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Introduction

The circle of ideas examined in this paper separates itself naturally into
two types of problems discussed in Sections 1 and 2. In Section 1 we examine
the ergodic and topological properties of skew product dynamical systems
(X, T). (See Section 1 for definitions.) Ergodic properties of such trans-
formations on the torus were first studied by Anzai [1]. The question of strict
ergodicity of such transformations on the torus was studied by Furstenberg
[4]. Such a system (X, T) is an example of an affine transformation of a
compact abelian group. The ergodic properties of such transformations were
studied by the author in [6]. Furstenberg’s technique for demonstrating strict
ergodicity depends on the fact that C(X) is separable and thus X is metric.
The author [6] used these techniques to get another proof of the famous the-
orem of Weyl [9] on the distribution of the numbers p(n), n 1, 2, 3,
where p is a polynomial with at least one irrational coefficient which is not
the constant term. (See Theorem 1.) In Section 1 we use Weyl’s theorem
and a theorem of Oxtoby [7] (this is our Theorem 2) to study the strict er-
godicity of (X, T) where X is not restricted to being metric. In Section 1 it
is shown that minimality, ergodicity, and strict ergodicity are all equivalent
and are implied by the non-existence of elements of finite order in the char-
acter group of a group G used to define the space X.

In Section 2 we examine the algebras of sequences of the form exp(p(n)),
[exp t e2i] where p(n) is a polynomial of degree less than or equal to some
preassigned number m 1, 2, 3, oo and with coefficients from some fixed
subgroup A of the additive group of the reals. We relate the maximal ideal
spaces of these algebras to skew product dynamical systems. Finally in some
concluding remarks we point out the relationship between these algebras and
the subject of [2].

I would like to thank S. Kakutani for his interest and counsel.

1. Ergodicity and minimality of skew product dynamical systems
By a dynamical system we mean the pair (X, T) where X is a compact

Hausdorff space and T a homeomorphism of X. We wish to define carefully
a skew product dynamical system. We remark first that a group G is called
a monothetic group with generator /0 if G is a topological group and the set of
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elements {n,0 n an integer} is dense in G. We see easily that G must be
abeliam

DEFINITION. (X, T) is a skew product dynamical system if X Ii=l Gi
where m 1, 2, 3, -.., and each G G. Moreover G is a compact
monothetic group with generator ’0. T is the homomorphism of X given by

T(x x x x
(x / ’o, x + x, x + x, x -t- x_, ).

If we let S be defined by

(x, x, x, x.,

(x, x / x, x / x,..., x. / x._,...

then we see that T(x) ,), + S(x) where,, (/0,0, 0, 0, ). This allows
us to see that if is normalized Haar measure on X then is invariant under
T. This is true since S is an automorphism of X and thus preserves . Con-
sequently S followed by a translation preserves .

In order to prove the main theorems in this section we will make use of the
following theorems due to Weyl and to Oxtoby. By C(X) we shall always
mean the Banach algebra of continuous complex-valued functions on X where
I[fll sup{If(x)l "xeX}.

THEOREM 1. (Weyl) Let p(z) be a polynomial of degree m"

p(z) a, z - a,_ z"-1 - + a z + ao, ai real numbers.

Suppose at is irrational for some l, m >_

_
1. Under these conditions

’=0 exp(p(n)) o(N)

uniformly in ao a a_l

Proof. See [9, p. 326], or see [6] and observe that uniformity is implied by
the strict ergodicity of the transformation.

THEOREM 2. (Oxtoby) Let X, be a minimal dynamical system. If
for each f e C X

lim
1 -N /V n--0

f(n(x))

exists uniformly in x then (X, ) is strictly ergodic. By this we mean there is a
unique q-invariant positive measure for which (X) 1.

Proof. The proof is simple enough to outline here. Let
N--1

f*(x) lim
1 ,f(n=0 (x))
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Because of the uniformity of convergence we see f* C(X). W e also se

f*((x)) f*(x). The minimality of (X, ) implies f* is constant. Let be
defined by fd f*. If is not unique there must be another ergodic
measure and it follows from the ergodic theorem that

f* J f d
and thus .

In order to prove the next theorem we shall need more detailed knowledge
of how T acts on X. If

Tn(x) (y’ y y’]

then it is not hard to show by induction that

y pl(n)0 - xl

y; p2(n)o + p(n)x + x
1.1

y’] p(n)o + p_(n)x + p_=(n)x + + x

where p(n) (1/j)(n(n 1)(n 2) (n -j + 1)) forj 1,2,3,
and n 0, 1, 2, .... We observe that degree of p(n) is j and that the
coefficients are integers.
For the next few formulas we assume X G G, and m < . If

f e then

1.2 f(z) (z).f=(x=) f(x) where fi e .
We wish to examine the values f(Tnx). To do this we establish the following
conventions. Let

1.3
f(x) exp O(x)

f(?0) exp a

for i 1, 2,..., m,j 1, 2,..., mand 0 O(x) < 1, 0 a < 1. We
see that f(T’z) f(y y=) (y)f(y;) f(y). We have

f(y]) f(p(n)o + =p_(n)x)
1.4

exp(p(n)a + =p_(n)O(x)).
Consequently we obtain

f(T x) exp(  % +
1.5

exp q(n)
where we let

an W a_ + + an + ao q(n)

p(n)a
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We now have the necessary language for Theorem 3.

THEOaEM 3. Iff C(X) then

lira
1

--0
f(Tnx) f*(x)

exists uniformly in x.

Proof. We first observe that it suffices to prove the theorem in the case
where X is the product of G taken only finitely often. To see this we remark
that since the characters of X are dense in C(X) it is sufficient to prove the
theorem for f a character. If f is a character it depends on only finitely many
coordinates. That is f is of the form

f(x) f(xl)"f2(x2) fm(Xm)

where each f is a character of G. So if the theorem is proven for X having
only finitely many factors then it holds in the infinite case also. We thus
assume that X l-Ii=l G, G G, and m < o. We carry out the proof
by examining three cases. The first and third case we reduce to Theorem 1
and the second case we solve with the aid of the ergodic theorem.

Case I. fm is not of finite order. Since the multiples of ’0 are dense in G it
follows that exp am is not of finite order and thus am is irrational. Examining
1.5 we see that only pro(n) contributes a term of degree m and thus in q(n) we
have am am/m! which is irrational. From Theorem 1 we have

N--1 N--1,=o f( Tnx) ’--o exp(q(n)) o(N)

uniformly in a0, al, a2,..., am_. However these a are functions of
Oj(x) and thus

N--1,=o f( Tnx) o(N)

uniformly in x. This completes Case I.
Case II. f is of finite order for i 1, 2, m. Our aim is to obtain a

decomposition ff {F0, F, F, Fx} of X. The sets F are to be pair-
wise disjoint and each should have positive ttaar measure. Moreover for
eachi 1, 2, 3, , we shall have f( Tx) Ice(n) ifxeF. If this is
done I claim this case is also solved. We reason in this manner. It follows
from the ergodic theorem that

lim
1 -,=o f(Tx)

exists for almost all x. In particular this limit must exist for at least one x in
each F. But for each x in F we have

N--1

lim
1 1 -f(T x)

n-O N n’O

This limit must exist for every x in each F and consequently exists for each
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X in G. Since there are only finitely many F we see that

lim
1 N f(T"x)

N n=0

exists uniformly in x. Thus we see that in order to complete Case II we must
only obtain the decomposition {Y. We now obtain this decomposition.
For each fi we let ae {H, H1, ..., H(i)} be the decomposition of G

given by the cosets determined by H kernel fi. We observe that each
coset has positive ttaar measure in G. Let ag {U0, Hi, H} be the
decomposition of G which is the coarsest refinement of all the ae;. That is

We observe again that each set of ae has positive ttaar measure in G. Further-
more each f is constant on each set of ae. Finally we let

ff ae X ae X X ae (m times),

that is, ff {F0, F1, Fx} where the F are gotten by taking all possible
subsets of X of the formH X H2 X X H, whereHkeae. Since
Haar measure on X is the product measure of the Haar measure on G it
follows that each member of ff has positive Haar measure in X. Since each
f, i 1, 2, m, is constant on the sets of ae we see that f(Tax)
for each x e F, i 1, 2, ),. Thus Case II has been disposed of.

Case III. fk is not of finite order for some k, 1 _< /c < m but

fk+i, fk+2, "", fm
are all of finite order. We prove this case by combining the techniques of
Cases I and II. Let aek+l, aek+,., acre be defined as in Case II. Let

and let ff ae X ae X X ae (m times), ff {F0, F1, "’", Fx}. We see
that each fk+i, fk+, ,fm is constant on the sets of ae. For the time being
fix some set F and let x e F. According to 1.5 we have

where
f( T’x) exp(q(n))

q n am n + am-1 n
m-1 --J[- -Jr- a n q- ao

’m= p(n)a q-- _,= _=1 p_(n)O(x).

We see from 1.3 that 0k+l, 0+,., 0m are constant on the sets of ae. Re-
calling that the degree of p_(n) is j- i we see that the coefficients
ak, ak+, am depend only on 0k+, 0+=, 0k and on no t with i _<
Thus if we allow x to vary in F the numbers ak, ak+, am are constant.
We now examine ak and show that it is irrational. We must have

ak rl ck -}- r2
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where rl is rational and r2 is a rational combination of
0k+l, 0k+., 0m, a+, am. Since f,+, f+2, fm are of finite
order it follows that r2 is rational. Since f is not of finite order it follows that
ak is irrational and thus a is irrational. Theorem 1 states that

n=0 exp(q(n)) o(N)

uniformly in a0, a, a_. Thus we see that

lim
1 7-’f(T’x)

..O

Since there are only finitely many F in we seeexists uniformly for x e F.
that

lim
1 N-1

v
f( T’x)

nO

exists uniformly for x e X. This completes Case III and thus the theorem is
proved.

If (Z, T) is a dynamical system we let O(z) {T’z: n an integer} be
called the orbit of z for any z Z. By C1 O (z) we mean the closure of O(z).
We also define the product dynamical system (Z)< Z, T )< T) by the formula
T )< T z z) Tz Tz). We letAcZ)< Zbetheset

/(z, z) z z}.

DEFINITION. A dynamical system (Z, T) is distal if for each

(z, z) Z Z

we have eitherC10(z, z2) zX 0or C10(z, z) c A. The orbit of
(zl, z.) is taken in the product dynamical system (Z X Z, T X T).

LEMMA 4. A slcew product dynamical system is distal.

Proof. Letz (xl,z,...) andy (yl,y2,"") be elements of X.
Suppose C10(z, y) zX 0; then we wish to show C10(x, y) c ZX. Since
X is compact this implies that there is a z X and a subset of integers

{n(X) X A},

where A is a directed set, such that

limx Tn(x)x limx Tn(x)y

Since T(x) (xl q- "to, x= q- x xj q- Xj_l we see that x, y.
Suppose it has been shown that x, yl, x,. y=, x._, y_. Since
the jth coordinate of T’(x) is of the form x plus a polynomial in
xl, x,., ..., x-_, and similarly for the jt coordinate of T’(y) we see that

x. y.. Thus by induction it follows that x y and consequently
O(x, y) A. Since A is closed we have C10(x, y) c 5.



TEoRE 5. Let (X, T) be a skew product dynamical system. If the char-
acter group of G has no elements offinite order then X, T, is ergodic. In any
case the following statements are equivalent"

(a) (X, T, ) is ergodic.
(b) (X, T) is minimal.
(c) (X, T) is strictly ergodic.

Proof. We first show that if has no elements of finite order then (X, T, )
is ergodic. To do this we assume that the preceding statement is false;
that is we simultaneously assume that (X, T,
has no elements of finite order. We will arrive at a contradiction.

If (X, T, ) is not ergodic then it is certainly not strongly mixing. It
follows from [6, Corollary 3] that there is a positive integer p and a character
7 e such that 7 1 and v7 7(7(x)= 7(Sx)). We let

that is 7(x) 71(x1)7.(x.) 7m(x), where 7 e for i 1, 2, m.
It is an easy computation to see that

1.6

We observe that (7) 7 implies 7m-1 7 7-1. Since has no ele-
ments of finite order we conclude 7 -= 1. We now proceed downWard by
induction. Suppose we have shown that 7--7+1 ""---7 1 for
some j, 2 < j _< m. Then v(7) 7 implies 7-2 7’-1 7-2 and we again
conclude n---1. So far we have shown by induction

We will now show that 71 1. It follows from [6, Theorem 4] that for at
least one 7 for which 7 7 we have v7 7. Thus we have

We conclude 7 (’0) 1. Since the multiples of 0 are dense in G we con-
clude that 7 1 and the fact that G has no elements of finite order allows
us to assert 71 1. Consequently 7 1 which contradicts the assumption

We now go on o prove he equivalence of (a), (b), and (c).
(a) implies (b). Since (X, T, #) is ergodic i follows

lira
1 f. f

for almos all X. By Theorem 3 he firs equality holds uniformly in
for each f C(X). Thus f C() implies f*() is continuous and since f*()
is consan almos everywhere i is constant. Thus

lim
1 f- ,.-o-’ f(T’x) f d
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for each x e X and f C(X). This implies that for each x e X the sequence
x, Tx, Tx, Tx, is dense in X which implies (X, T) minimal.

(b) implies (c). We need merely apply Theorems 2 and 3.
(c) implies (a). It is known that if there is a unique invariant measure

then it is an ergodic measure (see [7]).
Because of the nature of Theorem 5 some remarks and examples are in

order. We remark first that every skew product dynamical system has
quasi-discrete spectrum. Thus we may use the results of L. M. Abramov,
Metric automorphisms with quasi-discrete spectrum, Izvestia of Acad. of Sci.,
U. S. S. R., 1962, pp. 513-530, to obtain the first part of Theorem 5 for X
metric.

Example 1. may have elements of finite order and (X, T, t) may be
ergodic. Let G Z2 and X Z X Z.. In this case (X, T) is transitive
and thus in particular it is ergodic.

Example 2. If has an element of order p then (X, T, ) is not ergodic.
Let v ------ 1, vl 1, for some 1 e and define (v, 1, 1, 1). We
now have

v(Tex) v(’ro - So + So - - Se-o)(x)
(-’(0)() (x).

Thus T2p has a non-constant eigenfunction of eigenvalue one and is not er-
godic.

Example 3. If X G then (X, T, ) is always ergodic and has discrete
spectrum. This is the well known case of translation by a fixed element ’0.

Example 4. There exist cases where has an element of finite order and
(X, T, ) is not ergodic. Let be the discrete group of the complex num-
bers of modulus one. We see that G is compact. Let X G X G and let
0 be that element of G defined by (/0) for each e . The multiples
of ’0 are dense in G. Let e/ and . e, and . e . In L.(X) let
f (, .) + i(1 , ). We observe that f is not a constant and we corn-
pure

Tf(x x.) f(x - o, x2 - x)

(, ) (x + o, x + z) + i( , .) (x + o, x. +
(0)( ., )(, x) + i(0).(0)(z)(, )(x

i( , )(xl x2) - ( )(xx)

f(x, xe).

Thus T has a non-constant eigenfunction with eigenvalue one so (X, T,
is not ergodic.

Example 5. Because of Theorem 5 we wish to indicate that the class of
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compact monothetic groups whose character group has no elements of finite
order is a rich class. First consider all groups G, p a prime, whose character
group consists of the discrete additive group of all rationals r which can be
written in the form r q/p, q and/c integers. These groups G are the p-
adic solenoids. Since is a subset of the reals we see that it has no elements
of finite order. In order to see that G is monothetic we must only show that

is isomorphic to a subgroup of the discrete group C1 of complex numbers of
modulus one. Let f: -- C1 be defined by f(r) eit. We see easily
that f is a homomorphism and we need only check to see kernel f {0}.
We observe eir 1 if and only if r 2rn for some integer n. Since r is
irrational we have r 0.

Another class of interesting examples of the same type is obtained as fol-
lows. Let E be a subset of the reals with the following property: If

are in E then the numbers 1, , 2, are linearly independent
over the rationals. Let be the discrete subgroup of the additive group of
reals generated by E. We again see that has no elements of finite order
since it is a subgroup of the reals. In order to see that G is monothetic we
define the homomorphism f -- C by f() exp . We need only show
kernel f= {0}. If f() 1, where e, then m an integer. Since

e ( we see that q 1 -- q2 2 + -Jr- q , q are integers and e E.
Thus 0 -m + ql -- q -k -- qn n, but because of the independ-
ence of 1, , , over the rationals we have m q q
q 0undthus 0.
The above class of groups G contains all the finite dimensional tori. It

ulso yields a large class of compact monothetic groups which are not metriz-
ble and thus will not yield to the treatment of [6]. To obtain this class we
must only be sure that the set E is non-countably infinite. Such sets E exist
and then C(G) is not separable so G is not metrizable.

2. Algebras generated by exp(p(n)) and their maximal
ideal spaces

To begin with we let B be the Banach algebra of all bounded bisequences
of complex numbers {z zn :n an integer} with

z sup {I Zn 1" n an integer}.

In this algebra we wish to examine certain closed subalgebras, their maximal
ideal spaces, and relate some of the results of Section 1 with these maximal
ideal spaces. We first describe the subalgebras which we consider.

Let A be any subgroup of the additive group of reals. Let

2.1 F(A) {exp }, }, A}.

For any positive integer m we let

2.2 P,(A) {p(n) m n -f- },,-1 n-1 -k -k ) n -f- ,0 ,i e A}
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and let
2.3 P(A) Un= Pro(A).

For each m 1, 2, 3, we let

2.4 Qm(A) {exp(p(n)) p(n) e P(A)}.
Thus we see that for each m, Q(A) consists of exponentials of polynomials

in n with coefficients in A and degree no larger than m. Q(A) is a subal-
gebra of B. The subalgebras of B which we wish to examine are the closed
algebras generated by Q(A). Since Qm(A) is a group under multiplication
we see that these subalgebras are merely the closed linear spans of Q(A).
Thus we let

L(A) closed subalgebra generated by Q(A)
2.5

closed linear subspace generated by Q(A).

We let m(A) be the maximal ideal space of L(A) and let

" L(A) C((A))

be the Gelfand mapping of the elements of L(A) to the continuous functions
on (h). Since L(A) is a B* algebra with identity it is known that

is an isomorphic isometry onto C((A)). We also observe that the
mapping e B B defined by (z) z+ is an isomorphic isometry of B
onto B and L(A) is preserved by . If we let

2.5a

then we see (A) (A) and

2.5b 0 0 .
We wish to describe both nd (A).
We do this by defining skew-product dynamical system (X, T). The
X depends of course on A but we omit it from our notation. In this system
we let Y be prticulr orbit closure. We then show that there is n iso-
morphism of the dynamical systems (Y, T) nd ((A), ). That
is we show that there is homeomorphism ,’Y (A) such that

From now on we will consider the group A s fixed nd for the ske of
brevity we will omit A from our notation. We let F be the group F with
the discrete topology. If is the character group of F then is compact.
In we use the additive notation, that is x + y is defined by (x y)
x().y() for ech e F. We let

2.6 X , m 0,1,2,..., .
In order to define skew product dynamical system we need to choose
generator 0 of . We let 0 be the element defined by 0() for each
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, e F. The multiples of 0 are dense in for the following reason. Since

we see that each element 7 e F is a character of . These characters sepa-
rate points. If 0(’) 1 then 7 1 by definition of 0. Thus the mul-
tiples of 0 are dense in d. We let (Xm, Tin) be given by

2.7 T(x) (xl + o, x2 + xl, x, + x_l).

Furthermore we let 0 (0, 0, 0 ...)eX and set

2.8 Y Cl O(0).

The dynamical system (Ym, T) is distal, minimal and strictlyTHEOREM 6.
ergodic.

Proof. By Lemma 4, (X, T) is distal. It is easy to see that this
property is inherited by (Y, Tin). From Ellis’ Theorem [3] it follows that
Y,, T) is pointwise almost periodic. Since Y is an orbit closure Y, Tin)

must be minimal. The Tietze extension theorem says that any contin-
uous complex-valued function on Y may be extended to X. If we now
apply Theorem 3 and Theorem 2 we see that (Y, T,) is strictly ergodic.

THEOREM 7. There is an isomorphism : (Y,, Tn) -- ( ).

Proof. We reduce the problem by examining the space . This space, is completely determined by C(). We have already remarked that
0 L(A) --+ C() is an isomorphic isometry onto. Thus 92, is completely
determined by L,(A). Consider O(0) c Y,, the orbit of 0 under T.
For each f e L(A) define the function ]" O (0) -- C as follows: ]( T"(0))
f(n). I claim that the theorem is proven if we can show that each such ]
has a continuous extension to all of Y. This is not difficult to see. For if
it is possible to extend each such ] then since O(0) is dense in Ym we see that
L(A) and C(Y) are isometrically isomorphic under the mapping

We also see that

2.7a

Letting 0 1 we obtain a homeomorphism of Y and
2.5a, 2.5b, and 2.7a we obtain

From

which would complete our theorem. Consequently all that remains to be
shown is that f caa be extended to a continuous function on Y for each
f e L(A). Since finite linear combinations of the elements of Q(A) are
dense in Lm(A) it suffices to show that f can be extended to a continuous
function on Y for each f e Q(A). The plan for doing this is the following:
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given f
f(n). We will actually find

If we let f e Q(A) then

f(n) exp(p(n)),
2.9

p(n a n + a_l n-1 + + al n -t- ao

wheres < mW landaeA, i= 1,2,...,s. We recall that

F {expX:XeA}

is the character group of }. We denote the character exp X by x. From
the definition of }0 we have Cx(}0) exp X. Let @ e 2 have the form

2.10

From 1.1 we obtain

2.11 Tn(0) (pl(n)}o, p(n)}o ,..., p,(n)}o, ...).

2.10 and 2.11 yield

2.12 b(x) exp(q(n))

where
q(n) p(n) + ),5 p.(n) + + X8 p(n)

be n -+- b._n- -+- b n bo.

In order to complete the theorem it suffices to show that we cun choose,..., , e A such that p(n) q(n) for then (T(0)) f(n).
We do this by downward induction recalling that the degree of p(n) j.

If we set h, a, s we observe the following"

2.13 and /s e A., is a polynomial in a, s, with integral coefficients.

Suppose now that we have determined h,, h,_,, so the conditions
of 2.13 are satisfied. We wish to show that h_, can be determined so the
conditions of 2.13 are satisfied. The only polynomials p involving terms of
degree greater than or equal to j 1 are pC_,, p, p. Thus we see
that

1
(j 1)

where r is the sum of integral multiples of X/j, X+/(j + 1), X/s.
Thus we see that r e A. If we let X_ (j- 1)(ai_ r) then we see
that ai_ b_, Xi_ and X_(j- 1)e A, and X_ is an integral poly-
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nomial in the a for ]c

_
j- 1. Thus our induction shows that a b,

i 0, 1, 2, s so p(n) q(n) and the theorem is complete.

THEOREM 8. If F has no elements of finite order then X, Y,.

Proof. X, Y if and only if (X, T) is minimal. We now need only
use Theorem 5.
In conclusion I would like to point out certain relations between the results

of this paper and those of [2]. In [2] the authors studied the algebra of se-
quences f which had the following properties" for each such f there is a distal
dynamical system (X, T) and an x X and an ] C(X) such that

fn f( Tnx).
This algebra is in general quite large. It is not true that all of its elements
have mean values. The algebras {exp(p(n) )} form smaller more manage-
able subalgebras of the larger algebra.

Added in proof. For references to [6] see also Errata to [6] in Amer. J. Math.,
vol. 86 (1964).
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