
AN EXAMPLE OF NON-LOCALIZATION FOR
FOURIER SERIES ON SU(2)

BY
R, A. Mynl

Let G SU(2) and for each integer n , 0 let x be the n-dimensional
irreducible character of G. Any function f LI(G) has a Fourier series

f -1Pnf, Pnf f, nxn
where denotes convolution. Let N be a subset of G and f a measurable
function on G. We will say that f lives on N if f vanishes on the complement
N’ of N.
The Riemann localization theorem says thut if x is any point of the circle

group T, then any integrable function on T which vanishes on a neighborhood
of x has a convergent Fourier series at x. In [4], Theorem C, it was shown
that the analogous theorem for G SU(2) fails in a strong way: if y e G
and V is any neighborhood of y such that V’ has an interior, then there is a
function g of bounded variation on G such that g lives on V’ and the Fourier
series for g diverges at y. In this paper we will show that the function g can
be chosen so that its Fourier series diverges at y and -y and nowhere else.
(It follows from Lemma 1 below that if g vanishes near y and the Fourier
series for g diverges at y then the Fourier series for g must also diverge at -y.)

TEOIEM. Let xo e G and let N be any non-void open subset of G. Then
there exists a bounded function f of bounded variation on G, such that f lives on N,
f is infinitely differentiable except on a closed set of measure zero, and the Fourier
series for f diverges on {xo} u {--Xo} and converges to f everywhere else. Iff is a

function in LI(G) such that f vanishes near Xo and the Fourier series for f diverges
at Xo, then the Fourier series for f also diverges at Xo Thus the set Xo} u xo}
in the conclusion of the theorem cannot be replaced by {Xo}.

Proof of the theorem. Without loss of generality we assume that xo e is
the identity for G. Let

(x) arc cos 1/2xs (x), x e G.

Choose a e N such that a =i=e and O(a) r/2. For r > 0 let

B(a) {x eG O(x-la) < r}
and let

S {xeG:(x) O(a)}.

Choose e > 0 so thatB(a) N and (B(a))- n e, e} (where the bar
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denotes closure). By compactness of Sa choose sl, s e Sa so that
k

Then Be(s1), Bc(s), S is an open cover for G. Let fl, f+ be a
C partition of urity subordinate to this cover, sosupp f c B,(s), 1 _< i _< k,
and suppf+ S’. Let M be the function on G defined by

M(x) 0 if x(x) < x(a)
(1) - if X.(x) x=(a)

1 if x(x) > x(a).

Then a is infmitely differentiable except on Sa, and in [4], Lemma 3.30, it is
shown that the Fourier series for a diverges at :i:e and converges to ),a every-
where else. Let g f M (1 <_ n k -t- 1) so that

Since g+ is a C function it has an everywhere convergent Fourier series, and
it follows that some g (1

_
j

_
k) has a divergent Fourier series at e. Since

O(s) O(a) we have s. uau- for some u G. Now define

() e(uu-) ](uxu-’)x.().
Then f lives on B(a) and hence f vanishes near d:e.

P f(e) P g(e)

Also

for all n

so f has a divergent Fourier series at e. In Section 4 of [4] it is shown that
all of the first order derivatives of a are measures, and hence a is a function
of bounded variation. Sincef is the product of a and a C function, it follows
that f is a function of bounded variation (it was observed in [4] that the func-
tions of bounded variation form a module over the C functions). Also f is
clearly infinitely differentiable off of Sa which is a closed set of measure zero.
Hence the theorem will follow if we prove the following two lemmas.

LEMMA 1. Let f LI(G). Iff vanishes near b e G and the Fourier series for
f diverges at b then the Fourier series for f also diverges at -b.

LEMMA 2. Let a be an element of G such that O(a) # /2, let ha be as in (1)
and let g C(G). Then the Fourier series for gha converges to gha except pos-
sibly at e.

LProof of Lemma 1 If f (G), the Riemann Lebesgue set for f is

r(f) {x e G" lim.. P,, f(x) 0}.

If f vanishes near b and the Fourier series for f diverges at b, then it follows
from Theorem C of [5] that b r(f). Let U. be an irreducible n dimensional
matrix representation of G. Then U.(-e) 1)+I where I. is the
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n X n identity matrix, so U,,(-b) (-1)+lU(b) for all beG. Since P,f
is a linear combination of the coordinates of U it follows that P f(-b)
(-1) n+lp, f(b) for all n. Hence -b r(f) and hence the Fourier series for f
diverges at -b.

The proof of Lemma 2 will require a number of preliminary lemmas, and
before considering these lemmas we give a general outline of the proof.

First we show that if g is in the representative ring of G then r(g,a) contains
all points of G except possibly --e (Lemmas 3-6). From this we will conclude
that the Fourier series for g),a converges to g)a except possibly at =t=e for any
such g. Next we show that if b =t=e is n element of G which is not conju-
gate to -a, and h is any function in C*(G) which vanishes at b together with
all of its derivatives of order _< 6, then the Fourier series forh converges to 0

Cat b. Since any h e (G) can be written h hi -+- hs where h is in the repre-
sentative ring of G and h2 vanishes at b together with its derivatives of order _< 6
(Lemma 10), we conclude that for any h C*(G) the Fourier series for h
converges to ha except possibly at --e and on the set S_a of points conjugate
to.-a. Since t(a) r/2, a and -a are not conjugate, and the Fourier
series for h converges on S. Using this fact we show that the Fourier
series for ha must also converge on S_, and Lemma 2 follows.
The Lie algebra of G is isomorphic to the Lie algebra ’ of 2 >( 2 skew

HelTnitian matrices with zero trace under the map M --* D where

d
(2) Df(x) f(x exp tM) I--0, M eg’,DMeg, feC(G).

Since x. has a maximum at e, D2(e) 0 for all D e g. It is easy to verify
that

(3)

Let M, Ms, M be a bsis for f’, and let D DM (1 <_ i _< 3). Let
a0, ax, as, a be complex numbers such that

a0x+axDxxs+aDx+aDxs 0.

By evaluating at e we get a0 0 and D x. 0 where

M axMx+a, M2+asM.

By (3), det M 0 and hence M 0 since any non-zero element of
non-zero determinant. We conclude that {x., D x., D. xs, D x.} is linearly
independent. Let E be the two sided ideal in L(G) with generating idempo-
tent nx. Since each En is invariant under every D e , and dim E. 4, we
see that {xs, Dx x, Ds xs, D x} is basis for E.. Let 3 be the subspace of
C(G) consisting of all functions of the form P(x., D xs, D. xs, D xs) where
P is a complex polynomial in 4 variables of degree _<n. Then 3 is left and
right translation invariant, and hence is a tWo-sided ideal in L.(G). Since
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we can write x, p(x2) where p is a polynomial of degree n 1, x e 5, for
1 _< j _< n d- 1. By the structure theory for ideals in L(G) (see [2, page 158])
3n E1 (R) @En+l. The space 3 13=0 3 (J:=l E, is the representa-
tive ring of G. We will call 5 the space of trigonometric polynomials, and 5,
the space of trigonometric polynomials of degree _<n. If n > 0 then every
element f of 3 can be written in the form

(4)

Also any f e 5 can be written in the form

where, a, b e C, p is a positive integer, f,, f2, f3 e S. If f(e)= 0 then
a -}- 2b 0, and this implies that a d- bx (2 x.)f0 for some f0 e 5. Thus
any f e 5 which vanishes at 0 can be written in the form

(5) f (2- x)f0+fxDx-}-f2Dxd-f3Dx, feS, 0 _< i _< 3.

Let D be the algebra of all left invariant differential operators on G, and for
each n >_ 0 let D be the subspace of D consisting of all operators of degree
_<n. Let D- be the zero subspace of D.

LEMMA 3. Let n )_ 0 and let X e D. Then there exists an integer k >_ O,
a finite subset {f,..., f} of E and a finite subset{Y,..., Y} of D(-) such
that

(6) x. XX XX- -t- Xx+x -}- =if Yx for all m >_ 1.

For each D e and X e D() there is an integer >_ O, a finite subset {gl
of E. and a finite subset {Z, Z,} of D(-) such that

(7) Dx Xx m-IXD(x,+x x-) d- =gZ x,ffor all m >_ 1.

Proof. We will prove (7) by induction on the order of X. (The proof of
(6) is similar.) Since

--1(8) Dx"x m (Dx+ Dx,-I) for all D

by [4, Lemma 3.3], (7) holds for X e D(). Assume that (7) holds for all
D(n)Xe ,andletYeD(),De6. Then

Dx.(D’Y)x, D (Dx" Yx,) D’Dx.. Yx,
since D is a derivation. Express Dx. Yx by (7) and then use the fact that
D is a derivation and the fact that any operator in D maps E into itself to
conclude that (7) holds for all operators in D(+) of the form D’Y, D
Y D("). Thus (7) holds for all X e D(+) since D("+) is generated by D
and elements of the form DY.
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LEMMA 4. Forany x, y e Glet Jbethelinearfunctional on C(G) defined by

(9) j,(f) f f( -1 -1x uyu du.

If x, y are both distinct from e then

nm=+ o
for all trigonometric polynomials f, and all X e D(), 0 _< n < .

Proof. First observe that for any f e E we have

(11) J(f) m-1 f(x-l)x(y).

This is easily verified if f is a coordinate function of an irreducible m dimen-
sional representation of G, (cf. [6, page 87]) and these coordinate functions
form a basis for E. Since any X e D maps each ideal E, into itself we have
by (11)

(12) m-J(Xx,) m-’-lXx,(x-)x,,(y).

Using the relations
X(x) sin mO(x)/sin O(x)

and

(13) Dx ((m A- 1)xm-1- (m- 1)x+1)(3- x3)-1Dx.
(see [4, Lemma 3.3]), together with the fact that 3 x3 vanishes only at
:i=e, one can easily prove by induction on n (= order X)that the set
{m-Xx(x-1) 1 _< m < } is bounded for eachXeD(n),0 _< n < ,
x =i=e. Hence it follows from (12) that if x and y are both distinct from
=i=e then

lim, m-’J,(Xx) 0, X e D(), 0 < n < .
Thus (10) holds forf 1 for all X e D. We will now prove (10) by induction
on the degree of f. Assume the result for all trigonometric polynomials of
degree _<p und all X e D. By (4) we see that (10) holds for all trigonometric
polynomials of degree _< p -t- 1 if nd only if

(14) lim+= m-’J(fx Xx) 0, lim+= m-’J(fDx. Xx) 0

for allfeSv, Defi, 0 <_ n < , XeD(). We will prove (14) (for any
f e 5v, D e ) by iaduction ca n. For n 0 we have

lim_. J(fx." x) lim [J(f. xm+) -f- J(f" x,,-) 0

for ] e 5v, and by (8)

lim J(fDx.’x=) lim [m-J(f.Dx,,+) m-J(f.Dx,_)] O.

Assume that (14) holds for all f e 5v and X e D(). Then (10) holds for all
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f e 5+1 and X e D(’). Let X0 e D(n+l), and express x. X0 x and Dx. X0 x
by (6) and (7). We then conclude that (14) holds with X X0 from the
fct that (10) holds for 11 f e 5, X e D, and a11 f e +I, X e

LEMMA 5. Let D e . Then the set of numbers {n-1 11 Dx 113 n > 0} is
bounded.

Proof. We assume without loss of generality that D has norm 1 with re-
spect to the Killing form on 6. Write D D1 and choose D, D3 so that
{D, D, Da} is an orthonormal basis for 6 with respect to the Killing form.
Then A D -t- D -t- D is the Laplace operator for G and there exists a
constant A such that

(15) AX A(n 1)X for n >_ 1.

Thus Dx I1 -< -- (D x ,D x) -(Ax, x) --A(n=- 1) X II,
nd the lemma follows from this.

If f is any function on G nd x e G, let L(x)f be the function on G defined
by L(x)f(y) f(x-ly). Note that if f is a trigonometric polynomial so is
L(x)f

LEMMA 6. Let a, x e G, a +/-e. Let ) be as in (1) and let f be a function
in C G such that

J(Dx, L(x-)(fDx.) o(n)

for all D e . Then x is in the Riemann Lebesgue set off In particular, if
f is a trigonometric polynomial then the Riemann Lebesgue set off contains all
points of G except possibly +/-e (see Lemma 4).

Proof. Let D1, D, D be bsis for fl which is orthonorml with respect
to the Killing form. Then for ny f C(G) we have for all n > 1 (cf. 15)

Pn(fa) (x) (fa) * nxn(X)

n
(16) ’= A(n 1)

(D(fL(x)Dx,),,,)

A(n 1)
(Dx, L(x-)(,n,])).

Since ,, D ]e L(G) it follows from Lemma 5 and the fact that
{D x 1

_
n < } is an orthogonal set in L(G) that the second sum in

(16) tends to zero as n --, oo. Thus x e r(J) provided that

for all D e .
(17)

(D(fL(x)Dx,,), M) o(n)

In [4] (4.10) it was shown that

(Dr, Xa) --"W sin O(a) f(uau-)Dx.(uau-) du
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Cfor any D fi and f C"(G) (and hence any f e (G)). Thus
--1(D(fL(x)Dx), ha) --r sin O(a)J,(Dx,.L(x-1)(fDx2)),

and the lemma follows.

LEMMA 7. Let g be a trigonometric polynomial, a G, a :ke, and let ha
be a defined in (1). Then the Fourier series for gh converges to gh except
possibly at -4-e.

(18)
Then

For any x e G, n > 1, f LI(G) put
S,, f(x) =1 Pk f(x).

Since S, ),a(x) ---+ M(x) except for x :i=e the lemma will follow if we show
that

(19) lim.. S,,(h,) (x) 0

for all h e 5 such that h(x) O, (x 4-e). Now

(20) N(h)a)(X) (L(x-)h.L(x-)M ,= kxk)

and L(x-)h is a trigonometric polynomial which vanishes at e. Thus if we
show that

(21) limN ((2 x)fL(x-), =kx) 0

(22) lim ((Dx)fL(x-), _.,-_ kx) 0

for all f e 5, D e tt, x =i=e, then (19) will follow because of (5).
relations

(23) (2- x) =kx (N q- 1)x- Nx+I
(24) Dx2 r=, kX D(xs + X+,)

(see [3] (5.12) and [4] (3.5)) we can rewrite (21) and (22) as

N
N" Pr+(XaL(x)f)(x) 0(21’) lims+=

N 1 Pv(XaL(x)f)(x) N q... 1

Using the

lim+= (D(L(x)(f(xr q- X+l))), ),a) lim= (L(x-I)M

sin 0(a) Ja(f(x q- +)L(x-)Dx),

lim= (D(L(x)(f(x -b x+))),),)

(22’)
DL x + x+,) 0.

Now (21’) is a consequence of Lemma 6, and the second limit in (22’) is 0
because {x,} (1 _< n < m is an orthonormal set in L2(G). To evaluate the
first limit in (22’) we use (17) to get



and this limit is zero by Lemma 4. This completes proof of Lemma 7.

LEMMA 8. Let f be a C" function on G which vanishes at e together with all
of its derivatives of order < 6. Then f can be written f (2 x2)g where
g C(G).

Proof. The function g (2 x2)-"f is clearly of class C except possibly
ate. Define’R3-Gby

q)(x, y, z) exp ( iz x + y
--x -4- iy --iz /"\

q maps a neighborhood of the origin diffeomorphically onto a neighborhood
of e in G. Let r be the function on R defined by r(x, y, z) (x + y "4- z)1.
A routine calculation shows that (2 x2) q rh where h is analytic on R
and h(0, 0, 0) 1. Hence the lemma will follow if we show that any func-
tion F in C (R) which vanishes at the origin together with all of its deriva-
tives of order _< 6 can be written F r4G where G e C(Ra). This follows
by a straightforward argument using Taylor’s theorem.

LEMMA 9. Let a, x be elements of G such that a # -4-e, x -4-e, and suppose
that a and -x are not conjugate in G. Let f be a function in C’(G) which
vanishes at x together with all of its derivatives of order <_ 6. Then the Fourier
series for fM converges to 0 at x.

Proof. Using (20) and (23) we get

Sr(f)a)(X,) N" + 1 Pr((L(x)(2 X2)--l)f}ka)(X)N
N Pr+l((L(x)(2 X)-)/ha)(x),N+I

so the lemma vill follow if we show that

lim_P((L(x)(2 x)-)fh)(x) 0.

By Lemma 8 we have L(x-)f/(2 x2) g(2 x.) where g e C(G). Using
this in (16) we get

P,((L(x)(2

Pn(XaL(x)(g(2 X)))(x)

(25)
.= A(n- 1)

(D(L(x) (g(2 x)D x)), Xa)__
n

=x h(n 1)
(D, X,, L(x-) (Xa)Di(o(2 Xe) )).

The second sum on the right in (25) tends to zero as n -- oo by an argument
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given in Lemm 6. Hence Lemm 9 will follow if we show that

(26) (D(L(x)(g(2 x2)Dx,)), M) o(n)
Cfor ll g e (G), D eft. By (17), (26) is equivalent to

(27) J(g(2 x,)Dx, L(x-)Dx) o(n)

so the Lemm will certintly follow if we show that

(28) J(g(2 x,)Dx,) o(n)

for 811 g C(G). In Lemm8 4 we showed thst (28) holds if g is 8 trigono-
metric polynomial, 8nd since the trigonometric polynomisls 8re dense in
C(G), (28) 11 hold for 811 g C(G) provided thst the set of functionsls

Fxan g n-1J(g(2 x)Dx) (n 1, 2,...
is bounded in the duB1 spsce of C(G). Now

f, A sup, n-’ Dx,(x- ua’)(2 x)(x- uau-) .
By (13) 8nd the identity (2 x)(2 + x,) 3 x, we hsve

--1n Dx,.(2 x) [(x,- x,+) + (x- + x,+)]Dx/(2 + x).

Since (x- x+) + n-(x- + x.+) ]] 4, we see that

{llf   li’n 1,2,...

11 be bounded provided that the compact set {x- uau- u e G} does not
contain -e, i.e. provided that a nd -x are not conjugate. Since this is
true by hypothesis, the lemma follows.

CLEMMA 10. Letf e (G) x e G, and let n be an integer O. Then there
exists a trigonometric polynomial t such that f t vanishes at x together with
all of its derivatives of order n.

Proof. We assume thout loss of generality that x e. Let

and let D D, 1 E i E 3. Then it is easy to verify that

(29) Dx --x, i 1,2,3

(30) DDx sgn (i, j, h)D x i j

where sgn (i, j, k) is the sign of the permutation (i, j, h). For any 4-tuple
(n0, n, n, n) of non negative integers and any j 1, 2, 3 we have

(31)
--n(x)+(D x)"-=. (D x) + R
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where R vanishes at e together with all of its derivatives of order
_<n -t-n na 1. Let p, q, r, a, b, c, be non negative integers with
p q -t- r a b -t- c m. Then by m applications of (31) we get

(DD D)((D x)(D x)q(Da x)) (e) (-2)piqiri.
CIf f e and m is an teger >0 put

T? (2) (Dq (D x)(D x)q(Da x).Df)(e)

D(-)Then XT(e) 0 for all X e and

(Dr D D)T(e) (Df DDf) (e)
if p q r m. Recall that any Y e D() can be written in the form

Y o+q+ADf D D, A C

(see [1, page 98]). The trigonometric polynoals t. can now be constructed
inductively. Take t0 f(e), and if t. is constructed choose t.+ t ]-..

CProof of Lem 2. Let g e (G) and let x e G be an element such that
x e and x is not conjugate to -a. By Lemma 10 we can write g
where g is a trigonometric polynomial, and g vanishes at x together th its
deriwtives of order 6. Th

lim S(gM) (x) gM(x)

by Lemmas 7 and 9. Thus the Fourier series for gM converges except pos-
sibly at e and at points conjugate to -a. Now suppose x0 e G is conjugate
to -a. Then -x0 is not conjugate to -a (sce O(a) /2) and hence the
Fourier series for gh converges at -x0, and -x0 r(g). Thus
sce we saw in the proof of Lemma 1 that r(f) -r(f) for any f e L(G).
Alsog is infinitely derentiable at x0 (since x0 is not conjugate to a). Theo-
rems A and C of [5] imply that the Fourier series of an L function on G con-
verges ut any point of the Riemann Lebesgue set of the fctioa at which the
function is C. Thus the Fourier series forg converges at points conjugate
to --a, and the proof is complete.
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