AN ABSTRACT EXTENT FUNCTION1

BY R. E. Lewkowicz

It is the purpose of this note to define an abstract process, under which, as special cases, will fall the apparently diverse concepts of Lebesgue m-area for mappings from finitely triangulable spaces, the various Lebesgue-Williams areas for mappings from compact metric spaces, outer measures in an abstract set, metric outer measures, such as Hausdorff r-measure, in a metric space, the Daniell-Stone upper integral, the Burkill lower integral for interval functions, and perhaps others.

The form of our definition of the extent function M(u) was suggested by the definitions of m-area given by R. F. Williams [2]. Its substance can be regarded as an extension of the ideas of Lebesgue [6], and of Fréchet [1], who was, apparently, the first to notice that, in the classical case of surface area, Lebesgue's definition may be viewed as a process for extending a semi-continuous function. See also M. H. Stone [4] in connection with what we call measuring systems.

Although our abstract process does not, in general, provide semi-continuous extensions in Fréchet's sense [1], the extent function M(u) which arises is always semi-continuous. It will be clear that while our present definition leads to properties of one-sided lower-semi continuity, the definition may be modified so that, in general, functions exhibiting any of four types of semi-continuity will arise.

Measuring systems and the definition of M(u)

A function σ on $U \times U$ to R, where U is a set and R is the set of non-negative real numbers, will be called an *écart* for U and the pair (U, σ) will be called an *écarted space* if σ satisfies the following two conditions:

(1)
$$\sigma(u, u) = 0 \qquad \text{for all } u \in U,$$

(2)
$$\sigma(u, v) \leq \sigma(u, w) + \sigma(w, v)$$
 for all $u, v, w \in U$.

If U is a set, then a quintuple $\mathfrak{M} = [\sigma, A, q, d, v]$, where σ is an écart for U, A is a set, q is a function on A to U, d is a function on A to R and v is a function on A to R will be called a measuring system for U.

For a given measuring system $\mathfrak{M} = [\sigma, A, q, d, v]$ for U, we define, for each $u \in U$, the following subset $R_{\mathfrak{M}}(u)$ of R:

 $R_{\mathfrak{M}}(u) = \{r \in R \mid \text{ for every } \varepsilon > 0, \text{ there exists an } a \in A \text{ such that } \sigma(u, q(a)) < \varepsilon, d(a) < \varepsilon \text{ and } v(a) < r + \varepsilon\}.$

Received October 28, 1963.

¹ This paper is based on a portion of the author's doctoral thesis written under the direction of Professor Lamberto Cesari at the University of Michigan.

For each $r \in \mathbb{R}$, we define the following subset $U_{\mathfrak{M}}(r)$ of U:

 $U_{\mathfrak{M}}(r) = \{u \in U \mid \text{ for every } \varepsilon > 0, \text{ there exists an } a \in A \text{ such that } \sigma(u, q(a)) < \varepsilon, d(a) < \varepsilon \text{ and } v(a) < r + \varepsilon\}.$

The function M(u) is defined as follows:

$$M(u) = \inf R_{\mathfrak{M}}(u), \quad \text{if} \quad R_{\mathfrak{M}}(u) \neq \emptyset.$$

= $+\infty$, if $R_{\mathfrak{M}}(u) = \emptyset.$

It is clear that $u \in U_{\mathfrak{M}}(r)$ if and only if $r \in R_{\mathfrak{M}}(u)$ and that $M(u) = +\infty$ if and only if $R_{\mathfrak{M}}(u) = \emptyset$.

Properties of the function M(u)

We prove below the following theorems with no further hypotheses on the nature of the elements of the measuring system \mathfrak{M} . In a few of these, the concept of accessibility is required. An element $u \in U$ will be said to be accessible to the measuring system $\mathfrak{M} = [\sigma, A, q, d, v]$ provided that for every $\varepsilon > 0$, there exists an $a \in A$ such that $\sigma(u, q(a)) < \varepsilon$ and $d(a) < \varepsilon$.

Theorem 1. If $R_{\mathfrak{M}}(u) \neq \emptyset$, then $M(u) \in R_{\mathfrak{M}}(u)$.

If $R_{\mathfrak{M}}(u) \neq \emptyset$, then $M(u) = \inf R_{\mathfrak{M}}(u) < +\infty$, and for each $\varepsilon > 0$, there exists an $r \in R_{\mathfrak{M}}(u)$ such that $r < M(u) + \varepsilon/2$. Hence, there exists an $a \in A$ such that $\sigma(u, q(a)) < \varepsilon$, $d(a) < \varepsilon$ and $v(a) < r + \varepsilon/2 < M(u) + \varepsilon$.

Theorem 2. For each $r \in R$, $U_{\mathfrak{M}}(r) = \{u \in U \mid M(u) \leq r\}$.

If $u \in U_{\mathfrak{M}}(r)$, then $r \in R_{\mathfrak{M}}(u)$ and $M(u) = \inf R_{\mathfrak{M}}(u) \leq r$. Conversely, if $u \in U$ is such that $M(u) \leq r$, then $r \in R_{\mathfrak{M}}(u)$ and $u \in U_{\mathfrak{M}}(r)$.

THEOREM 3. For each $r \in R$, $U_{\mathfrak{M}}(r)$ is closed in the upper topology for (U, σ) , where an upper ε -neighborhood of $u_0 \in U$ is a set of the form

$$\{u \in U \mid \sigma(u_0, u) < \varepsilon\}.$$

Suppose u_0 is in the closure of $U_{\mathfrak{M}}(r)$. For each $\varepsilon > 0$, there exists a $u \in U_{\mathfrak{M}}(r)$ such that $\sigma(u_0, u) < \varepsilon/2$. Since $u \in U_{\mathfrak{M}}(r)$, there exists an $a \in A$ such that $\sigma(u, q(a)) < \varepsilon/2$, $d(a) < \varepsilon/2$ and $v(a) < r + \varepsilon/2$. Since $\sigma(u_0, q(a)) \le \sigma(u_0, u) + \sigma(u, q(a)) < \varepsilon$, it follows that $u_0 \in U_{\mathfrak{M}}(r)$.

THEOREM 4. The function M(u) is lower-semi continuous with respect to the upper topology for U at each point $u_0 \in U$.

If $u_0 \, \epsilon \, U$ and $M(u_0) = +\infty$, then $R_{\mathfrak{M}}(u_0) = \emptyset$ and for each $r \, \epsilon \, R$, $u_0 \, \epsilon \, U_{\mathfrak{M}}(r)$. Since $U_{\mathfrak{M}}(r)$ is closed, there exists a $\delta > 0$, such that if $u \, \epsilon \, U$ and $\sigma(u_0, u) < \delta$, then $u \, \epsilon \, U_{\mathfrak{M}}(r)$. From Theorem 2, it follows that r < M(u). If $M(u_0) < +\infty$, then for each $\varepsilon > 0$, $M(u_0) - \varepsilon \, \epsilon \, R_{\mathfrak{M}}(u_0)$. Since $u_0 \, \epsilon \, U_{\mathfrak{M}}(M(u_0) - \varepsilon)$, and since $U_{\mathfrak{M}}(M(u_0) - \varepsilon)$ is closed, there is a $\delta > 0$ such that if $u \, \epsilon \, U$ and $\sigma(u_0, u) < \delta$, then $M(u_0) - \varepsilon < M(u)$.

THEOREM 5. If $\{a_n\}$ is any sequence in A such that $\sigma(u, q(a_n)) \to 0$ and $d(a_n) \to 0$, then $M(u) \le \liminf v(a_n)$.

Let $\{a_n\}$ be such a sequence. If $M(u) < +\infty$, then for each $\varepsilon > 0$, $M(u) - \varepsilon \in R_{\mathfrak{M}}(u)$. There exists a $\delta > 0$, then, such that if $a \in A$ has the properties $\sigma(u, q(a)) < \delta$ and $d(a) < \delta$, then

$$M(u) - \varepsilon < M(u) - \varepsilon + \delta \le v(a)$$
.

We conclude that $M(u) - \varepsilon \leq \liminf v(a_n)$ for each $\varepsilon > 0$ and that $M(u) \leq \liminf v(a_n)$.

If $M(u) = +\infty$, then $R_{\mathfrak{M}}(u) = \emptyset$ and for each $r \in R$, there exists a $\delta > 0$ such that if $a \in A$ has the properties $\sigma(u, q(a)) < \delta$ and $d(a) < \delta$, then r < v(a). We conclude that $r < \liminf v(a_n)$ for each $r \in R$ and that $\liminf v(a_n) = +\infty$.

Theorem 6. If u is accessible to \mathfrak{M} , then there exists a sequence $\{a_n\}$ in A such that $\sigma(u, q(a_n)) \to 0$, $d(a_n) \to 0$ and $\lim v(a_n) = M(u)$.

If $M(u) = +\infty$, any sequence satisfying the hypotheses will do, as the second part of the proof of Theorem 5 shows. If $M(u) < +\infty$, then since $M(u) \in R_{\mathfrak{M}}(u)$, there is a sequence $\{a_n\}$ in A with the property that for each positive integer n, $\sigma(u, q(a_n)) < 1/n$, $d(a_n) < 1/n$ and $v(a_n) < M(u) + 1/n$. It follows that $\liminf v(a_n) \le \limsup v(a_n) \le M(u)$ and, by Theorem 5, that $\lim v(a_n) = M(u)$.

THEOREM 7. For each $u \in U$, $M(u) = \inf_{[\phi]} \lim \inf v(a_n)$, where $[\phi]$ is the collection of all sequences $\phi = \{a_n\}$ in A such that $\sigma(u, q(a_n)) \to 0$ and $d(a_n) \to 0$.

If u is accessible to \mathfrak{M} , this theorem is a consequence of Theorems 5 and 6. If u is inaccessible to \mathfrak{M} , then necessarily $M(u) = +\infty$ and under the convention regarding the infimum taken over the empty set, the theorem holds in this case also.

Theorem 8. Let

$$A_{\mathfrak{M}}(u, \varepsilon) = \{a \in A \mid \sigma(u, q(a)) < \varepsilon \text{ and } d(a) < \varepsilon\}$$

and let

$$V_{\mathfrak{M}}(u, \varepsilon) = \inf \{ v(a) | a \in A_{\mathfrak{M}}(u, \varepsilon) \};$$

then

$$M(u) = \sup_{\varepsilon} V_{\mathfrak{M}}(u, \varepsilon) = \lim_{\varepsilon \to 0} V_{\mathfrak{M}}(u, \varepsilon).$$

Let $N(u) = \sup_{\varepsilon} V_{\mathfrak{M}}(u, \varepsilon)$. It is clear that $V_{\mathfrak{M}}(u, \varepsilon)$ is a decreasing function of ε . If $M(u) < +\infty$, then for each $\varepsilon > 0$, there exists an $a \in A_{\mathfrak{M}}(u, \varepsilon)$ such that $v(a) < M(u) + \varepsilon$. It follows that, for every $\varepsilon > 0$,

$$V_{\text{ent}}(u, \varepsilon) < M(u) + \varepsilon$$

and that

$$N(u) = \lim_{\varepsilon \to 0} V_{\mathfrak{M}}(u, \varepsilon) \leq M(u).$$

This relation also holds if $M(u) = +\infty$. If $N(u) < +\infty$, then for each $\varepsilon > 0$, we have $V_{\mathfrak{M}}(u, \varepsilon) \leq N(u)$. Consequently, $V_{\mathfrak{M}}(u, \varepsilon) < +\infty$ for each $\varepsilon > 0$. From the definition of $V_{\mathfrak{M}}(u, \varepsilon)$, it follows that there exists an $a \in A_{\mathfrak{M}}(u, \varepsilon)$ such that $v(a) < V_{\mathfrak{M}}(u, \varepsilon) + \varepsilon$. Hence, for each $\varepsilon > 0$, there exists an $a \in A$ such that $\sigma(u, q(a)) < \varepsilon$, $d(a) < \varepsilon$ and $v(a) < N(u) + \varepsilon$, which shows that $M(u) \leq N(u)$.

Theorem 9. If $\mathfrak{M} = [\sigma, A, q, d, v]$ and $\mathfrak{M}' = [\sigma', A', q', d', v']$ are two measuring systems for U, then in order that $M'(u) \leq M(u)$ at a point $u \in U$ for which $M(u) < + \infty$, it is necessary and sufficient that for every $\varepsilon > 0$, there exist a $\tau > 0$ such that whenever $a \in A$ has the properties $\sigma(u, q(a)) < \tau$ and $d(a) < \tau$, then there exists an $a' \in A'$ with the properties $\sigma'(u, q'(a')) < \varepsilon$, $d'(a') < \varepsilon$ and $v'(a') < v(a) + \varepsilon$.

To show the necessity of this condition, we observe that since

$$M'(u) - \varepsilon/2 \notin R_{\mathfrak{M}}(u)$$

for any given $\varepsilon > 0$, there exists a $\tau > 0$ such that if $a \in A$ has the properties $\sigma(u, q(a)) < \tau$ and $d(a) < \tau$, then $M'(u) - \varepsilon/2 < v(a)$. Since $M'(u) \in R_{\mathfrak{M}'}(u)$, there exists an $a' \in A'$ for which $\sigma'(u, q'(a')) < \varepsilon/2$, $d'(a') < \varepsilon/2$ and $v'(a') < M'(u) + \varepsilon/2 < v(a) + \varepsilon$.

As for the sufficiency, since $M(u) < +\infty$, then u is accessible to \mathfrak{M} and by Theorem 6 there exists a sequence $\{a_n\}$ in A such that $\sigma(u, q(a_n)) \to 0$, $d(a_n) \to 0$ and $M(u) = \lim v(a_n)$. For each n so large that $1/n < \tau$, there exists an $a'_n \in A'$ such that $\sigma'(u, q'(a'_n)) < 1/n$, $d'(a'_n) < 1/n$ and $v'(a'_n) < v(a_n) + 1/n$. Hence, $\sigma'(u, q'(a'_n)) \to 0$, $d'(a'_n) \to 0$ and $\lim \inf v'(a'_n) \le M(u)$. From Theorem 5, we conclude that $M'(u) \le M(u)$.

Examples

- 1. Lebesgue m-area for mappings from a finitely triangulable space X into a Euclidean space E_n . Let U be the set of all continuous mappings $f: X \to E_n$. Let $\sigma(f, g) = ||f g||$, the uniform metric for U. Let A be the collection of all triples a = (t, K, h), where K is a geometric m-complex, $t: X \to K$ is a homeomorphism onto, and $h: K \to E_n$ is a quasi-linear mapping. Let $\sigma(a) = h$, let $\sigma(a) = h$, and let $\sigma(a) = h$ and let $\sigma(a) = h$ and the summation is over all m-simplexes of K. Then $\sigma(a) = h$, See [2].
- 2. Williams-Lebesgue m-area for mappings from a compact metric space X of covering dimension $\leq m$ into E_n .
- I. Let U and σ be as in Example 1. Let A be the set of all triples $a = (\alpha, g, h)$, where α is a finite open cover for X of order $\leq m, g$ is a canonical map of X into X_{α} , the nerve of α , and h is a simplicial map $h: X \to E_n$. Let q(a) = hg, let $d(a) = \text{mesh } \alpha$, where mesh $\alpha = \sup_{V \in \alpha} \text{diam } V$, and let v(a) be as in Example 1 except that the summation is over all m-simplexes $s \in X_{\alpha}$. Them $M(f) = L_p^p(f)$. See [2].

- II. Let U, σ, A, q, d be as in I of this example but let $v(a) = e_m^*(\alpha, g, h)$, where $e_m^*(\alpha, g, h)$ is the elementary area defined in [2]. Then $M(f) = L_m^*(f)$.
- 3. Metric outer measures from arbitrary non-negative set functions. Let (X, ρ) be a metric space. Let U be the collection of all subsets of X. Let $\sigma(E, F) = 0$ if $E \subset F$ and let $\sigma(E, F) = 1$ otherwise. Let $\mathfrak C$ be a class of subsets of U such that the empty set belongs to $\mathfrak C$. Let τ be a non-negative set function defined on $\mathfrak C$ such that $\tau(\emptyset) = 0$. Let A be the collection of all sequences with values in $\mathfrak C$. If $a = \{C_n\}$, $C_n \in \mathfrak C$, let $q(a) = \bigcup_{n=1}^\infty C_n$, let $d(a) = \sup_n \dim C_n$, and let $v(a) = \sum_{n=1}^\infty \tau(C_n)$. From Theorem 8, it can be seen that M(E) is the result of a standard construction leading to metric outer measures. See [3, p. 105].
- 4. Outer measures from arbitrary non-negative set functions in an abstract set X. Let U, σ , A, q, v be as in Example 3 for an abstract set equipped with the trivial metric $\rho(x, y) = 0$. Then M(E) is an outer measure.
- 5. The Daniell-Stone upper integral. Let U be the collection of all extended real-valued functions on a set X. Let E(e) be a positive linear functional defined on a subspace U_0 of U. Let $\sigma(f, g) = 0$ if $|f| \leq |g|$ and let $\sigma(f, g) = 1$ otherwise. Let A be the collection of all sequences whose values are non-negative functions in U_0 . Let $q(a) = \sum_{n=1}^{\infty} e_n$, let d(a) = 0, and let $v(a) = \sum_{n=1}^{\infty} E(e_n)$. Then M(f) = N(f), the Daniell-Stone upper integral. See [4].
- 6. The Burkill lower integral for non-negative interval functions. Let U = I be an interval in the line. Let S be the collection of all subintervals J of I. Let F(J) be a non-negative interval function defined on S. Let A be the set of all decompositions of I into a finite number of non-overlapping elements of S. Let $\sigma(I, I) = 0$, let q(a) = I for all $a \in A$, let d(a) = mesh a, where $\text{mesh } a = \sup_{J \in a} |J|$, and let $v(a) = \sum_{J \in a} F(J)$. Then M(I) = the Burkill lower integral of F(J) over I. See [5, p. 165].

REFERENCES

- M. Fréchet, Sur le prolongement des fonctionelles semi-continues et sur l'aire des surfaces courbes, Fund. Math., vol. 7 (1925), pp. 210-224.
- R. F. Williams, Lebesgue area for maps from Hausdorff spaces, Acta. Math., vol. 102 (1959), pp. 33-46.
- 3. M. E. Munroe, Introduction to measure and integration, Cambridge, Addison-Wesley, 1953.
- M. H. Stone, Notes on integration, I, Proc. Nat. Acad. Sci. U. S. A., vol. 34 (1948), pp. 336-342.
- 5. S. Saks, Theory of the integral, 2nd ed., New York, Hafner, 1937.
- H. Lebesgue, Quelques remarques sur la definition de l'aire des surfaces, Fund. Math., vol. 8 (1926), pp. 160-165.

University of Illinois Urbana, Illinois