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ON THE DIMENSIONS
OF THE AUTOMORPHISM GROUPS

OF HYPERBOLIC REINHARDT DOMAINS

J. A. GIFFORD, A. V. ISAEV AND S. G. KRANTZ

ABSTRACT. We study the possible dimensions ofthe groups of holomorphic automorphisms ofhyperbolic
Reinhardt domains. We are particularly interested in the problem of characterizing Reinhardt domains
with automorphism group of prescribed dimension.

Introduction

Let D be a domain (a connected open set) in Cn, n > 2. Denote by Aut(D)
the group of holomorphic automorphisms of D; that is, Aut(D) is the group under
composition of all biholomorphic self-maps of D. If D is bounded or, more gen-
erally, Kobayashi-hyperbolic, then the group Aut(D) with the topology of uniform
convergence on compact subsets of D is in fact a finite-dimensional Lie group (see
[Ko]). We note that this Lie group is always a real group but never a complex Lie
group (except for the case of zero-dimensional groups). Thus, when we specify the
dimension of this group, we shall always be speaking of its real dimension. By con-
trast, when we speak of the dimension of the domain on which it acts, we shall be
referring to complex dimension.
We are interested in characterizing a domain by its automorphism group. Much

work has been done on classifying domains with non-compact automorphism group
(see [IK3] for a detailed exposition). In this paper we concentrate on the dimension
of Aut(D). Namely, we are interested in the following question" to what extent does
the dimension of the automorphism group determine the domain?

In this work we consider only Reinhardt domains, i.e., domains invariant under
the (coordinate) rotations

Zj I---> ei4j
Zj j6,j=l n.

As we shall see below, even this special case leads to difficult problems.
The paper is based on the structure theorem by Kruzhilin [Kr] (see also [Sh] for

the case of bounded domains) that allows us to list all possible dimensions that the
automorphism groups of hyperbolic Reinhardt domains can have. It turns out that
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DIMENSIONS OF AUTOMORPHISM GROUPS 603

all dimensions (except for the case of domains that, up to dilations of coordinates,
are the unit ball in Cn--see Corollary 1.2) lie between n and n2 + 2 inclusive; the
dimensions are even if n is even and odd if n is odd.
We classify all domains whose automorphism groups have dimensions n2 and

n2 + 2 (see Theorem 1.9 and Corollary 1.5). The remaining dimensions (i.e., those
that lie between n and n2 2 inclusive) split into two sets: the "bad" and "good"
ones (the latter corresponds to the case of domains with non-compact automorphism
group). These will be defined in the sequel.

While it will turn out that there is no hope to obtain any reasonable classification of
domains whose automorphism groups have dimensions that belong to the "bad" set,
one can hope to obtain some description for the "good" dimensions. For C-smoothly
bounded domains such a description has been already found in [IK2].

In this paper we study the structure of the sets of "bad" and "good" dimensions.
The main question we are interested in is: what is the asymptotic behavior (as a func-
tion of n) of the numbers of "bad" and "good" dimensions as the spatial dimension
n cx? We have been able to prove that the number of "bad" dimensions be-
haves asymptotically as n/2 (see Theorem 1.10) which means that these dimensions
asymptotically fill the whole list of all possible automorphism group dimensions.
On the other hand, we show that the lim inf of the number of "good" dimensions
behaves asymptotically at least as n (see Theorem 1.12). This last result implies
that the probability of randomly choosing a "good" dimension from the list of all
possible automorphism group dimensions is asymptotically at least of order 1/n; this
information is encouraging compared with the fact that almost any randomly chosen
domain in Cn does not belong to any reasonable classification list.
We have also made numerical computations for the numbers of "bad" and "good"

dimensions for up to n 36000 and present some of the results in Section 2. These
results were obtained by C programming. The source code of the C program is
available on the World Wide Web at

http / /wwwmaths. anu. edu. au / j ames / reinhardt

The complete list of our computational results is available from

http //wwwmaths. anu. edu. au/j ames /reinhardt_domains / tablel. html

As we shall see below, finding the numbers of "bad" and "good" dimensions is
also related to determining certain characteristics of partitions by way of their Young
diagrams.
We wish to thank G. Andrews, A. Molev, M. E Newman and R. Stanley for useful

discussions and interest in our work.
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1. Results

Let C* := C \ {0}. We denote by AUtalg((C*)n) the group of algebraic automor-
phisms of (C*)n, i.e., the group of mappings of the form

7ain nZi > iiZil
"rl (1.1)

where i C*, aij Z, and det(aij 4-1.
For a hyperbolic Reinhardt domain D C Cn, denote by Autatg(D) the subgroup of

Aut(D) that consists of algebraic automorphisms of D, i.e., automorphisms induced
by elements ofAUtalg (C*)n ). Let Auto(D) be the connected component ofthe identity
in Aut(D), and the dot (the symbol denote the composition operation in Aut(D).
It is shown in [Kr] that Aut(D) Aut0(D) Autalg(D).

By [Kr] any hyperbolic Reinhardt domain in Cn can--by a biholomorphic mapping
of the form (1.1)--be put into a normalized form G written as follows. There exist
integers 0 < s < < p < n and ni >_ 1, p, with /P=I ni n, and real
numbers o[, 1 s, j + 1 p, fl, j s + t, k + p,
such that if we set z "= (z,+...+i_,+l zl+...+ni), p, then G can be
written in the form

G= [[zll<l Izsl < 1,

zt+l

I-I=l (1 Iz 12)I+ l-I=s+l exp(-+l zj )

zp

l’-Ii=lS zi 12)c/p Hj=s+lt exp(--flyp IzJ 12)
(1.2)

where "= G N{z 0, t} is some hyperbolic Reinhardt domain in
Cn,+’ Cp. It should be noted that any given domain will have many different
normalized forms of type (1.2).
A normalized form can be chosen so that Aut0(G) is given by the following

formulas:

A z .+. b
z - 1 s,

c z + d

Zj -> Bj Zj q-ej j s + t,

Z
k t---> Ck H)=s+l exp(-(2e-frBz + leJl2))z*

H=I Cizi .ql_ di)2a
k=t+l p,

(1.3)
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where

A b )ci di

_
SU(ni, 1), s,

B U(nj), e C"J, j s + 1 t, (1.4)

Ck6U(nk), k=t+l p.

It follows from (1.3), (1.4) that the dimension of the automorphism group of any
hyperbolic Reinhardt domain in Cn is a number of the form

k mn+ 2Znj, 0 < rn < k, (1.5)
i=1 j=l

for some partition (nl nk) of n, _< k _< n. We will be interested in the structure
of the set f2 (n) of all numbers (1.5). Let f2 (n, ) be the set of all numbers of the form
(1.5) with k and f2(n, , q) the set of all numbers of the form (1.5) with k ,,
rn q. Clearly, (n, ) I,.Jq=0"2 (n, , q), f2 (n) I,.J_.. (n, ). First, prove the
following:

PROPOSITION 1.1. Let N f2 (n). Then"

(i) N is even (odd) ifn is even (odd).
(ii) N > n.

(iii) IfN f2 (n, e.) for > 2 then N < n2 + 2.

Proof Statements (i) and (ii) are obvious. We prove (iii) by induction. It is
obvious for n 2, so we assume that n > 3. Let N Eie__l n/2 + 2 -’4m__l nj, for
some 2 _< _< n, 0 _< rn _< e.

Suppose first that 2, m <_ 1. Then we have

N n21 +2i=lnj +n
_< (n n2)2 - 2(n n2) -k- n nz q-- 2(n2 ng.(n + 1) + n) < nz + 2.

Let 2, rn 2. Then

N (n n2)2 -+- n + 2n n2 + 2(n nn + n) <_ n2 + 2.

Now suppose that > 3 and assume first that rn _< 1. Then by induction we
have

N n2i d-2 nj -t-n
\i=1 ’=

< (n-ne)2+2+n=n+2+2ne(ne-n) <n2+2.
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Assume finally that g > 3 and m g. Then by induction we get

N n/2+2 nj +n+2ne
\i=1 "=

n2< (n-ne)2+2+n2e+2ne= +2+2ne(ne-n+l)<n2+2.
The proposition is proved. []

It follows from Proposition 1.1 that the value n2+2n can only be taken by f2 (n, 1, 1)
(which is clearly a one-point set) corresponding to the case s p in formula
(1.2). Thus we obtain the following characterization of the unit ball in the class of
hyperbolic Reinhardt domains.

COROLLARY 1.2. Let D C Cn be a hyperbolic Reinhardt domain such that
dim Aut(D) > n2 + 2. Then, up to dilations ofcoordinates, D is the unit ball Bn.

Remark. It turns out that any connected hyperbolic n-dimensional complex mani-
fold M with dim Aut(M) > n2+2, is biholomorphically equivalent to the unit ball; see
[IK1 ]. For comparison, we also recall here an earlier result from [Ka], [Ko]" if M is a
connected hyperbolic n-dimensional complex manifold, then dim Aut(M) < n2 +2n,
and if dim Aut(M) n2 + 2n, then M is biholomorphically equivalent to the unit
ball.

In the following proposition we establish upper bounds for f2(n,g, 0),
g>2.

PROPOSITION 1.3. Let N f2 (n, g, 0). Then N < (n g + 1)2 + g 1.

Proof. The inequality is obvious for g 1, so we assume that g > 2. The proof
for g > 2 proceeds by induction. The inequality is clearly correct for n 2 and we
suppose that n > 3. Let N Yie___l n/. If g 2, we have

N n2 +n (n n2)2 +n (n 1)z + 1 + 2(n n2n + n 1) _< (n 1)2 + 1.

Now assume that g >_ 3. Then by induction we have

e-1

N ,n/2+ne2
i=1

< (n-he-g+2)2+g-2+n
(n-g+l)2+g-1

+ 2(n ne(n g + 2) + n g + 1)

< (n-e-+- 1)2+g 1.

The proposition is proved.
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COROLLARY 1.4. Let N 2 (n, e). Then N < (n e + 1)z + g. + 2n.

It follows from Corollary 1.4 that the value n2 +2 can only be taken by the elements
of (n, 2, 2). The only partition (n l, n2) (assuming n < n2) that can realize this
value is clearly (1, n 1) which corresponds to the case s p 2, n 1,
n2 n in formula (1.2). Thus, we obtain the following:

COROLLARY 1.5. Let D C Cn be a hyperbolic Reinhardt domain such that
dim Aut(D) n2 + 2. Then, up to dilations and permutations of coordinates,
D is the product Bn-I A of the unit ball Bn- C Cn- and the unit disc A C C.

Remark. In [IK1 we showed that any connected hyperbolic n-dimensional com-
plex manifold M with dim Aut(M) n2 + 2, is biholomorphically equivalent to
Bn-1 A. In [IK5] we also proved that if n 3, then dim Aut(M) : n2 + 1, and,
if n 3 and dim Aut(M) 10 32 + 1, then M is biholomorphically equivalent to,

the 3-dimensional Siegel space (the classical domain of type (I 11)2).

Now we shall deal with dimension n2 and classify all hyperbolic Reinhardt domains
D such that dim Aut(D) n2. For this result, we need to understand what numbers
from f2(n) can equal n2. First of all, we clearly have f2(n, 1, 0) {n2}. Next, the
following holds.

PROPOSITION 1.6.
N <n2.

If n > 4, then for any N 2(n, ) with > 3, one has

Proof It follows from Corollary 1.4 that

N < n2 + 2 e(2n + 1) + 4n < n2 2(n 3) < n2.

The proposition is proved.

It follows from Proposition 1.6 that, for n > 4, if n2 (n, e) and e > 2, then

We now take a closer look at the set f2(n, 2). To cover all the elements from
f2(n, 2, 0) we clearly only need to consider partitions (nl, n) ofn with nl > n., i.e.,
partitions of the form

n n ) n
+x,-/x x=O 2

1, ifniseven,

n+ n- ) n-3
2

+/z,
2

/x ,/z=0
2
, if n is odd.

Therefore, the following proposition is obvious.
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PROPOSITION 1.7. (i) lfn is even,- n 1}fa(n, 2) -+2/,2: /z=O -n n }T+2tz(t,- 1)+n" /z=0 -- 1.

n n 1}U --+2/z(/z+ 1)+n" /,=0
2

n n 1}tO --+2/z2+2n /z=0
2

(ii) Ifn is odd,

n2+l
f2 (n, 2) 2’ + 2/z(/z + 1)" /z 0

n2-k n--3}tO
2 + 2/z2 +n 1" /z =0

2

n2+l n--3}U
2 + 2/z(/z + 2)+ n + 1" /z=O --n2+l n--3}tO
2 + 2/z(/z + 1) + 2n: /, 0

COROLLARY 1.8. (i) A number N g2(n, 2), n # 4, is equal to n2 only if
N (n, 2, 1) and corresponds to the partition (n 1, 1).

(ii) A number N (4, 2) is equal to 16 only if either

(a) N 6 2 (4, 2, 2) and N corresponds to the partition (2, 2), or

(b) N 2 (4, 2, 1) and N corresponds to the partition (3, 1).

We are now ready to prove the following classification result for dimension n2.

THEOREM 1.9. Let D C Cn be a hyperbolic Reinhardt domain such that
dim Aut(D) n2. Then D is holomorphically equivalent to one of the following
domains:

(i) {z 6 Cn" r < Izl < R}, 0 < r < R < cxa;
(ii) A (here n 3);
(iii) B2 x B2 (here n 4);
(iv) {(z’, Zn) e C" Iz’l 2 / [Zn 1 < 1}, 0t IR, 0t 5 0, 2;
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(v) {(z’,z) C" Iz’l < 1, r(1- Iz’12) < Izl < R(1- Iz’12)a}, ot ,
0<r < R <cxz;

(vi) {(z’, zn) Cn" realz’12 < Izn[ < Realz’12}, where 0 < r < R < , t ,
ot 0 and, if R cx, then c > O.

The equivalence is given by a mapping oftheform (1.1).

Proof. Let G be a normalized form of D as in (1.2). We first consider the case of
f2(n, 1, 0). Then Aut0(G) U(n) (see (1.3)). It is clear that any hyperbolic domain
with this property has the form (i).

Next, by Proposition 1.6, the case of f2(n, 3) is only non-trivial when n 3.
Clearly, G then coincides with A3.
We now turn to the case of f2(n, 2) and use Corollary 1.8. Assume first that

n 4 and consider N e f2 (4, 2) corresponding to the partition (2, 2). Then the only
possibility for G is to be B2 B2.
Now let n be arbitrary, and consider the case of N f2 (n, 2, 1) corresponding

to the partition (n 1, 1). Thus, in (1.2) we have p 2, n n 1, n2 1 and
either s 1, or s 0, 1. Next, there are the following possibilities for a
hyperbolic Reinhardt domain G C C:

(a) G {Iznl < R},
(b) G {r < Iz.I < R},
(c) G {0 < Izl < R},

0<R<;
0<r<R<oz;
0< R < x.

Substituting (a), (b), (c) into (1.2), and excluding non-hyperbolic domains, we produce
(iv)-(vi) (cf. [IK4]).

The theorem is proved.

In Corollaries 1.2, 1.5 and Theorem 1.9 we have described all hyperbolic Reinhardt
domains whose group of holomorphic automorphisms has dimension n2 or higher.
We now turn to the case ofdimensions not exceeding n2 2. To this end, we introduce
the sets

2(n) "= {N e f2(n)" N < nz 2},

(n, ) := {N 6 f2(n, e)" N < n2 2}, e > 2,

(n, , q) := {N 6 f2(n, , q)" N < n2- 2}, > 2.

The numbers belonging to Un f2 (n g 0) we call compact and the numbers belonging
to f2(n) \ t_J=f2 (n, g, 0) we call non-compact (note that f2(n, , 0) (n, , 0) for
e2).

It is clear from (1.3) that compact numbers arise as the dimensions of the au-
tomorphism groups of domains G for which Au(G) U(n) x x U(ne),
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for some partition (nl ne) of n with e > 2. For. any such partition one can
construct many pairwise non-equivalent hyperbolic (and even smoothly bounded)
Reinhardt domains for which the identity component of the automorphism groups is
U(nl) U(ne). The construction is as follows. Choose a set Q c Re+ (here

:= {(X Xe)" Xj __. 0}) in such a way that

DQ "= {(Z Ze) C" (Izll Izel) Q}

is a smoothly bounded domain in Cn containing the origin; here

Z :’--" (Znlq-...-l-ni-l-I-1 Znl’-I-...-l-ni), i=1

By [Su], two bounded Reinhardt domains containing the origin are holomorphically
equivalent if and only if one is obtained from another by dilations and permutations of
coordinates. In [FIK1 we listed all smoothly bounded Reinhardt domains with non-
compact automorphism group. Since they all contain the origin, it is not difficult to
choose Do such that it is not holomorphically equivalent to any of the domains
from [FIK1] and thus ensure that Aut0(D0) is compact and therefore, by (1.3),
is isomorphic to a product of unitary groups. Further, U(nl) x x U(ne) C
Aut0(D0), and if necessary, one can vary Q slightly to get U(nl) x x U(ne)
Auto(D0). The freedom in choosing Q satisfying the above requirements is very
substantial, and one can produce (uncountably) many non-equivalent domains that
clearly cannot be classified in any reasonable way. Thus compact dimensions are
virtually "unclassifiable" and so are "bad" dimensions. On the other hand, it is clear
from (1.3) that if dim Aut(D) is non-compact, then Aut(D) is non-compact. In [IK2]
we classified all bounded Reinhardt domains with C1-smooth boundary and non-
compact automorphism group. Thus, at least in the C1-smooth and bounded situation,
non-compact dimensions are "classifiable" and so are termed "good" dimensions.

Thus from now on we will restrict our considerations to bounded Reinhardt do-
mains with Cl-smooth boundary. It follows from [FIK1] and the discussion above
that only numbers ofthe form (1.5) with rn 0, can be realized as the dimensions of
the automorphism groups of such domains. On the other hand, for any such number it
is not difficult to construct a smoothly bounded domain whose automorphism group
has dimension equal to this number. Indeed, assume that in (1.5) rn 1 (the case
rn 0 has been discussed above) and consider a number N of the form

k

,ni+2nio,
i=1

for some index i0. Consider the domain

Dio (s) :_. {(z zk)cn, iziol2d.._,lzil2.,<l }rl I’l

iio

(1.6)



DIMENSIONS OF AUTOMORPHISM GROUPS 611

where s "= (s1 Sio-1, Sio+l Sk), Si . N, S >. 1, S Sj (i j). By
an argument similar to that in the proof of Theorem in [FIK2] one can now ex-
plicitly determine Auto(D n (s)). It then follows from the explicit formulas that
dim Aut(D n (s)) N.

Therefore, in the situation of C1-smooth bounded domains the sets of interest are

fiSh(n, ) := f2(n, , 0) L.J (n, e, 1), > 2, and Sb(n) L.J=2Sb(n,
The set Sb(n) appears to have an extremely irregular structure.

Let C(n) and H(n) denote the sets of all compact and non-compact dimensions,
respectively, from Sb(n). Any number from C(n) does not exceed n 2 and has
the form

k

i=1

where (n nk) is a partition of n. Any number from H(n) does not exceed n2

and has the form (1.6). A number of the form (1.6) can be written as

Z ni + (nio + 1)z- 1.
l<i<k

iio

Therefore,

H(n) (C(n + 1) 1) \ (C(n) {n}). (1.7)

Let c(n), h(n) denote the cardinalities of C(n), H(n) respectively. Clearly we have

n(n- 1) n2

c(n) < < (1.8)
2 2’

n(n- 1) n2
h(n) < <--. (1.9)

2 2

Since for any partition (nl nk) of n, the k / 1-tuple (1, n nk) is a partition
of n -f- 1, we have

C(n) LJ {n2} C C(n + 1)- 1,

and formula (1.7) implies

h(n) c(n + 1) c(n) 1. (1.10)

Therefore, determining c(n) at the same time yields h(n).
Finding c(n), however, has proved to be a difficult task. In Section 2 below we

list some of the results of numerical computations for up to n 36000. In general,
we have

C(n) "Ue=2f2 (n, e, 0).
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One can obtain characterizations ofthe sets f2 (n, , 0), 2 < < n- 1, similar to that of
f2 (n, 2, 0) from Proposition 1.7. However, it is still not clear how one can calculate
c(n) by using such characterizations since the sets f2(n, , 0), e 2 n 1,
intersect each other in a chaotic manner. Nevertheless, we have been able to determine
the principal term in the asymptotic behavior of c(n).

THEOREM 1.10. We have

c(n)
lim (1 11)

n---> cx n2 2

Proof For any integer n > 0, let

(n) :-- nZi" ni n (1.12)
i--1 i--1

and let g(n) denote the cardinality of the set C(n). Clearly, (n) c(n) + for
n>2.

First, we note that

’(n) U ((i)+ (n -i)2). (1.13)
O<i<n

Next, we define sequences of integers f(0), f (1) g (0), g(1) and
k(1), k(2) inductively as follows:

1. f(O) O;
2. k(1) O;
3. f (n) (n k(n))2 -+- f (k(n));
4. g(n) -(f(n) + n + 4);
5. k(n) sup{O < tc < n: g(x) < n}.

We note that k(n) is a non-decreasing sequence and k(n) ---> x as n ---> c.
We shall now show by induction on n that f(n) has the same parity as n. This

clearly holds for n 0. For arbitrary n we have

f(n) n (n:z n) + k2(n) + f(k(n)) (mod 2) k2(n) + f(k(n)) (mod 2).

But, by induction, f(k(n)) k(n) (mod 2) and thus f(n) n 0(mod 2).
We shall now show by induction on n that {n, n + 2 f(n)} C C(n) (we will

see below that each of the sets {n, n + 2 f(n)} is non-empty). Certainly the
claim is true for n 0. For the general case, let j 6 {n, n + 2 f(n)}.

(a) If j > (n k(n)) + k(n), then clearly j 6 {k(n), k(n) + 2 f(k(n))} +
(n-k(n)). By induction, {k(n), k(n)+2 f(k(n))} C C(k(n)). Then itfollows
from (1.13) that j C(n).
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(b) Now suppose that j < (n k(n))2 -+- k(n). We define k := sup{x" k(n) <
x < nandj < (n-to)2+x}. Since j > n, we have k < n- 1. It now
follows from the definitions of k and f(n) and the fact that g(k + 1) > n that
j {k + 1, k + 3 f(k + 1)} + (n (k + 1))2; as above, by induction and (1.13)
we obtain that j ’(n).

Next, we claim that f (n) > 2n for n > 4. This is verified by explicit calculation
for small n; in particular it is true for 4 < n < 18. For general n, we have f(n) >
(n k(n))2 Since n > g(k(n)) -(f(k(n) + k(n) + 4) and k(n) > 4 for n > 18
(one can check that k(18) 7 and use the fact that k(n) is non-decreasing), we have
by induction that n > k(n) and so

f(n) > (n- k(n))2 > n2 > 2n for n > 18. (1.14)

The inequalities (1.14) also imply that f (n)/n --+ cx as n
as n o and n > g(k(n)) > -f(k(n)), we find that n/k(n) --+
hence

(n-k(n))
2f(n)

> as n --+ cxz. (1.15)
n2 n

Since the set {n, n + 2 f(n)} is contained in C(n) for all n, we have

f(n) n
c(n) (n) >

2

Combining this inequality with (1.8) and (1.15) we obtain (1.11).
The theorem is proved.

We shall now find a lower bound for liminfnh(n)/n. First, we need the
following technical lemma.

LEMMA 1.11. Let C(n) be the sets defined in (1.12), and suppose that n >_ 7. If
N (n) and N > 3n2/4, then N "(i) + (n i)2 for some < n/2.

Proof First, we shall show that if ) (nl nk) is a partition of n such that
nj < n/2 for all j, then

/ 3n2
2 < (1 16)_,nj 4

j=l

2Let X (n) denote the maximal value of the sum Y=I nj over all such partitions ..
,2 We claim thatChoose a partition ’ (n’ nn such that X(n) jm__l nj

rn < 3. Indeed, suppose that rn > 4. Consider the set S of all indices j 6 rn
such that

n
nj+l <-.

-2
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Clearly, if n > 7, the set S contains at least two elements. Let jl, jz S, jl j2, and
suppose that nj, > nj. Consider the partition . (ill fire) defined as follows:

nj := nj,

hj :--- nj -k- 1,

hj2 ".= l’lj2 1.

if j : jl, j2,

Then
m

-2 X(n) + 2(nj nj2 + 2 > X(n),
j=l

which contradicts the definition of X (n). Therefore m < 3 which implies that
X (n) < 3n2/4, and thus (1.16) holds.

Thus, the number N can only be realized by a partition for which at least one entry
is bigger than n/2, and the lemma is proved, ff]

We are now ready to prove the following theorem.

THEOREM 1.12. We have

h(n)
lim inf > 1.
n--+oo n

Proof. Let C(n) be the sets defined in (1.12). Define

H(n) := (C(n + 1) 1) \ C(n),

for n O, 1 Let (n) denote the cardinality of if(n). Since ’(n) C (n+ 1) 1,
we have

t(n) (n + 1) ’(n), (1.17)

for all n, where (n) is the cardinality of C(n).
We now fix n and choose a number k 6 N such that

k2 + 3k + (k + 1)2 + 3(k + 1) +< n < (1.18)
2 2

It follows from (1.13) that

(n) Uo_<i<n+ ((i) + (n + i)2 I)
\ Uo_<i<n+ ((i I) + (n + -i)2), (1.19)

where we set C(- 1) := 13.
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We observe that the sets (i)+(n+ -i)2_ for < k lie strictly above 3(n+ )2/4,
if n is sufficiently large. To prove this, we show that (n + i)2 > 3(n + 1)2/4
for < k. Indeed, it follows from the first inequality in (1.18) that for large n one has
< k < 3.v/ff/2. Therefore

9n
(n+l-i)2-1 >_(n+l)2-3/-ff(n/l)/ -1.

The expression on the right-hand side is clearly bigger than 3(n + 1)2/4 for large n.

Claim. The sets (i) + (n + i)2 and ’(j) + (n + 1 j)2
intersect if0<i <k, 0<j <(n+l)/2, i#j.

do not

To prove the claim we note that (e) + (n + g)2 C [g, g2] + (n + g)2
for any e. Let 0 < i, + < k. It then follows from the first inequality in (1.18)
that (i + 1)2 + (n + 1 (i + 1))2 1 < + (n + 1 i)2 1. This inequality also
holds true if k. Since e2 + (n + e)2 is a decreasing function of e for
e < (n + 1)/2, the claim follows.

Further, Lemma 1.11 and formula (1.19) imply

(n) D UO<i<_k ((i) + (n + 1 -i)2 \ ’(i 1) + (n + 1 -i)2),
and therefore, by (1.17),

k

(n) >_ (i)= (k).
i=l

Let 0 </3 < and n > (k02 + 3ko + 1)/2 where ko is chosen to satisfy

(1.20)

>
ko2 +5ko +5

/k2

(k) > for all k > ko,
2

(the second inequality can be satisfied by Theorem 1.10). From (1.20) and the second
inequality in (1.18) we now have

t(n) /’flk2
n (k+l)2+3(k+l)+l

v/k2

k2 + 5k + 5 k + 5ko + 5

Since h(n) (n) 1, the theorem follows, l-’l

Remark. It is plausible--especially in view of our numerical computations (see
Section 2)-- that in fact one has limnoo h(n)/n 1. It is straightforward to show
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that lim suPn h(n)/(nk(n)) < 1, where k(n) are the numbers defined in the proof
of Theorem 1.10. Note that k(n) grows much more slowly than n (cf. (1.9)).
We will now look at the numbers c(n) from the point of view of the theory of

partitions (see e.g. [A] for a general exposition of this theory). Let . = (n nk),
k > 2, be a partition of n and assume that n > n2 > > nk. The partition . can
be pictured by utilizing its Young diagram Y ())"

n2 cells

n cells

n, cells

n_ cells

For any cell cr 6 Y(.) one can define the arm of r (denote it by a(a)) as the
number of cells to the right of a. In the diagram above, a(a0) 3. Clearly, the sum
of all arms of the cells in the jth row of Y(.) is equal to

m=O

m
nj (nj 1)

and therefore the total number A(L) of arms in Y(L) is

k

A(k)

_
nj(nj 1)

2
j=l

Therefore, c(n) is equal to the number of distinct values that A(.) takes over all
partitions of n of length at least 2.

It would be very interesting to know whether the above interpretation of c(n) can
be used to get more information on c(n) and h(n) by applying techniques from the
theory of partition.

2. Numerical computations for c(n)

Equation (1.13) can be used to form an efficient algorithm for the calculation of
’(n) C (n) tO {nZ}. Once the sets (k) are known for < k < n 1, the set (n)
is formed by translating each (k) and taking the union. If ’(k) is stored as an array
of O(k2) elements, this process will take O(<n k2) O(n3) time. Therefore to

calculate all the sets (k) for < k < n will take Y-]_<n O(k3) O(n4) time and
O(n3) memory.
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A C program implementing this algorithm has been written and used to calculate
C(n) for n < 36000. As previously noted, the source code ofthis [rogram is available
on the World Wide Web. The program stores each element of C(n) as a single bit,
which makes the program more difficult to understand, but increases its speed and
decreases its memory consumption considerably. To give a sense of the constants
involved in the O (n4) time and O(n3) memory estimates, the program takes 2 seconds
to calculate to n 1000 on a Sun Ultra 10, and uses around 0.7 megabytes ofmemory.

Below we list some results of numerical computations for n up to 36000. We
compute c(n) (n) and then by applying (1.10) calculate the numbers h(n).
Further, we compare the growth of c(n) with n2 and the growth of h(n) with n.

n
100

1000
5000
10000
15000
20000
25000
30000
3000
36000

c(n)
3880

"464692 014646
12121267 0.4848’
48947284 0.4894
110584806 0.4914
197070447 0.4926
308425026 0.4934
444663933 0.4940
605795936 0.4945
641010816 0.4946

c(n)/n:z

0.3880
h(n)
81
949
4888
9840
14808
19783
24768
29738
34722
35707

h(n)/n
0.8100
0.9490
0.9776
0.9840
0.9872
0.9891
0.9907
0.99126
0.9920
0.99186

3. Concluding remarks

In this paper we have endeavored to correlate the dimension of the automorphism
group of a domain in Cn with the geometric characteristics of the domain. By
restricting attention to Reinhardt domains, we have been able to exploit the structure
theorem of Kruzhilin and to come up with (at least in some cases) rather specific
conclusions.
We hope that the information obtained here in the Reinhardt case points the way

toward what ought to be true for more general classes of domains. In particular, we
have identified certain dimensions for the automorphism group that we call "good"
and certain others that we call "bad". The former are dimensions in which the
automorphism groups are always non-compact; certainly the extant literature (see
[IK3]) suggests that the Levi geometry of a boundary accumulation point gives us a
chance of classifying such domains. The latter are dimensions for which there exist
compact automorphism groups. We are able to determine explicitly that in these cases
a holomorphic classification does not exist.
We have been able to find the principal term in the asymptotics of the number of

"bad" automorphism group dimensions as well as to bound from below the principle
term in the asymptotics of the number of "good" ones. In particular, the "good"
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dimensions are fairly robust as n o; this is positive information. We also utilize
a computer to count these numbers in complex dimension n for values of n up to
36000.

It is clear that further effort is needed to show that h (n)/n cx as well as to deter-
mine the forms of the error terms c(n) n2/2 and h(n) n that our numerical compu-
tations can only suggest. We plan to develop these ideas in future papers.. In particular,
we wish to extend the work to domains more general than Reinhardt domains.
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