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0. Introduction

In this paper, all rings are to be associative, and all mappings are to be
written (at least in spirit) to the left. We shall consider certain portions of
Q(U), the group of quasi-regular (q.r.) elements of a ring U, portions which,
in particular, extend the Jacobson radical J(U) of U. The portion under con-
sideration will depend upon the way in which U is regarded as an algebra.
Our principal device will be the introduction of a different multiplication on U,
an introduction brought about by employing a q.r. operator on U. We shall
show (Theorem 1) that if a suitable change of multiplication is introduced into
the bimultiplication ring M (U), [5], on U, then this modified M (U) can be
injected into the bimultiplication ring of a modified version of U which is ob-
tained from U by making a related change of multiplication theorem. By em-
employing a properly chosen commutative subring S(U) of M(U), it is pos-
sible to turn U into an S(U )-algebra. If U is an algebra over a commutative
ring T, and if U has trivial bicenter [5], [3], then the map « which effects the
action of 7' on U can be factored through S(U) (Theorem 2).

Let Q(U, a, T') be the set of all q.r. elements of U which are also q.r. with
respect to all the changes of multiplication on U which are induced by the
members of Q(T'). One finds that Q > J(U). IfQ(U) is centralin U, and
if U is treated as an S(U)-algebra, the resulting Q, here called R(U), is
(Theorem 3) a subring of U, an algebra over a certain Q of S(U). If U is
without divisors of zero, is commutative, is not a radical ring, and has its
underlying abelian group U™ irreducible as a U-module, then %(U) vanishes
(Theorem 4).

If a ring extension is not too formidable, it is possible to obtain information
about its Jacobson radical. We select an uncomplicated extension V(U, a, T')
of U by T (going back to Dorroh [1]) which happens to be splitting. If T is
an integral domain, and if Q(U, «, T) has been turned into an appropriate
algebra, then the obvious Q) of V is a related extension of Q(U, a, T') by a
certain Q of T' (Theorem 5). If 7 is commutative and if the members of
J(T) operate on U in such a way that ru = r’ for all7 e J(T) and allu € U,
then J(V) is a related extension (Theorem 6) of J(U) by J(T'). Tinally, if
U™ is an irreducible 7-module (7' commutative and U a T-algebra), and if the
members of J(T) do not act as automorphisms on U™, then (Theorem 7)
J (V) reduces to the algebra direct sum of J(7') and U.
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We shall take for granted the reader’s knowledge of the introductory por-
tions of [5]. See also [3]. If ¢ is a bimultiplication on U, then the endo-
morphisms o, and o are to be the respective left and right mappings on U™
induced by o¢. Similarly, if u € U, then u;, and uz are to be the respective left
and right multiplications on U by u. Such standard objects and concepts as
q.r. elements u, their quasi-inverses (q.i.’s) u*, the circle composition, and the
Jacobson radical and its properties are treated as in such easily available
sources as [2] and [4]. A subset A of a ring U is said to be central in U if A is
extended to the center of U. Tor any subset B of U, C(B, U) is to be the
centralizer of B in U. The center of U is, of course, just C(U, U). If{isa
map with domain B, and if A < B, then { | A is just { with its domain cut
down to 4. The symbol ¢ will be used whenever a complete inverse image
is required whether or not { is one-to-one. If A and B are sets, then A” has
its usual meaning of all functions with domain B and range included in A.
The symbol @ denotes direct sum. A subset A of a ring U is said to have the
left (right) ideal property in U if ua(au) ¢ A for each u e U and each a € A.

1. Symmetric bimultiplications

Let U be a ring with bimultiplication ring M (U). Choose any 7e¢ M (U)
which is symmetric in that ru = wur for each wueU. Write

gr(ul , uz) = Uy Us — TUI U2

for all w3, uze U. Under + and g¢., the set U is reconstituted as a ring U,
where UF = U™, If, for instance, 7 is the zero of M(U), then U, is the same
ring as U, while if 7 is the unity of M (U), then U, is the zero ringon U*. Let
vy be the member of Hom (U, M (U)) which carries each u ¢ U onto that inner
bimultiplication v,(w) which consists of the pair of maps u; and 4z . One
calls 7e M(U) permuting if (ou)r = o(ur) and if (7u)e = 7(uc) for each
u e U and for each o e M(U). It is known [5] that the members of Im vy are
permuting in M (U), although the only symmetric maps among these are the
images of the central members of U.

TuarorEM 1. Suppose that € M (U ) is both symmetric and permuting. Then
7 18 central in M(U), and " = vy (1) 1s symmetric in M(M(U)). If,
further, 7 is q.r. in M(U), then (M (U) ), can be injected into M (U,) in such a
way that the tmage of T is central.

Proof. IToreachz e U andeacho e M(U),z(7'0) = x(r0) = (27)0 = (72)0,
this last since 7 is symmetric. Likewise, 2(o7') = x(o7) = (2o)7 = 7(20) =
(7x)0, this last since 7 is permuting. Thus 7o and o7 are equal as right oper-
ators (similarly, equal as left operators). Thus, 7’ is symmetric as a member
of M(M(U)), so that (M (U)), exists. Because r'c = o7’ can be rewritten
as 7o = or, 718 central in M (U).

For each ne (M(U)), , construct a pair of maps A\ = \, from U.to U,
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via
Ma =1q(a — 7)) and aN, = (a — 7a)y

for each ae¢U,. I'or a, beU one can establish such relationships as
g-(a, \yb) = g.(aN,, b) by appealing to the assumptions on r and . Inthis
routine way we can show that \,e M(U,). We define A"} = \ by setting
Nn) = N\,. We find that N preserves both addition and g..-multiplication.
If, for any n,N(n) = 0, then N\, a = 0 = a\,foralla e U. Upon expanding, we
haven = e M(U). Let ¢ here denote the unity of M(U). We now have
(v — 7)p = 0. But 7 was assumed to be q.r. so that « — 7 is regular, whence
n = 0, and N is an injection.

To show that N\(r) is central in M (U,), we first note that 7*, the q.i. of r,
is symmetric; for, 7, « — 7, and therefore (v — 7)™ = « — 77, are symmetric.
From this it is easy to show that ™ ¢ M (U,). Thus (U,),« is meaningful; but
a brief calculation shows that this last reduces as a ring to U. Now if Wis a
ring and if pe M(W) is symmetric, then one readily shows that M(W) <
M(W,). In particular, M(U,) < M((U.) = M(U). Thus, under the
supposition that v e M (U,),

Ny — AN =77 — YT — oy + yr.

Since 7 is central in M (U), this last sum is zero, so that each v ¢ M(U,) com-
mutes with A, , as we wished to show.

One should observe that the quasi-regularity of 7 implies that N7 (7*) = —r
as members of M(U,). Tor, since re M(U) < M(U,),N(+") + re M(U,),
and

Ne 4+ )b = 75(b — 7b) +7b = 0

for each b e U (likewise for operators on the right).

2. Factorization of some algebra-producing maps

If U and T are rings, then U is said to be a T-algebra via o e Hom (T, End U™)
if Im « centralizes all left and all right multiplications on U by elements of
U:(a(t)u)v = a(t)(w) = u(a(t)v) forallte T and allu,ve U. Weshall call
such an a a T-algebra-producing mapping (or map) for U. The set Sm (U)
of symmetric bimultiplications on U, though closed under addition and sub-
traction, cannot be multiplicatively closed if Sm(U) is non-commutative.
Nevertheless, the intersection S(U) of Sm (U) with the centralizer in M (U)
of Sm (U) is easily shown to be a subring of M (U). The members of Sm (U),
and therefore of S(U), are certain pairs of equal endomorphisms on U*.  Let
kv be the map which carries each v ¢ S(U) onto the common endomorphism
of its endomorphism pair. Not only is ky in Hom (S(U), End U™), but U is
an S(U)-algebra via monomorphic ky. Let U be any commutative ring.
Then U is a U-algebra via kyvo . We shall call this algebra the multiplication
algebra on the commutative ring U, and we shall have occasion to refer to it in
the sequel.
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Recall [5] [3] that the bicenter of U is defined as ker vy . If U has a unity,
or any other left or right non-divisor of zero, then the bicenter is trivial.

TaroreM 2. (a) If U s a ring with trivial bicenter, then Sm (U) = S(U).
(b) Let U, a ring with a trivial bicenter, be a T-algebra via o where T 1s com-
mulative. Then there exists §eHom (1, S(U)) such that a = &ypB.

Proof. (a) Let U* be the ideal in U which is generated by all the com-
posite members of U, that is, by all u e U where u = ab for some @, be U. If
o,8eSm (U) then

(ab)os = dla(bo)] = (8a)(bs) = [(ad)ble = [a(bd)lr = (ab)(dc).

Likewise, 66(ab) = do(ab), so that o6 and 8o are equal if their domains are cut
down to U¥.

Now suppose that one could find an a ¢ U for which b = (¢6 — do)a = 0.
Since U has a trivial bicenter, there must exist some ¢ e U such that at least
one of bc and cb is non-zero. Ifrom be 5= 0, (68 — d0)(ac) 5 0, contradicting
the statement that (¢6 — d0)] U* 5% 0. Trom cb % 0, c[(66 — b0)a] =
ca(cd — 80) 5% 0, again a contradiction. (In this last step, we first use the as-
sumption that ¢ lies in Sm (U), not just in M(U).) We have proved that
do and o8 coincide as left mappings. Similarly, they coincide as right map-
pings, giving (a).

(b) Ify e End U™ has the property that it centralizes both the left and the
right multiplications by the elements of U on U, define a pair of maps v* from
U to U by v*u = yu = wy®. Then v* ¢ Sm (U) which last equals S(U), by
(a). ToreachteT,takeB(t) = (a(t) )* and observe that kp(a(t))* = a(t).
It is clear that 8 preserves addition; and the commutativity of 7', used only
here, causes 8 to preserve multiplication, completing the proof.

3. Change of multiplication

Let T be a commutative ring, and let U be a T-algebra via a. For ée T,
form s(t) = (a(t))* e S(U), as in the proof of Theorem 2. Introduce a new
production U, as in Section 1, by setting

s (u, ) = uv — (a(t))*(w).

It will simplify notation considerably if we write g, instead of g, , if we write
w — a(t)(uv) or uv — t(uv) instead of uv — (a(t))*(uv), and if we write
U, instead of Uswy . If 0is the zero of 7', we shall write U instead of Uy. To
say that u e Q(U;) means that there exists (an actually unique) u? € U, such
that g:(u, u'?) = u + 4 = g(u'?,u). Onecallsu'” (if it exists) the t-quasi-
inverse (t-q.3.) of u e U and says that u is t-quasi-regular (t-q.r.) tn U. Here,
(u)® =y, and u® ¢ Q(U,). If wis q.r. we write the usual u* instead of u®
and substitute the standard notations q.i. and q.r. for respective 0-q.i. and
0-q.r.

Let Q(U, a, T) = N,Q(U,) where ¢ runs over all of @(7). It will be
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convenient (i) to write Q(7) instead of Q(T, krvr, T), T here being con-
sidered as the multiplication algebra on T'; (ii) to write R(U) instead of
Q(U, ky, S(U). Just as we fashioned members of M (U,) from elements of
M(U) in Section 1, we now construct T;-algebra-producing maps for U, from
T-algebra-producing maps for U where ¢ e 7. That is, if U is a T-algebra (T
commutative) via a, let a; e (U”)" be defined by setting a.(s)u = a(s — ts)u
forallse T and allu e U. Then «; e Hom (7T, End U"), and U, is a T -alge-
bra via ;. The basic computational result is as follows:

Levma 1. Let U be a T-algebra (T commutative).

(a) If weU and if ¢, qeQ(T), then ueQ(U,) if and only if
u — (qo q;k)u e Q(U,,), tn which case
(q1)

) (a2) (q1)

(u — (qrog®u)® = u" — (qrog)u

(b) ForeachteQ(T), Q(U,a,T) = Q(U,, a;, T:) as subsets of U.
Proof. (a) can be verified directly. As for (b), fix ¢ e Q(T') throughout the
discussion. Then w e Q(U,, a,, T:) if and only if weQ((U,),) for each
reQ(T,). ButueQ((U,),) if and only if there exists v = v(r) e U for which
gi(u, v) — ar)gu,v) = uw — (to(r — tr))uv = u + v
=ou — (to(r —tr))vu = guv, u) — ai(r)g.v, u).
By part (a), r — treQ(71), whence v e Q((U.),) if and only if u e Q(Uaesy)
where d(r;t) = to (r — tr) e Q(T). Wenow have
QU o, T) = N, Q(Uacriy)
as r ranges over Q(7;). One easily finds that
r=(t"ed(r;t)) — (7o d(r;1)).
Now suppose that j is any member of Q(7"). Define e(j;¢) ¢ T by
e(it) = (tFog) — 17 (1% ]).

By part (a), e(j; t) e Q(T:). A short calculation gives d(e(j; t);t) = j, so
that N, Q(Uawy) = N; Q(U;) as j ranges over Q(7T). But this last inter-
section is just Q(U, «, T), completing the proof. We have, incidentally,
established that, for given te Q(T), Q((U:)r) = Q(Uawryp) and Q(U;) =
Q((U)eip) for all 7e Q(T) and all 7 e Q(T,). These identities will be used
below without reference.

TarorEM 3. (a) Let T be a commutative ring with unity 1o , and suppose
that U s a T-algebra via monomorphic a where a(17) 1s the identity automorphism
on U Suppose that Q(U) is central and that, for each ueQ(U), there is
(necessarily precisely) one s e Q(T) such that u, = a(s™). Then Q(U, o, T)
s a subring of U in such a way that it s a Q(T)-algebra.
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(b) If T is a commutative ring and unity 15, then Q(T') is a subring of T.
(¢) Let U be a ring for which Q(U) is central. Then R(U) is a subring of
U in such a way that it is o Q(S(U))-algebra.

Proof. (a) Suppose that v, v2¢ Q(U, «, T'). In particular, v, e Q(U)
so that hypothesis provides us with q e Q(T') such that (v,); = a(¢*). Since
neQ(U,a,T),meQ(U,). There exists, by hypothesis, p e @(1') such that
(v™), = a(p) Since v200™ = 0, a(¢g*op) = (vovs);, = 0. But ais a
monomorphism by assumption, so that ¢*op = 0, and p = ¢q. Using the
centrality of Q(U) and this last we have (I) Vavy = Q= v

From v + »? = (1, — q)vﬁ”)vl, we have
(@) 0)
v+ 0 = q(1r — )i’
while

( ( (
V10 + Ulq)Uz = (11' - q)lhq)fh Uy = (11 - q)vlq)va U1

= (17 — Oui%(gn) = ¢(1z — ¢)vi%y,

again by the central position of Q(U). Thus we have (II) v, 0P = p{P,.
It is now quite simple, employing (I) and (II), to show that (v, 4 ) *exists
and equals v3 + (17 — ¢){?.

Suppose veQ(U;) where teQ(T). Then, by Lemma 1 (a), w =1
—weQ(U) so thatv = w — t*w. If uis any member of U, then g,(v, u) =
(v — )u = wu = s*u for some seQ(T), as provided by hypothesis. By
Lemma 1 (a), 7 = s — t*seQ(T), and r? = §* — ¢*s*, from which s* =
@ — . That is, g«(v, u) = (¥ — rPYu = a,(+®)u; thus, (ITT) each
veQ(U,;) can be realized as a left multiplication under g.-composition by
o (r?) for some 7 ¢ Q(T,). The centrality of w in U as a member of central
Q(U) allows us to assert that uv = uw — ¢ uw = wu — t*wu = vu, so that v is
central under ordinary, therefore under g.-, multiplication. We now have
that (IV) the center of U, extends Q(U.).

One can readily check that (V) T, is commutative with unity 1, = 1, — ¢*.
Since a,/(17 — t*)u = u, (VI) a;(15,) is the identity automorphism on U*.
If ay(b) = Ofor any be T, then a(b — tb) = 0. But a is a monomorphism,
so that b(1y — t) = 0. Since 1y — tisregular,b = 0. Thus (VII) o; is a
monomorphism. By (III)-(VII), U,, T:, a:, and 14, can replace their re-
spective counterparts without ¢ in the hypothesis of (a). Recall, from Lemma
1 (b), that, as sets, Q(U;, a;, T:) = Q(U, a, T'). If we change from ordi-
nary to g;-multiplication, the steps of the argument can now be repeated to
put v1 + v, in Q(U,). It follows that o1 + vs e Q(U, @, T'), whence this set is
closed under the addition of U.

IfveQ(U, e, T), then v e Q(U,) for each q e @Q(T), from which

(—0) + (=0®) = (¢ = L)(=v)(=?) = (¢ — 1o)(—"")(—v).

Since ¢ — 1ris a unit of T (with inverse ¢* — 1), —v e Q(Us,—g) Where



84 FRANKLIN HAIMO

27 = 2(1g), and (—0)®7"? = —'?. If r is any member of Q(T), then r
may be written in the form 2, — ¢ where g e Q(T) with ¢* = 2, — r*. That
is, 27 — ¢is as general a member of Q(1") as is g itself, whence —ve Q(U, o, T'),
and this latter set is now closed under both addition and subtraction.

IfveQ(U, o, T'), and if q, t e Q(T), then

v =t =10~ ((tog) ")

Since v e Q(Uy.q), Lemma 1 (a) places v — tv in Q(U,). Allowing ¢ to run
over (1), we have v — e Q(U, a, T), a set which was just shown to be
closed under subtraction. Thus, tve Q(U, o, T). If o1, v2¢ Q(U, «, T),
then the hypothesis provides us with r « Q(7') such that v; v» = 7*vy. But we
have just proved that all elements like 7*v; lic in Q(U, «, T); that is, the set
Q(U, a, T) is a subring of U. If re Q(T), and if ue Q(U, o, T), then
re@(T), so that ru e Q(U, «, T). Since U is a T-algebra, and since Q(7)
operates on Q(U, o, T'), this last must be a Q(7T')-algebra, establishing all of
(a). Since T as the multiplication algebra satisfies the conditions in (a),
Q(T) is a subring of T, and we have (b).

(e¢) Since members of Q(U) are central, we @(U) implies that vy(w) =
(f(w))™ for some f(w) e Q(S(U)). It follows that w, = xo( (f(w))™). Re-
call that S(U) has a unity and that «y is a monomorphism which carries this
unity onto the identity automorphism of ™. Since the conditions of (a) hold,
we have (¢).

CoroLLARY. Let U, a ring with trivial bicenter, be a T-algebra (T commuta-
tive with unity 1r) via monomorphic a, where a(ly) is the identity automorphism
on U™, in such a way that, for each u e Q(U), ur, = a(s*) and ur = a(t*) for
some s, teQ(T). Then Q(U,a,T)isa Q(T)-algebra.

Proof. If ueQ(U) and if y, we U, then (uy)w = u(yw) = s (yw) =
y(s*w) = y(uw) = (yu)w, so that (uy — yu)w = 0; and w(uy) = (wu)y =
(t*w)y = w(t™y) = w(yu), so that w(uy — yu) = 0. If uy — yu = 0, the
assumption that U has trivial bicenter provides us with at least one non-zero
w e U such that at least one of (uy — yu)w and w(uy — yu) is non-zero. The
resulting contradiction shows that each u e Q(U) is central. Now apply (a).

4. The Jacobson radical

Let T be a commutative ring, U be a T-algebra, and X be a T-subalgebra
of U. Recall [2] that (X:U) = [s; seT and su e X for all u e U] is an ideal
(= T-subalgebra) of 7. Let Epen U™ be the set of ependomorphisms on U™.

LemMma 2. Let T be a commutative ring, and let U be a T-algebra via .
Then

(a) J(U) is a T-subalgebra of U via some a; e Hom (T, End (J(U))");

(b) f (J(U):U) na (Epen U") is non-empty, then U is a radical ring;

(¢) assets, J(Uy) = J(U) for each qe Q(T);

(d) JU) <QU, e, T),RNU);
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(e) #f QU, a, T) has the (left, right) ideal property in U, then
QU,a, 1) = J(U);and
) QUU),as,T) =J(U).

Proof. (a) Suppose that seT and that 4 e J(U). Then, for each ve U,
(su)v = u(sv), q.r. since right multiples of radical elemenes % are q.r., so that
sw has q.r. right multiples exclusively and is thus itself a radical element.

(b) If re(J(U):U)na (Epen U"), a(r) e Epen U*, so that, to each
u e U, there corresponds at least one ' ¢ U with a(r)u’ = ru’ = u. Since
re(J(UY:U),u = ru eJ(U) from which U = J(U).

(¢) wed(Uy,) if and only if v = v(a) = g,(w, a) eQ(U,) for all ae U.
Kquivalently,

v—q = (w— 2qw + ¢w)a = waeQ(U)

where w' = w — 2qw + ¢'w. But w'aeQ(U) for each a e U if and only if
w' eJ(U). Now suppose that weJ(U). Since J(U) is a T-subalgebra,
w' eJ(U). By what we have just shown, w e J(U,), giving J(U) < J(U,).
By an exchange of roles, J(U,) < J(U), and we have (¢). TFrom (¢), (d) is
immediate.

(e) IfueQ(U,a,T), andif ae U, then ua e Q(U, o, T') should this set
have the right ideal property. Since Q(U, o, T') < Q(U), ua ¢ Q(U) so that
u is a radical element. That is, Q(U, a, T') < J(U). Combining this last
with (d), we have the right case of (e). The left case is similar. As for (f),

J(U) =JJ(U)) < QJU), e, T) < J(U).

TuroreEM 4. Let U be a non-trivial commutative ring without divisors of zero.
Suppose, further, that U is not a radical ring and that U as a U-module is ir-
reducible. Then N(U) = 0.

Proof. Since U" is irreducible, and since J(U) # U, we must have
J(U) = 0. Now ueR(U) if and only if w e Q(U,) for each v e Q(S(U)).
If we let wy, = u — yu, we can solve for u to obtain

* *
U= w, — v wy = (t— vL)Wy

where, here, ¢ is the identity automorphism on U *,

If » is a non-zero member of U, then vy is a monomorphism on U™ since U
has no divisors of zero. Since U"' is U-irreducible, U is strictly cyelic on »
[2, Prop. 1, p. 6], so that v is an ependomorphism and, therefore, an auto-
morphism on U'. Since U is commutative, it is possible to construct
7= (t—v.)*eSm (U) where 7, = « — v, . See the proof of Theorem 2 (b).
We shall show that 7 ¢ Q(S(U)).

Suppose that 7 e Sm (U). TFor each we U,

(r)w = (v — v)qw = qw — v(nw) = g — (m)w = qw — ()w

= g(w — ww) = (¢ — vL)w = yrw,
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making 77 and 57 equal as left operators (similarly, as right operators). Thus
reS(U).

Let 6 be the automorphism on U which is inverse to v,. With n and w as
above, v(wn) = (vw)n. Replacing w by éx where £ = vw and operating on
both sides of the resulting identity by &, we have (8z)n = 8(an). Since z is
as general a member of U as w is, we have established the permutation
property nz 8 = e (similarly, 9., 8 = 89.) which will be of use presently.

In this context only, let us write w’ = dw for all we U. If @, b, e U, then
(¢ — 8)(ab) = ab — v (a'd) = ab — a’b = ab — (8a)b = [(v — §)alb. Simi-
larly, (¢« — 8)(ab) = ab — ab’ = a[(+ — §)b]. Moreover,

[(¢ — 8)alb = ab — a'b = ab — va'd’ = a[(+ — §)b].

Thus, it is possible to construct ¢ = (¢ — 8)* ¢ Sm (U) where o, = ¢« — 8.
The permutation property of §, above, can now be used to show that on = 5o
foreachn e Sm (U). At once, ¢ € S (U), and it is readily verified that ¢ and =
are g.i. to each other, placing both in Q(S(U)).

ForueR(U) andve U,

wo=vpu = (v —r)u = (v— 1) (¢ — ¥ w,

for each v e Q(S(U)). Thatis,vu = (¢ — (roy"))w,. Butp = yor'is
as general a member of Q(S(U)) as is v itself. That is, vu = (¢« — 02)Yp
where y, = wr., e Q(U). Equivalently, vu — pvu e Q(U) foreachp e Q(S(U))
since the expression in question reduces to y, . By the initial remarks in the
proof, vu e R(U) giving this last the left ideal property. We can now apply
Leroma 2 (e) to show that R(U) = J(U). ButJ(U) has already been shown
to be 0, so that the proof is complete.

5. A splitting extension

Let U be a T-algebra via a where, throughout this section, 7" is a commuta-
tive ring. Then there is a standard way, which goes back to Dorroh [1], of
extending the T-algebra U to a splitting extension by the T-algebra T'; let
V(U, a, T) be the set of all (s, u), where se T and v ¢ U, under direct-sum
addition, with multiplication given by

(s, u)(t, w) = (st, sw -+ tu + ww) (s,teT and wu,wel)

and with V turned into a T-algebra via the ag in Hom (7, End (T* ® U™))
which is defined by setting ax(t)(s, u) = é(s, u) = (fs, tu). This extension
of U by T is not the most general splitting extension [3], but it does have enough
inherent commutativity to make questions concerning the radical accessible.

One readily checks that Q(V') is the set of all (¢*, ) e V where qe Q(T)
and x € Q(U,); here,

(%, 2)* = (¢, 22 — (g0 ().

If ¢4 is the map which carries each such (¢*, x) onto ¢*, then the sequence of
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groups (each under circle composition)
0—QU) = QV(U,a,T))2HQT) —0

is exact. Note that, as a map from a set to a set, o = ¢ | Q(V) where ¢ is the
map given by ¢(s, u) = s, this ¢ making

0—-U—-V-42T—-0

exact as a sequence of T-algebras. Likewise, let ¢, = ¢ | J(V), a T-algebra
homomorphism which makes

0= J(U) — J(V) 25 J(T)

exact. In particular, if (r, u) e J(V'), then r e J(T), while the Lie product
[u, z] = ux — au lies in J(U) for every z e U.

Similarly, if weJ(U) and if reJ(T)n (J(U):U), then (r, u) e J(V).
For, taking any (¢,y) e V,rt e J(1) < Q(T) so that rt = q* for some q e Q(T'),
and (r, w)(t, y) = (¢*, 2) where z = ry + tu + uy. Since J(U) is both an
ideal and a T-subalgebra in U, tu + uy e J(U). Butre (J(U):U) so that all
of z lies in J(U). It follows that, for each seT, 2 — szeJ(U) < Q(U).
Now take s = ¢, so that Lemma 1 (a) gives z e Q(U,). By our remarks on
the nature of the elements of Q( V), (¢*, 2) is in this last so that (, u) e J(V),
as we wished to show.

The case where T is a field is discussed from a somewhat different point of
view in [6]. We shall say something below about the case where T is an
integral domain. Let ag = «| Q(T), a ring map whenever Q(7') is a sub-
ring of 7. If Q(U, o, T) is a T-algebra it is also a LQ(7T')-algebra via ag
whenever Q(7') is a ring. In this case

B =B(U,aT) =V(QWU,aT),as, 2T))

is a subring of V(U, «, T). It is also a Q(7)-algebra: if se Q(7T) and if
(p, x) € B, then s(p, x) = (sp, sx) e B, and the operators from 7' commute
with the left and right multiplications on B. Let A = A(U, a, T') denote
QV(U,a, T),ag, T), and let po = ¢ | B.

TuarorEM 5.  Let T be a commutative ring with unily 1r , and let U be a T-alge-
bra via o where a(ly) is the identity automorphism on U'. Suppose that
Q(U, a, T) s a Q(T)-algebra as a subring of U. Then

(i) B(U,a, T) < A(U, a, T);

(ii) 0—Q(U, &, T) = B(U, a, T) 42 Q(T) - 0

s an exact sequence of Q(T)-algebras; and
(i) ¢ A(U,a, T) is closed under the subtraction of V(U, a, T'), or if T is an
integral domain, then A(U, a, T) = B(U, a, T).

Proof. Tirst observe that the identity automorphism on the direct-
sum group 7" @ U" is also a ring isomorphism on V(U,, a;, T:) onto
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(V(U,a,T)):foreacht e Q(T). Thatis, assets,

A = nt "Q((V(U7 %) T))t) = nt Q(V(Ut y Oty Tt)),
¢ running over Q(7'). Hence (p, 2) e V(U, o, T') lies in A if and only if
peQ(T) and

2eNQU(Ud)pw) = N Q(Uapvrny),

as we can see by appealing to our earlier results and definitions. Since
d(p?;1) eQ(T), N Q(Uawir:y) > Q(U,a, T). Now suppose that (p, ) ¢ B
sothat p e Q(T') andz e Q(U, a, T'). By what we have just done, (p,z) € 4,
whence B < A, and we now have (i). The exactness of the sequence of (ii) is
immediate.

Let us assume that A is closed under the subtraction of V(U, «, T'), and
let us take (s,u)eA. By our above remarks on A, se¢Q(7T). Since
06N, Q(Uawtr.y), we have (s, 0) e A; therefore (s, u) — (s,0) = (0,u) e A.
That is, u ¢ N, Q(Uaw.n). But d(0; t) = ¢, whence u ¢ N, Q(U,) =
Q(U, a, T). It thus appears that (s, u) e B, whence A < B.

Assume, alternately, that 7' is an integral domain and thus (p, ) € A so
that p e Q(7T) and z e N, Q(Uapnr.y) as t runsover Q(T).  Recall that
r = 27 — seQ(T) whenever seQ(7). Since p e Q(7T) < Q(T,), Lernma
1 (a) provides that

(Ir = r)p = —(1r — s)p e Q(T).
The quantity 17 + (1y — s)p is thus a unit of 7', and one can show that
t(s) = 1r — (1r — 8)(Lr + (12 — 8)p)~ e Q(T).
From this, one has

p = —(1, — 8)p" — p

and

pis = gt p 4 pUY = p(p 4 pU — i(5)pE) = p2d(p“®; 1(s)).

If p 5 0, the integrity of 7 yields s = d(p““’; #(s)). A consequence is that
QU, e, T) = N, QU,) = Ny Q(Uapctsn; tory = Ni Q(Uagpo;e)

where both ¢ and s range over Q(T). We saw, however, (VIII) that z lies in
this last intersection so that z e Q(U, a, T'), and (IX) that p e Q(7T). TFrom
the definition of B, we now must have (p, z) ¢ B.

If p = 0, then we have p® = 0, d(p'?;t) = ¢, and again z ¢ N, Q(U;) =
Q(U, a, T). That is, (0, ) e B. In any event, A < B, completing the
proof.

6. The radical of the extension

Let ay; = as| J(T), where, as before, U is a T-algebra via «, and T is,
throughout this section, a commutative ring. Observe that V(J(U),
ay,r,J(T)) is a T-algebra, a subalgebra of V(U, o, T').
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TurorEM 6. Let U be a non-trivial T-algebra (T commutative) via a.  Sup-
pose that r(u — u*) = 0 for each r e J(T) and for eachu e U. Then

JV(U, o, 1)) = V(J(U), as,r, J(T)).

Proof. For (r, w)eV(U, o, T), (r, u) e J(V(U, «, T)) if and only if
(r,u)(s,x) = (rs, rx + su + wuz) is q.r. for each (s, z) ¢ V. That is, equiva-
lently, rsis q.r. and 1@ + su + ux € Q(Ug+). Equivalently, again, 7 e J(T),
and rz 4+ su 4+ uzx — (r8)*(rz + su + wx) e Q(U).

IfteJ(T), and if v e U, then
w4+t = 4+t = (e = (1) = (w)(t™),

by the special condition in the hypothesis. That is, & is q.r. with (@)™ = t*».
For we U, (tv)w = t(vw) so that, by what we have just done, (fv)w is q.r. for
each we U. But this means that v e J(U) from which J(T') < (J(U):U).

If (v, u) e J(V), then (v, u)(0, x) is q.r. for each x ¢ U, which is to say that
rz + ux e Q(U). We know also that reJ(7T). Replace x by xy to obtain
(re + ux)y e Q(U) for each z, y e U, from which rz + uzreJ(U). But
J(T) < (J(U):U) gives re e J(U). Hence uz e J(U) < Q(U) for each
x eU, so that w ¢ J(U). We have established that J(V(U, «, T)) <
V(J(U), ars,J(T)). )

Conversely, if (7, ) is in the right-hand set of the preceding inclusion, then
(X)reJ(T),andueJ(U). We have rz, su, and ux lying in J(U), so that
(XT)

re 4+ su + ux — (rs)*(rx + su + uzx) e J(U) < Q(U).

But (X) and (XI) are equivalent to (v, u) e J(V(U, a, T)), completing the
proof.

We should observe that the condition #(w — %*) = 0 holds for any Boolean
ring U which is also a 7T"-algebra. 'To obtain another example, let p be a prime,
T be the ring of p-adic integers, and U be any ring of characteristic p. It is
easy to see that U is a T-algebra. Recall [2] that J(T) is the principal
ideal generated by the p-adic integer p. Since pv = 0 for each v e U,
r(u — ') = 0 whenever 7eJ(V).

If we have r(u — u’) = 0 for each 7 e J(T') and each u e U, then ra = 0
for each a e Q(U), and ru = —7r*u. For, rac™ = (ra)aa™ = ra’ + raa™ so
that 0 = rd® = ra. Also, (r + r™)u = r(+*u) = ra where a = r*u e J(U)
< Q(U),sinceJ(T) < (J(U) : U). Thatis,ra = 0 from which ru = —r*u.
(Cf, A" (+*) and —7 in Section 1.)

CoroLrARY. Under the conditions of the theorem, for mo r e J(T') s a(r)
an ependomorphism on U™,

Proof. By Lemma 2(b), U is a radical ring whenever any member o of
J(T) acts as an endomorphism on U*. But, by the above remarks, rou = 0
for every w e U since U = @Q(U) under these circumstances.
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Turorem 7. Let U be a T-algebra (T commutative) via o where U is an
wrreducible T-module.

(a) Suppose that no member of J(T) s carried by o onto an automorphism
of UY. Then J(V(U, a, T)) is, to within an isomorphism, either J(T) or the
algebra direct sum of the T-algebras J(T) and U.

(b) If o s a monomorphism, then V(U, a, T') either has trivial radical or
has 1ts radical essentially U.

Proof. (a) Since T'is commutative, (ker a(7))" is a T-submodule of U™
for cach reT. By the irreducibility of U™, this submodule would have to
vanish if a(r) were to be an ependomorphism. But «(r) would then have to
be an automorphism, contrary to assumption if r is taken from J(7). Hence,
if reJ(T), Ima(r) < U. But (Im a(r))" is a T-submodule of irreducible
U*. Thus, Im a(r) reduces to the trivial algebra, and J(T') operates trivially
on U" via a|J(T). Now suppose that (r, u) eJ(V) so that reJ(T).
Forall ye U, (v, u)(0, y) = (0, ry + uy) eJ(V). Butry = 0 since J(T)
operates trivially on U™, giving (0, wy) eJ(V) and wuyeQ(U). Thus
ued(U).

Jonversely, if reJ(T), and if u e J(U), then

re 4+ su 4+ ux — (rs)*(rs + su + ux)

reduces to su + uxeJ(U) < Q(U), from which (r, u) e J(V), as we see
from the proof of Theorem 6. Since J(7T') acts trivially on U™, it is readily
verified that (r, u)(s, w) = (rs, ww) where r, seJ(T) and u, weJ(U).
To within an isomorphism, J (V') is just J(7) @ J(U). Finally, the irre-
ducibility of U™ shows that J(U) = 0 or U.

(b) Since U" is irreducibile via faithful «, 7' is primitive and thus has
zero radical [4]. The members of J(V) are thereby seen to be all (0, u)
where su + ux e Q(U) as s runs over 7" and as x runs over U. TFor a special
case, take s = 0 from which ux ¢ Q(U) for all x ¢ U, so that u ¢ J(U) when-
ever (0, w) e J(V). As a T-algebra, therefore, J(V) is isomorphic to
J(U) =0o0rU.

7. Some examples
(a) Let T = Zs, the ring of integers modulo 24. Then

J(T) = Q(T) = (6).

(b) LetT = Zou,and let U = (2) < T, so that U is a T-algebra, and each
multiplication on U by a member of Q(U) can be realized by an operation
from Q(T). Again J(U) = Q(U, o, T) = (6), although « is no monomor-
phism.

(¢) Let T be Zs, and let U be the T-algebra of two-by-two matrices
over T. Note that J(U) = (6I) where I is the identity matrix. Now

0o 7
(5 §)eswamvo,
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1 23
1 23)°
16
4 2

is not even q.r. in U. Notice that there are left multiplications on U by
elements of Q(U) which cannot be realized by multiplications from Q(7T').

likewise for

Nevertheless, their sum
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