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Introduction

A difference set (v, ], k) in a group G of order v is a set g:, gk of k
distinct elements of G such that the equation

--1gg g

has exactly k solutions for every g e G, g 1. A simple count gives

(I) :h(v- 1) ](- I).

Trivially G itself is a difference set with v . Also G g for any
g G is a difference set with/ v 1, k v 2. These two trivial cases
will be excluded in the following. The complement of a difference set is a
difference set so that we may also assume

(2) k < v/2, X < n k-- X.

A large part of the effort devoted to research on difference sets has been
directed towards difference sets in cyclic groups [3] and all v, t, ), with/

_
50

for which cyclic solutions exist are now known [3], [6], [9], [10].
The present paper investigates difference sets in elementary Abelian groups

of order p, m > 1. For p 2 nontrivial difference sets with /

_
v/2

exist only for v 2, /c 2--2-, X 2--2-. For odd
values of p the quadratic residues of GF(p) form a difference set if and only
if p 3 (4). A new necessary condition for the existence of difference sets
in elementary p groups is derived. An enumeration of all parameter combina-
tions with v p

_
2500, m > 1 leaves only nine cases undecided.

1. Elementary 2-groups
]?or v 22m, ] 22m-: 2-1, X 2- 2-: difference sets (v,/c, X)

have been constructed by P. K. 1VIenon [7]. According to R. J. Turyn [10] a
solution for this set of parameters can easily be obtained as follows" Repre-
sent the direct product of m four-groups by points (g:, gin), where

,..., ..., ...,
Let D be the set of points containing an odd number of ones. Then D is a
difference set with parameters /c 2- 2m-, 2-- 2-.
We shall show that these are the only values of n for which nontrivial 2,

k, k configurations exist.
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THEOREM 1. If there exists a nontrivial 2", k, h configuration then k h
22s Y 2s+:.

We may assume k < v/2. Since v is even, n must be a square. (See e.g.
2s[6].) Putn z n,n---- 1 (2). From (1) we then have

h2= k 22,n.

and since n < v we must have

k 2k, h 2(k- 2n)
wherek= 1 (2). We get

h12 (kl n) (k + ni).

Either kx nl or k + nl must be divisible by 2m-8- and since
we must have k + n 0 (2m-s--I). But k + n < 2 hence

kl "91- ni -P’-s-i, ki- ni 2hi, Ii- 2ni hi

Solving these equations leads to

22n2 n 2-2

and since n is a square m must be even. This completes the proof of Theo-
rem 1.

2. Elementary p -groups with p odd
The theorems on difference sets in the field of residues rood p, p a prime,

given by S. Chowla [1] and by Emma Lehmer [5] and the underlying theory of
L. E. Dickson carry over without change to any finite field. This yields

THEOREM 2. The quadratic residues of a finite field of order p’ form a dif-
ference set if and only if p 3 (4).

To give a self contained proof of Theorem 2 denote by p generically a
quadratic residue, by a nonresidue in GF(p’), pm =- 3 (4). Since -1 is a
we may write

Pi- P2-- P-iF ’.

Now if pd- a 0then ba-p ba-, pi , b. Hence every
element of GF(p) has the same number of representations in the form
pl m., Q.E.D.
Theorem 2 is very useful. Difference sets (v, k, h) can often be obtained

in p-groups which do not exist in cyclic groups. An example is v- 27,
/ 13, h 6. The difference sets obtained in this way also supply Hada-
mard matrices with comparatively simple properties.
The other theorems of S. Chowla and E. Lehmer also carry over to all

finite fields. The theorems on higher residue difference sets applied to finite
fields of order p, m >_ 2 are however useful only as nonexistence theorems
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since the necessary and sufficient arithmetical conditions are not likely ever
to be satisfied for m >_ 2. We also have" If p’ 1 ef and f 0 (2) then
the eth residues do not form a difference set. This theorem, proved by Emma
Lehmer [5], also follows from Theorem 5 of [6].
Computation yields 72 solutions of (1) with v =pm

_
2500, m > 1.

For five of these parameter values residue difference sets exist. For 51 values
difference sets are impossible by the theorems in [6]. Seven more are impos-
sible by the theorems of Section 3 of this paper. This leaves 9 cases unde-
cided. These are

34 16 3 13
112 40 13 27
192 136 51 85
292 120 17 103
312 256 68 188
113 210 33 177
113 266 53 213
133 793 286 507
36 273 102 171

It is worth noting that there exists a cyclic difference set with parameters
112 40, 13.
The table at the end of this paper enumerates all solutions of (1) with

2500 >_ v pro, m > 1, p a prime. If a difference set is known not to exist
for the p group of order v we give in the last column either the relation which
proves the non-existence by Theorem 3 of [6] or the theorems of the next
section of this paper which show nonexistence.

3. A necessary condition for existence of a difference set (v,/, ,)
in an elementary p-group

THEOREM 3. If the quadratic residues mod p are multipliers of the elementary
Abelian difference set D with parameters p’, ]c, then the equation

(3) x + py2 4n

is solvable. Let (xl yl), (x y.), (x y) be the solutions of (3) satis-
fying the additional conditions

(i) 2k x(p), (ii) k+1/2(p- 1)x_> 0, (iii) /_> 1/2(z+ly

Then > 0 and either the system

/c + 1/2(p 1)(xz + + xzt) 0
(4a)

z +...-I-z- (p,n__ 1)/)p- 1)
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or the system

(4b)
/c + 1/2(p 1)(xlzl + + x,z,) p’

zl-... +z (pm_ 1)/(p-- 1)

has a solution in nonnegative integers zl

We first prove

PROPOSITION 1. n pt, O.

Proof. From
hpm /c- n k2- pt, mt

we get 2tl, ]c #ptl, pt(t pa). Hence

(t pt)p,-t (t 1)( + 1).

Since (t- 1, t- 1) lor2weget

contradicting (2).
COROLLARY TO PROPOSITION 1. The number (- 1) cannot be a multiplier.

This follows from Proposition 1 and from [6, Corollary 5.2].
We proceed to prove Theorem 3. From the corollary to Proposition 1 it

follows that p ------ 3 (4). Let generate the quadratic residues rood p. Then
(t 1) 0 (p) and there exists a difference set D fixed under all quadratic
residues. It follows that all characters x(D) (for the notation used here see
[6]) are fixed under the isomorphism p---> pt of the field R(p), where p is a
primitive pth root of unity and R the field of rational numbers. Hence
x(D) R(V/-p),

x(D) (x + yx/--p)/2
where x, y are rational integers. Hence

4n 4x(D)x(D) x + py.
Let a elements of D have the character p under

chosen value of %/-p we have

(5) a ],
ap (x -- y()X/--p)/2,

where () is the Legendre symbol.
/-p into ()%/--p.)
Summing the equations (5) gives

Then for a suitably

s 1,2,... ,p-- 1,

(The automorphism p -- p carries

pao lc -- 1/2(p- 1)x.



Whence
2/ x (p), / + 1/2(p 1)x >_ 0.

Multiplying the sh equation of (5) by p-a and summing yields

pa, k, 1/2x + 1/2y/- _,-1 ()
By a well known formula [4] we have

so that
E. )p-i

pa, k, 1/2x ::F: ( , )1/2yp

i= 1,...,p--1

which shows that at least one of the solutions of (3) satisfies the additional
conditions (i), (ii) and (iii).

Let xl, ..., x be the values of x satisfying equation (3) and conditions
(i), (ii) and (iii) and suppose that for Z characters x we have

x(D) (x, --t- yVZ-p)/2.
If x is such a character then summing over all p 1 conjugate characters
gives (1/2(p- 1)x. Moreover Z, O(1/2(p- 1)),Z,- 1/2(p-1)z,. The
sum of all characters divided by pm gives the coefficient of the unit element in
D which is either 1 or 0 and this gives either (4a) or (4b) which completes
the proof of Theorem 3.

COROLLARY 1. If under the conditions of Theorem 3 the equation x q- py
4n and the conditions (i), (ii), (iii) have only one solution then

/ (pm-- 1)/2,

We get from (4a) and (2)

(6a)

or

(6b)

/ -k 1/2(pro 1)x 0,

m---- 1 (2).

/ 1/2(p-- 1),

/ -b 1/2(p-- 1)x 1, / 1/2(pro q- 1).

But (6b) does not satisfy (2). Furthermore h (p 3)/4 hence
m---- 1 (2).

COaOLLARY 2. If p > 3 and the conditions of Theorem 3 hold then n is not a
prime.

Otherwise there are only at most two factorizations n aa (-a)(-a)
in R(x/-p). Hence equation (3) has only one solution. We then have
n (p -b 1)/4, m 1 (2) and so n has the factor (p q- 1)/4.

Taronr 4. If p 2q -b 1, q a prime and if no prime divisor of n is con-
gruent to 1 rood p then the quadratic residues rood p are multipliers of any ele-
mentary Abelian difference set (p’, k, ) and n is not a prime.
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TABLE 1
Solutions of equation 1 for v p _< 2500,

v k X n

52 9 3 6
72 16 5 11
11 16 2 14
11 25 5 20
11 40 13 27
13 49 14 35
13 57 19 38
13 64 24 40
17 64 14 50
19 81 18 63
19 136 51 85
19 145 58 87
23 33 2 31
23 144 39 105
23 177 59 118
29 105 13 92
29 120 17 103
29 225 60 165
29 280 93 187
29 336 134 202
29 385 176 209
29 400 190 210
31 256 68 188
31 321 107 214
31 385 154 231
37 153 17 136
37 361 95 266
37 513 192 323
41 225 30 195
41 336 67 269
41 385 88 297
41 400 95 305
412 561 187 374
41: 721 309 412
41 736 322 414
43 232 29 203
43: 385 80 305
43 441 105 336
43 561 170 391
43 616 205 411
43 672 244 428

m>l
Disposition

2 --= --1 (5)
Theorem 4
() --1
()

_
undecided

(ia) --1
2 =- - (7)
(io) --1
undecided

Theorem 4
(28) --1
Theorem 3
(:)

_
undecided
(o) --1
() -i
(29) --1
(ii) --I
(29) --1
undecided
Corollary 3.1
(2,) -i
(:) -i
(7) --1
39 --1 (37)
(:i) --I
(269) -= --1 (41)
(2i) --i
5i 1 (41)
2i =-- --1 (41)
2i -- --1 (41)
2l --1 (41)
(:8) --1
(2) -i
(:8) --1
(::) --I

(:,) -i
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TABLE 1 (continued)
v ]c , n Disposition

472 576 150 426 Corollary 3.1, Theorem 4
47 736 245 491 Theorem 4

s (i) -3 13 6 7 exists (Theorem 2)
5 32 8 24 () -1
7 19 1 18 () --1
7 153 68 85 () --1
7 171 85 86 exists (Theorem 2)
11 190 27 163 Theorem 4
11 210 33 177 undecided
11 266 53 213 undecided

00 e0 eS0 () -11 456 156 300 () -1
1 1o o () -1
11 665 332 333 exists (Theorem 2)
13 244 27 217 () --1
13 549 137 412 (a) --1
13 793 286 507 undecided
3 16 3 13 undecided
5 144 33 111 () -1
5 208 69 139 139 1 (5)
5 273 119 154 () -1

ee e o () -1
lS s (1) -1

’ so e (1) -1
3 121 60 61 exists (Theorem 2)
3 105 15 90 2 -1 (3)
3 169 39 130 2 1 (3)
3 273 102 171 undecided
3 1093 546 547 exists (Theorem 2)

If p 2q -- 1 then all divisors of n are quadratic residues [6, Theorem 3]
and must have order q. Let ql, q, be primes and

n q...q’.
Then

q =__ q. (P).

Hence q is multiplier [5, Corollary 4.1]. Hence every q is multiplier. By
Corollary 2 it follows that n is not a prime.

In applying Theorem 3 to 31, 321,107 one has to apply a result of iV[orris
Newman [8] according to which a prime p is multiplier if 2p n > },. New-
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man announced this result only for cyclic difference sets but his proof can be
modified to apply to any Abelian difference set.
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