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It is the purpose of this note to define an abstract process, under which, as
special cases, will fall the apparently diverse concepts of Lebesgue m-area for
mappings from finitely triangulable spaces, the various Lebesgue-Williams
areas for mappings from compact metric spaces, outer measures in an abstract
set, metric outer measures, such as Hausdorff r-measure, in a metric space, the
Daniell-Stone upper integral, the Burkill lower integral for interval functions,
and perhaps others.
The form of our definition of the extent function M(u) was suggested by

the definitions of m-area given by R. F. Williams [2]. Its substance can be
regarded as an extension of the ideas of Lebesgue [6], and of Frchet [1], who
was, apparently, the first to notice that, in the classical case of surface area,
Lebesgue’s definition may be viewed as a process for extending a semi-con-
tinuous function. See also M. H. Stone [4] in connection with what we call
measuring systems.
Although our abstract process does not, in general, provide semi-continuous

extensions in Frchet’s sense [1], the extent function M(u) which arises is
always semi-continuous. It will be clear that while our present definition
leads to properties of one-sided lower-semi continuity, the definition may be
modified so that, in general, functions exhibiting any of four types of semi-
continuity will arise.

Measuring systems and the definition of M(u)
A function on U X U to R, where U is a set and R is the set of non-nega-

tive real numbers, will be called an Ecart for U and the pair (U, ) will be
called an Ecart.ed space if satisfies the following two conditions"

(1) (u, u) 0 for all u e U,

(2) (u, v)

_
(u, w) + (w, v) for all u, v, w e U.

If U is a set, then a quintuple [, A, q, d, v], where is an cart for
U, A is a set, q is a function on A to U, d is a function on A to R and v is a
function on A to R will be called a measuring system for U.

For a given measuring system [, A, q, d, v] for U, we define, for
each u e U, the following subset R(u) of R:

R(u) Ir RI for every v > 0, there exists an a e A such that
(u, q(a)) < , d(a) < and v(a) < r + }.
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For each r R, we define the following subset U(r) of U:

U(r) {ueUI for every e > 0, there exists an aeA such that
a(u, q(a)) < , d(a) < and v(a) < r + }.

The function M(u) is defined as follows"

M(u)= infR(u), if R(u) 0.

-+-, if R(u) .
It is clear that u U(r) if and only if r R(u) and that M(u) + if

and only if R(u) 0.

Properties of the function M(u)
We prove below the following theorems with no further hypotheses on the

nature of the elements of the measuring system ). In a few of these, the
concept of accessibility is required. An element u e U will be said to be ac-
cessible to the measuring system [(r, A, q, d, v] provided that for every
e > 0, there exists an a e A such that (u, q(a)) < and d(a) < .
THEOREM 1. If R(u) O, then M(u) R(u).

If R(u) 9, then M(u) infR(u) < + , and for each e > 0, there
exists an r e R(u) such that r < M(u) + v/2. Hence, there exists an a e A
such that a(u, q(a) < , d(a) < and v(a) < r + /2 < M(u) + .
THEORE 2. For each r e R, U r u e U M u <_ r}

If u U(r), then r R(u) and M(u) inf R(u) <_ r. Conversely, if
u e U is such that M(u) <_ r, then r R(u) and u e Uw(r).

THEOREM 3. For each r e R, U(r) is closed in the upper topology for
U, (), where an upper e-neighborhood of Uo U is a set of the form

{u U l(uo, u) < }.

Suppose Uo is in the closure of Urn(r). For each > 0, there exists a
u e Ux(r) such that a(u0, u) < /2. Since u U(r), there exists an
aeA such thata(u,q(a)) < /2, d(a) < v/2 and v(a) < r + /2. Since
a(Uo, q(a) <_ r(Uo, u) + (r(u, q(a) < , it follows that Uo U(r).

THEOREM 4. The function M(u is lower-semi continuous with respect to the
upper topology for U at each point Uo U.

If uoeU and M(u0) -k-, then R(u0) 9 and for each
r R, Uo U(r). Since Uw(r) is closed, there exists a > 0, such that if
u e U and a(u0, u) < , then u U(r). From Theorem 2, it follows that
r < M(u). IfM(uo) < +, then for each e > 0, M(u0) ecR(uo).
Since Uo U(M(u0) e), and since U(M(u0) e) is closed, there is a
6 > 0 such that if u e U and a(u0, u) < i, then M(uo) e < M(u).



THEOREM 5. If {an} is any sequence in A such that a(u, q(an) --* 0 and
d(an) --> O, then M(u)

_
lira inf v (an).

Let {an} be such a seqyence. If M(u) < -, then for each
> O, M(u) R(u). Ihere exists a 8 > 0, then, such that if a e A has

the properties a(u, q(a) < 8 and d(a) < 8, then

M(u) < M(u) + 8

_
v(a).

We conclude that M(u)

_
lira infv(an) for each e > 0 and

that M(u)
If M(u) + , then R(u) 0 and for each r e R, there exists a 8 > 0

such that if a e A has the properties a(u, q(a)) < 8 and d(a) < 8, then
r < v(a). We conclude that r < lira infv(an) for each r R and that
lira inf v(

THEOaEM 6. If U is accessible to , then there exists a sequence {an} in A
such that z(u, q(an) -- O, d(a) -- 0 and lira v(an) M(u).

If M(u) -t-, any sequence satisfying the hypotheses will do, as the
second part of the proof of Theorem 5 shows. If M(u) <: -t-, then since
M(u) R(u), there is a sequence/an} in A with the property that for each
positive integer n, a(u, q(an) < l/n, d(an) < 1In and v(an) < M(u) + 1In.
It follows that lira inf V(an)

_
lira sup V(an)

_
M(u) and, by Theorem 5, that

lira v(an) M(u).

THEOaEM 7. For each u U, M(u) infIl lira inf V(an), where [] is the
collection of all sequences an} in A such that z(u, q(an) ) -’* 0 and d(an) --* O.

If u is accessible to i), this theorem is a consequence of Theorems 5 and 6.
If u is inaccessible to , then necessarily M(u) -t- and under the con-
vention regarding the infimum taken over the empty set, the theorem holds
in this case also.

THEOREM 8. Let

Av(u,
and let

then
V(u, ) inf Iv(a)[ a A(u, )1;

M(u) sup V(u, e) lim..o V(u, e).

Let N(u) sup V(u, ). It is clear that V(u, e) is a decreasing func-
tion of . If M(u) < , then for each > 0, there exists an a A(u, )
such that v(a) < M(u) + . It follows that, for every e > 0,

and that
V(u, ) < M(u) +

N(u) lim-.o V(u, )

_
M(u).
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This relation also holds if M(u) -t-. If N(u) < -t-, then for each
> 0, we have V(u, ) <_ N(u). Consequently, V(u, ) < + o for each
> 0. From the definition of V(u, ), it follows that there exists an

a A(u, ) such that v(a) < V(u, ) - ’. Hence, for each v > 0, there
exists anaeA such thata(u,q(a)) < v,d(a) < and v(a) < N(u)-t- ,
which shows that M(u) < N(u).

THEOREM 9. If [(r, A, q, d, v] and ’ [’, A’, q’, d’, v’] are two
measuring systems for U, then in order that M u <_ M u at a point u U for
which M(u) < , it is necessary and sucient that for every O, there
exist a 0 such that whenever a A has the properties a(u, q(a) . and
d(a) -, then there exists an a’ A’ with the properties a’(u, qt(a’) ,
dt(a’) < and vt(at) < v(a) + .
To show the necessity of this condition, we observe that since

M’(u) /2 R(u)

for any given > 0, there exists a > 0 such that if a A has the properties
o-(u, q(a)) < r and d(a) < r, then Mr(u) /2 < v(a). Since
Mt(u) e R, (u), there exists an a’ e A’ for which ’(u, q’(a’) < /2,
dt(at) < /2 and vt(at) < Mr(u) -t- /2 < v(a) - .
As for the sufficiency, since M(u) < -t- , then u is accessible to and by

Theorem 6 there exists a sequence tan} in A such that a(u, q(an)) ---> O,
d(a,) --> 0 and M(u) lira v(an). For each n so large that 1/n < r, there
exists an aneA such that at(u, qt(a,n)) < 1In, dt(a) < 1In and

d,/Y’(an) < V(an) + 1In. Hence, z’(u, q’(a,)) ---> O, (a,) 0 and
lira inf v’ (a’n)

_
M(u). From Theorem 5, we conclude that M’(u)

_
M(u).

Examples
1. Lebesgue m-area for mappings from a finitely triangulable space X into

a Euclidean space En. Let U be the set of all continuous mappings
f" X --> En. Let or(f, g) f g II, the uniform metric for U. Let A be
the collection of all triples a (t, K, h), where K is a geometric m-complex,
X -- K is a homeomorphism onto, and h K --+ E is a quasi-linear map-

ping. Let q(a) ht, let d(a) 0, and let v(a) a,(h(s)), where
a,(h(s) is the elementary m-area of the image of the simplex s e K and the
summation is over all m-simplees of K. Then M(f) L,(f). See [2].

2. Williams-Lebesgue m-area for mappings from a compact metric space X
of covering dimension

_
m into En.

I. Let U and a be as in Example 1. LetA be the set of all triplesa
(a, g, h), where a is a finite open cover for X of order

_
m, g is a canonical

map of X into X,, the nerve of a, and h is a simplicial map h X -- E. Let
q(a) hg, let d(a) mesh a, where mesh a sup, diam V, and let v(a) be
as in Example 1 except that the summation is over all m-simplexes s X,.
Them M(f) L(f). See [2].
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II. Let U, , A, q, d be as in I of this example but let v(a) e*(a, g, h),
where e*(a, g, h) is the elementary area defined in [2]. Then M(f) L,(f).*

3. Metric outer measures from arbitrary non-negative set functions. Let
(X, p) be a metric space. Let U be the collection of all subsets of X. Let
z(E,F) 0ire Fandletz(E,F) 1otherwise. Let be a class of
subsets of U such that the empty set belongs to a. Let r be a non-negative
set function defined on a such that r(0) 0. Let A be the collection of all
sequences with values in a. If a Cn}, Cn , let q(a) [J:=l Cn let
d(a) supn diam C, and let v(a) ’--1 r(C). From Theorem 8, it
can be seen that M(E) is the result of a standard construction leading to
metric outer measures. See [3, p. 105].

4. Outer measures from arbitrary non-negative set functions in an abstract set
X. Let U, z, A, q, v be as in Example 3 for an abstract set equipped with
the trivial metric p(x, y) 0. Then M(E) is an outer measure.

5. The Daniell-Stone upper integral. Let U be the collection of all extended
real-valued functions on a set X. Let E(e) be a positive linear functional
defined on a subspace U0 of U. Let (f, g) 0 if Ill -< gl and let
z(f, g) 1 otherwise. Let A be the collection of all sequences whose values
are non-negative functions in U0. Let q(a) = en, let d(a) 0, and
let v(a) - E(e,). Then M(f) N(f), the Daniell-Stone upper in-
tegral. See [4].

6. The Burkill lower integral for non-negative interval functions. Let
U I be an interval in the line. Let S be the collection of all subintervals
J of I. Let F(J) be a non-negative interval function defined on S. Let
A be the set of all decompositions of I into a finite number of non-overlapping
elements of S. Let a(I, I) 0, let q(a) I for all a e A, let d(a) mesh a,
where mesh a supza J and let v (a) Ejea F(J). Then M(I) the
Burkill lower integral of F(J) over I. See [5, p. 165].
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