is not in S, define its neighborhoods to be
every set containing it and a set from the ultra filter which corresponds to it.
Let 0 be an ultra filter in X containing . Then 0 also contains an ultra
filter in S which Corresponds to a point x0 in X. Because of the linearity
there exists for each function f an F in ff such that f(F]) is contained in a
compact set. Thus if0 converges to x0 and f can be continuously extended to
X0.

4. Simple equicontinuity
The classical definition for equicontinuity of a family H of functions at a

point s is equivalent to saying that the filter of neighborhoods of s converge
uniformly on H. Simple equicontinuity is obtained when uniform con-
vergence is replaced by convergence on all ultru filters of H.

4.1 DEFINITION. A set H of functions from J(S, E) has simple equicon-
tinuity at So relative to a given topology on S if the filter of neighborhoods of
So converges to So on every ultra filter in H. A set H is said to have simple
equicontinuity if it has simple equicontinuity at every point of S.

4.2 THEOREM. Let S be a topological space and let H be a subset ofJ(S, E).
The following statements are equivalent.

H has simple equicontinuity at So in S.
(ii) The filter of neighborhoods of So converges almost uniformly on H.
(iii) Every f in H is continuous at So and for every subset B of S having So

as an accumulation point and every entourage U from E, there is a finite subset
M of B such that for each f in H, (f(s), f(so) is in U for at least one s in M.

Proof. The equivalence of (i) nd (ii) follows from Theorem 2.3.
Statement (ii) implies that the filter of neighborhoods of So converges point-

wise on H [2]. Thus every member of H is continuous at So. To obtain the
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remainder of statement (iii), assume that B is a subset of S having so as an
accumulation point and that V is an entourage for E. Let ff be a refinement
of the filter of neighborhoods such that ff is eventually in B. Since ff con-
verges almost uniformly to So on H there is a finite subset si i 1, 2, k}
of B such that for everyf in H, (f(s), f(s0) is in V for at least one si (see [2] ).

Reversing the argument gives the converse.
Simple examples show that many sets having simple equicontinuity are not

equicontinuous, yet some properties of equicontinuous sets are present in
sets having simple equicontinuity (see Theorems 4.3 and 4.6).

4.3 THEOREM. On a set H in J(S, E) having simple equicontinuity the
topologies of pointwise convergence and pointwise convergence on a dense subset
are identical.

Proof. Consider an arbitrary go in H, so in S, and entourage V from E.
Let D be a dense subset of S and let ff be a filter base composed of the inter-
sections of the neighborhoods of so with D. Take an entourage U of E such
that U o U U V. There is a set F in such that (go(s), go(so)) is in U
for all s in F. Since the filter base converges almost uniformly on H, there
is a finite subset {s i 1, 2, ]} of F D such that for eachf in H
(f(si), f(so)) is in U for at least one s. It is now possible to conclude that

W {f in H: (f(s), go(s)) in U for i 1, ..., It}

in a subset of {f in H (f(so), go(so)) in V} because for eachf in Wthereisan
s such that (f(so), f(s)), (f(si), go(si)), and (go(si), go(so)) are all in U.
The converse is immediate.

4.4 COROLLARY. The topology of pointwise convergence is metrizable on a
subset H of J(S, E) if H has simple equicontinuity, S is separable, and E is
metrizable.

Before going further it is necessary to establish a duality. For this purpose
replace the function space G(S, E) by a single function having as its domain
the cartesian product G S of the two sets G and S. The range is in the
uniform Hausdorff space E. The terminology of previous sections will be
utilized by considering either the elements of G or S as functions on the other.

4.5 THEOREM. Consider filters and of subsets of G and S respectively
with the property that (, s) converges to (go, s) for all s in at least one F in
and (g, ) converges to (g, So) for all g in at least one D in . Then the filter

converges to go on if and only if converges to So on . (Note that go and So
need not be in any member of and respectively.)

Proof. Assuming that the filter 9 converges to go on if, it will be shown
first that (, So) is a Cauchy filter.
Given an entourage V from E, there is another entourage V’ such that

V’ V’ V’ V’ V. There exists a D in 9 such that for each g in D there
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is an Fg in with the result that ((g, s), (g0, s)) is in V’ for all s in Fg.
Taking arbitrary g’ and g" in D there is an F in such that, F c F,, F c F,,,
and, ((g’, s), (g’, So)) and ((g’, s), (gtp, So)) are in V for all s in F.
These facts combine to say that ((g’, So), (g", so)) is in V and thus the
desired result.

For convenience let K be the limit of (, So) in the completion of E.
Proceed next to show that the filter (g0, ) also converges to K. To do

this let V be an arbitrary entourage from E and V’ another entourage such
that V’oV’oW V. There is aDinsuchthat for eachginD there
exists an F in such that ((g, So), K) and ((g, s), (go, s)) are in V’ for
all g in D and all s in F. Each set Fg has a subset F’, F’ in , with the
property that ((g, s), (g, So) is in V’ for all s in FP. These facts combine
to say that ((g0, s), K) is in V for all s in F. In other words, (g0, )
converges to K.

For the final phase of the proof let V be an arbitrary entourage from E and
V’ another entourage such that V’ V’ o V’ V. There are sets D and F
from and respectively such that ((g, So), K) and ((g0, s), K) are in
V for all g in D and s in F. Taking an arbitrary s from F there exists a
subset D8 of D such that ((g, s), (g0, s)) is in V’ for all g in Ds. Putting
these results together it is concluded that for every s in F there is a D in
such that ((g, s), (g, So) is in V for all g in D. In other words, the filter
converges to So on the filter .
With the above duality it is now possible to establish a basic theorem.

4.6 THEOREM. If H is a subset of the set J(S, E) of all functions from S into
E, and H has simple equicontinuity at so, then the closure of H for the topology of
pointwise convergence on S also has simple equicontinuity at So.

Proof. Consider an arbitrary f in the closure of H, but not in H. There
is an ultra filter in H which converges to f for the topology of pointwise
convergence. Theorem 4.2 says that the filter of neighborhoods of So
converges almost uniformly on H. Making use of Corollary 2.4 it is observed
that the filter converges to So on the ultra filter . Now apply the duality
Theorem 4.5. Thus the filter converges to f on the filter . The function
f is continuous at So (see Theorem 1.3). In other words all the functions in
the closure of H are continuous at so.
The remainder of the proof is obtained by viewing S as a collection of

continuous functions defined on J(S, E). From Theorem 4.1 of [2] it is
deduced that the filter , which converges almost uniformly on H, converges
ahnost uniformly on the closure of H. Thus the closure of H has simple
equicontinuity at So.
The way has now been prepared for the analogue of Ascoli’s theorem for

the topology of pointwise convergence [9].

4.7 THEOREM. A set H in the space of all continuous functions defined on a
topological space S with range in a uniform Hausdorff space E is relatively com-
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pact for the topology of pointwise convergence if and only if H(s) is relatively
compact for every s in S and H has simple equicontinuity.

Proof. Tychonoff’s theorem gives the compactness of the closure of H
in J(S, E), while the preceding theorem guarantees the continuity of all
functions in the closure.

4.8 LEMMA. If a set H of functions has simple equicontinuity and H(s)
is totally bounded for all s in a dense subset of S then H(s) is totally bounded
for all s in S.

Proof. Let V be an arbitrary entourage from E and V’ another entourage
such that V’ V’ V’ V. Consider an arbitrary So in S. Since H has
simple equicontinuity it follows from Theorem 4.2 that there is a finite set
(sl, s2, ..., sk) such that

H [.Ji=l

Hi lg g in H, (g(s), g(so)) in V’} for i 1, 2, ],

where {s, s2, sk} is a subset of the dense subset of S for whose elements
H(s) is totally bounded. Thus H(s) is totally bounded and there is a
finite subset Mi of Hi such that for each g in Hi there is an f in M for which
(g(s), f(s)) is in V’, i 1, 2, ..., k.
Consider an arbitrary g in H. At least one Hi contains g. Thus there is an

f from the union of the M’s such that (g(s), f(si)) and (f(s), f(so)) are in
V’. Since (g(s), g(so)) is also in V’, it follows that (g(so), f(so)) is in V.
It is concluded that H(so) is totally bounded.
When E is a linear topological space the words "totally bounded" in the

above theorem may be replaced by the word "bounded". It should be noted
that the above lemma does not follow from Theorem 4.3.
Lemma 4.8 and Theorem 4.7 are combined to give the following theorem.

4.9 THEOREM. If E is a complete uniform Hausdorff space and H is a sub-
set of C(S, E), then H is relatively compact for the topology of pointwise con-
vergence if and only if H has simple equicontinuity and H(s) is totally bounded
for all s in a dense subset of S.

Combining the above results with Ascoli’s theorem leads to further charac-
terizations of compact sets, the following theorem being an example.

4.10 THEOREM. Let C(S, E) be the space of all continuous functions from
the topological space S into the uniform space E. A subset H of C(S, E) is
relatively compact for the topology of compact convergence if and only if H has
simple equicontinuity, the restriction of H to each compact subset of S is equicon-
tinuous, and H( s is relatively compact for every s in S.

5. Applications to linear spaces
Replace the sets S and E of the preceding sections by locally convex linear

topological Hausdorff spaces F and E, respectively. The functions under
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consideration will now be linear and the space of all such functions from F
into E is denoted by L(F, E). The following lemma is a consequence of
linearity.

5.1. LEMMA. A subset H of L(F, E) has simple equicontinuity if and only
if it has simple equicontinuity at the zero element of F.

5.2 LEMMA. If a subset H of L(F, E) has simple equicontinuity, then H is
bounded for the topology of pointwise convergence.

Proof. Assume that there is an x0 in F such that H(xo) is not bounded.
Thus there is an ultra filter in H such that (x0) is a base for an unbounded
ultra filter in E. In other words there is a neighborhood W of the origin in E
such that for every non-negative real number k there is a D in such that
D(xo) is in the complement of/W.

Consider an arbitrary neighborhood V of x0. There exists a real number
r > 1 such that rxo is in V, and a D in such that D(x0) is in the complement

1 1
of W. For arbitrary g in D, g(xo) is not in W, and g(rxo) g(xo)

r--1 r--i
is not in W. Thus the filter of neighborhoods of x0 does not converge on the
ultra filter 9 giving the desired conclusion.
Theorems 4.7 and 4.9 can be used in L(F, E) because it is a closed subspace

of the space J(F, E) for the topology of pointwise convergence. Applications
to the weak, weak*, weak operator and strong operator topologies are ira-
mediate. Henceforth E’ denotes the set of all continuous scalar-valued
functions defined on E.

5.3 LEMMn. A subset H of E’ has simple equicontinuity if and only if H
has simple equicontinuity relative to every topology on E finer than the weak
topology (z(E, E’) topology) and coarser than the Mackey topology.

The validity of the lemma is seen by observing that Lemma 5.2 makes it
possible to utilize Theorem 4.7 which is applicable for every topology on
E which makes E’ the space of all continuous linear scalar-valued functions
onE.
The above results now combine to give a strengthened version of the

Alaoglu-Bourbaki theorem [6], [8].

5.4 THEOREM. A subset H of E’ is relatively weak* compact (relatively
a(E’, E) compact) if and only if H has simple equicontinuity.

By considering the dual situation it is meaningful to speak of a subset of
E as having simple equicontinuity. The adjoint space is given the weak*
topology (z(E’, E) topology) and E is all continuous linear scalar-valued
functions on E’.

5.5 THEOREM. A subset K of a locally convex linear topological space E
is relatively compact for the weak topology if and only if K has simple equicon-
tinuity.
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