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Introduction

In his lectures about continuous geometry, [13], John von Neumann gave
a powerful extension of the so-called coordinatization theorem for projective
spaces, which asserts that for every projective space P of dimension n ->_ 3,
there exists a (skew-) field K, such that the lattice of subspaces of P is
isomorphic to the lattice of subspaces of the (fight-) vector space K+1 (see,
e.g., [5]). He assumed the existence of a homogeneous basis of order n >_- 4
(defined below) in a complemented modular lattice L and showed that there
exists a regular ring R, such that L is isomorphic to the lattice of finitely
generated right-submodules of the R-right-module R. In the case of a
homogeneous basis of order 3, projective planes are involved in the discussion
(see, among others, [7] and [13].).
This paper deals with related questions for modular lattices with a homo-

geneous basis. Let L be a modular lattice with least element N and greatest
element U. Then a family al, a. of elements of L will be called a homo-
geneous basis of order n of L if the following conditions are satisfied:

(i) alu...ua.= U,
(ii) (a u u a,) n ai+l N for 11 1 <_ i < n,
(iii) there exists a common complement c for a, and a. in a, u a for all

1 <_ i,j

_
n,ij.

The c may be arranged in a certain way (see 1.6); we then speak of a nor-
malized frame of order n for L and write L. for L together with this frame.
Examples of such lattices are easily given, namely, the lattice L(R’) of all
right submodules of the free module R (where R is any associative ring with
unit) is a modular lattice with the homogeneous basis

al (1, 0, 0)R, a, (0, 0,1)R.

The obvious question now is whether this is the general situation, or in other
words, whether, for a given lattice L,, there exists a ring R such that L. is
isomorphic to a sublattice of L(R’). The non-complemented case was first
discussed by Baer [4] and Inaba [11], who both assumed that the sublattices
L(N, a) were finite chains. We know that the cases n 3, 4 are typical
for the situation in complemented modular lattices, and therefore, restrict
our attention to these two cases.

In the first section, we deal with the construction of a normalized frame
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starting from a given homogeneous basis, and, in particular, prove Lemma
1.5 which is an analogon to the theorem of Desargues in a projective space.
The next section is devoted to the construction of a ternary ring K(L3) from
a lattice L which uses the methods developed for projective planes [8], [15]
and gives rise to the general definition of a ternary ring (Def. 2.5). This con-
cept is different from another generalization of ternary fields given by Sandler
[16]. A pseudo ternary as defined in [16] seems to be a ternary ring in our
sense only if it is a ternary field. In Proposition 5.7 we show that the ternary
ring K derived from the lattice L(K3) from the above example is isomorphic
to R with the ternary operation (u, x, v) ux v, hence essentially the same
as R. In general the ring-axioms for K are not valid, even if T(u, x, )
ux v, as examples of projective planes show. Therefore in the third section
we derive several algebraic properties of K(L3) from assumptions about the
automorphism group of L3. This method was first introduced by Baer [3]
in the theory of projective planes and was used in the case of complemented
rmodular lattices by Amemiya [1] and the author [2], see also Skornyakov [16].
:From the existence of a sufficient number of automorphisms of a special type
(Def. 3.1) we obtain all the ring axioms except the associativity of multiplica-
tion. This law, and the existence of all the automorphisms needed for the
other ones, are proven in Section 4 under the assumption that L is embedded
in a lattice L, in a way that the frame of L3 consists of elements of the frame
of L (see Def. 1.6 andTheorem 4.5). Following Cronhe im [6], in the last
section we define a "parallel system" P consisting of a set A of "points", a
set B of "lines", an incidence relation -- A X B and two equivalence rela-
tions 114 A A, II B

_
B )< B subject to three axioms stated in 5.3. It

turns out that parallel systems may be derived from either a lattice L3 or a
ternary ring K, called P(L) and P(K) respectively. In the first case, A is
the set of all complements of as u a and B the set of all complements of
P(L) and P(K) are isomorphic if K is the ternary ring defined fromL (intro-
duction of coordinates in P(L3), Theorem 5.6). If K is a ring, then we may
embed the paralled system P(L)(P(K) into the lattice L(K4), (Theorem
.5.8), which is a partial converse of Theorem 4.5. Theorem 4.5 and Theorem
5.8 together contain the theorem that a projective plane is embeddable in a
projective space of higher dimension if and only if the theorem of Desargues
holds in the plane (Hilbert [10]).

Examples of lattices L which are not complemented and not embeddable
in the defined way in a lattice L4 can be obtained from Hjelmslev planes and
will be given in another paper. Also, there are results about relations between
the multiplicative structure of K(L) and the lattice L(N, as) which will be
discussed later.

O. Notations

0.1. We deal with modular lattices with a least and a greatest element
exclusively. The least element of the lattice L is denoted by N, the greatest
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by U. L(N, a) is the sublattice of elements _a o L. a u" 5 c means
a u 5 c and a n 5 N. In order to save brackets, we write a u 5 n c instead
of a u (5 c), that is, n binds closer than u. The modular law is then written:

a <_ caubac (aub) c.

If a u" c b u" c (a, b, c e L), we say a and b are perspective and c is the
center of perspectivity. We call the mapping " x --. (c u x) n b for x _< a
a projection with center c of L(N, a) into L(N, b). In modular lattices,
projections are isomorphisms [13, p. 18].

"Ring" means always associative ring with unit.

0.2. Lemma. Let L be a modular lattice, A L, r, s <_ A, r n s N and
p, q two complements of A such that r u s u p >_ q. Then z (r u p) (s u q)
is a complement of A.
The proof is a simple check"

z u A (r u p) (s u q) u A u s (ass_A)

(rusup) (suq) uA

suquA U

zA (rup) a (suqnA)

(rup) ns

(rup) nAs

rAs N.

In the most cases where we apply this Lemma we will have A r u s, hence
r u s u p >_ q trivially.

1. The normalized frame of a modular lattice
1.1. DEFINITION. Let L be a modular lattice with least element N and

greatest element U. A set of elements a, a e L is said to be a homo-
geneous basis of order n of L, if the following conditions hold.

(I) U-la U.
U= a) n a+ N for all 1 <_ ] < n.(II) (

(III) For eachj, 1 <j _< n, there exists c such thatau’ c au" c.
We note that according to [13, p. 9] (II) implies the independence of the a,
e.g. (lJ, a) n (U, a) N for all disjoint subsets I, J of {1, n}.

1.2. Duality. Let a, a, be a homogeneous basis of L. If we define

C c. u U.,, a,A U_,. a,
then from

(a) Fl- A N,
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(b) n,__ A,) u A+ (U,-+" a,) u A+ U,

(c) A1 n Cli (U ai) n (c1 u U’=, a)

(U= a) n ci u U=,a

(U%s a) n (a u a#) n c# u UE=s,# a

(U%s ai) n a u a#) n c u U%s,# a

(because of 1 < j we have a# g U%s a)

a n ci u U

(because of the independence of the a)

U2,a

a c u Ui=2,ij ai

=, a) n a a) n c U=2, a

(U’=,, a) (c U,,, a,)

AnC
A u C U= A u

we see that the A, form a homogeneous basis of order n of the lattice dual
to L. Therefore the concept of a modular lattice with a homogeneous basis
of order n is self dual.

Starting from condition (III), we may construct common complements
c (i j) of a and a in a u a for uny pairs (i, j), which are connected
in a special way"

1.3. PR.OeOSTON. Let a, a be a homogeneous bis for L. Then
(IV) for each pair (i, j) with i j, there exists a common complement

c of a and as in a, u a such that

c ci and ci (c, u c) n (a u a)

for all distinct i, j, k, 1 i, j, n.

The proof of this proposition is given after two lemmas following the
pattern of [13, p. 117-119].
We define L to be the set of complements of a in a u a.

1.4. LEMMh. If i j k i, b eL b eL then
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1.5 LEMMA. For distinct integers i, j, k, m and b L b L b,,, L
the following equation holds"

( (b u b) n (a u a) u b.) n (a u a.)

Proof.
( (b u b) n (a u a) b) n (a a)

((b u b) n (a u a u a) u bm) n (a u a)

as a u a (a u a u a) n (a u a u at)

because j m, and b u b a u a u at

(b. b. b) n (a. a.)

(b u (b u b) n (at u a u a)) n (a u a.)

(b. (b. b) n (at. a)) n (a. a).

Rark. In the case of a projective space, a,, b:t points, tHs lemma
describes a Desares eogationth center b and axis a u a.

Now we are ready to prove the assertion (IV) of Prop. 1.3. We may
defineci; c; becausea; u" c;i aiu" c;i a;u a andscteL;tgnd
c; e L, we ge from Lemma 1.4"

(c. u c;) n (a u a) L a,nd ( L.
Therefore we define

c (c.. c) n (a u a) c for all i, k.
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To establish the second property of the c, we see that for k 1 this
holds by the definition of c. So let ] 1. If i 1, then j k, 1"

(c J c) n (a, a)

(c u (c c) (a a)) (a a)

(c c,) (c a u a) n (a a)
(c u c) n (a u a)

C,

und the sme reasoning holds for j I, i k, I. So we my s-
sume 1 i, j, , hence I, i, j, k re II distinct.

(c c) (a a)

(c (c, c) - (a a)) (a a)

((c c) (a a) ci) a (a a), by Lemm 1.5,

(c i) (a a), by first cse,

c, by definition.

1.6. DEo. As we hve c c, we my restrict the indices by
the condition i < j nd mke the following definition"

The fmily (a, a, c2, c_1,) of elements of L is clled
normalized frme of order n of L, if the conditions (I), (If) from i.i nd
(IV) from 1.3 hold for the a c (i, j i, n; i j).

Throughout this pper, we del with the cses n 3 or n 4, nd the
notation L (n 3, 4) stands for modulr lttice L together with fixed
normalized frme of order n. By sying L is sublttice of L (or L is
embedded in L4), we mean that L is the sublttice

L(N, a a a)

of L, where (a, am, a, a, c, c) is the fixed normalized frame of
L nd the frame of L is (a, a2, a, c2, c, c2), consisting of elements of
the frame of L4.

1.7. Rema@. Let the elements a,..-, a be toms of the lttice L.
Then, by [14, p. 78], L is complemented modulr lttice of fite length
(or dimension), nd ny tom of L is perspective to t lest one of the a.
Now, the a re II perspective by centers c, nd s for ny other tom
p e L either p a or p a N, p is perspective to ny of the a. Hence
L is irreducible [14, p. 80], nd is, therefore, isomorphic to the lttice of sub-
spces of fite-dimensionl projective spce.
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2. Construction of a tenary ring from a lattice

2.1. Let (al ,a3, C12, C13, C3) be the normalized frame of L. In order
to get shorter formulas in the following calculations, we introduce the ab-
breviations

aua A (j, i)

aauc E, auca F, auEnF D,
d=DnA.

DEFINITION. For any x A, let

x* ((xua)nEua)nA,
((xua) nDua)nA.

2.2. LEMMA. The mappings x
L(N, A) onto L(N, A) and of L(N, A) onto L(N, An), respectively.

* x for all x < ax x for all x a,

Proof. These mappings are isomorpsms as they are products of projec-
tions.
For x aa we have

z* ((xu) n (aauc) ua)nA
(n (aauc)uxua)nA
(xua)nA
xua nA

For x a, x follows similarly.

2.3. DNTm. Let La {x x u" aa a " an}. We define a mapping
T of La X L X La into L(N, A) by

T(u, x, v) (u* u v) n ( u aa) u a) n A for u, x, veL.
2.4. POOSTmN. () T is a ternary operation in La i.e. T(u, x, v) e La

for all u, x, v e La.
(b) (i) T(a x, v) v T(x, a v) for all x, v eLa.

(ii T (ca x, a x T(x, ca a for all x e La
(iii) For any u, x, y e La, there exists a unique v e La such

that y T(u, x, v).

Proof. (a) We first note

a ((a a) n E-u a) n A
(aua)nA
a2 and

(Lemma 2.2).
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Because the mappings w -- w*, w -- are isomorphisms, we have u* u" a3
and ’2 u" a2 A3 for u, x e LI Applying Lemma 0.2 with A1 A, r,
a s, v"= p and ’2 q we see that (u* u v) n (’2 u a) is a complement of
A1. Applying Lemma 0.2 a second time with A A, a8 r, a. s, a p
and (u* u v) n (’2 u a) q shows that T(u, x, v) is a complement of A.
Furthermore by definition we have T(u, x, v) < A., hence T(u, x, v)

(b) (i) T(al x, v) ( (a u v) n (’2 u a3) u a) n A
((a. u v) n (: u as) u a2) n A.,

since a a (see (a)),

(a. n v) n (: u aa u a.) n

(a.uv) nA., as:ua. au a., (see (a))

and similarly T(x, al, v) v observing that

(ii) T(cl x, al) ( (c* u a,) n (’2 u a) u a) n A
((DnAlua)n (’2ua)ua)nA

T(x, cla, al)

(Dn (Aua)n (’2uaa) ua.)nA., as al < D,
(Dn(:uaa) ua)nA

((Dn (((xua.)nDuaa)nAauaa)ua)nA.

(Dn((xua)nDua)uas)nAs
((xua)nDua)nA

( u a) n (D u a) n A
(x u a) n A

((x* u a) n ( u a) n ) n A
((x* u a,) n (((c u a) n D u a) n A u a) u a) n A
((x* u a) n ((c u a) n D u a) u a) n A
((x* u a) n E u a) n A
((( (z u a) n E u a) n A u a) n E u ) n A
(((z u a) n E u a) n E u a) n A
((x u ) n E u a) n A
(x u a) n ( u a) n A



(iii) If there is any v e Lla with y T(u, x, v), then we may calculate
(each line implies the next one)’

yuas (u*uv) n (4uas) ua.

(yuas) n (4uas) (u*uv) n (4uas)

(yuas) n (4uas) uu*-- u*uv
((yua)n (uaa) uu*)nA.-- v,

and hence v is unique.
On the other hand, if we define v by the last equation, then from Lemma

0.2 we get v e Lla similar to (a), and

T(u, x, v) (u* u (y u a) n ( u aa) n ( u aa) u a) n A
(u*n (ua)u(yua)n (uaa) ua)nA.

(yuas) nAs
y,

so v is a solution of the givea equation.

2.5. The last proposition leads to the following

DEFINITION. An algebraic system (K, T, 0, 1), where K is a set, T a
ternary operation on K and 0, 1 are two distinct elements of K, is called a
ternary ring, if the following axioms are satisfied"

(TO) T(O, x, v) v T(x, O, v) forall x, veK.

(T1) T(1, x, 0) x T(x,l, 0) for all xK.

(T 2) Given any u, x e K. Then the mapping v -- T(u, x, v) is bijective
from K into K.

Because of (T 0), (T 1), 0 is called the zero element of K and 1 is called
the unit element of K. Prop. 2.4 shows, that (Lla, T, al, cla) with the
operation T defined in 2.3, is a ternary ring. We denote this ring by K(La)
and call it the ternary ring of La. In general, K(La) depends on both L
and the normalized frame chosen for L. From (T 0), (T 1) we feel free to
write al 0, ca 1. In connection with the lattice operations, however,
we keep the old notations al, cla.

2.6. Other examples of ternary rings. (a) Let R be a ring, and define
T(u, x, v) ux + v for u, x, v e R. (T 0), (T 1), T 2) are easy consequences
of the ring axioms. In Theorem 4.5 we show that the ternary ring of a
lattice La which is embeddable in a lattice L is of this type. Furthermore,
if R is a ring and La happens to be the lattice L(R) of all right-submodules
of R with the normalized frame (1, 0, 0)R, (0, 1, 0)R, (0, 0, 1)R, (1, 1, 0)R,
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(1, 0, 1)R, (0, 1, -1)R), then it is proved in Prop. 5.7 that

(R, T) K(L(R8) ).

(b) Let K be a ternary field as defined in [15, p. 36]. Then K is a ternary
ring. (In fact, here a projective plane serves as La .)

(c) The cartesian product of a set of ternary rings Kx( e A) becomes a
ternary ring if we define the operation T component-wise. The sequences
(0) and (1) are zero respectively unit element of I, Kx.

(d) From a ternary ring (K, T) we may derive a ternary ring of matrices
(Ks, Ts) by defining

Ks {(c) la, b,c, deK},
v,w (a,p,l’ (b,r,v ), T (a,q, T (b,8,w)

It is easy to see that(0) and (0) are ero and one of Ks. We check (Te).
Let d () and P ($:) are given. For a given matrix H () we
show that there is one and only one matrix V () such that

T(A, P, V) H.

From the property (T2) of the ternary ring (K, T) we get the existence of
a unique z e K with

T(a, p, z) h,

and again by the same axiom a unique v e K such that

T(b, r, v) z.

Hence there is a unique v such that

T(a, p, T(b, r, v) u.

In the same manner the existence and uniqueness of the other entries of the
matrix V are shown.

(e) From the preceding example, we may take the subring of matrices

We leave now the general concept of a ternary ring until Section 5 and return
to the ring K(La) derived from the lattice La, which we denote by K in this
and the following two sections.

2.7. As it is suggested by example (a), we try to split the operation T in
K into addition and multiplication.

Fixing the first variable in T(u, x, v) to c 1, we define an addition by

xWv T(1, x,v) ((dtv) n (uaa) ua) n

(See 2.1 for the definition of d.)

2.8 PROPOSITION. (K, -) is a loop with neutral element 0 a

Proof. From Prop. 2.4(a) we get that K is additively closed, Che parts
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(i) and (ii), of the same Prop. show that 0 is neutral with respect to -b.
From part (iii) we get a unique solution v of the equation x -b v y. For
given v, y, the element

((yuas) n (vud) ua3)nDua2)A.eK

is a unique solution for x -b v y (proof as in Prop. 2.4(iii) ).

Multiplication in K is defined by

ux T(u, x, O) (u* u al) , (4 u a3) u a.)

2.10. Remark. Similar to 2.8, one can prove the proposition: Let K
be the set of common complements of al and a3 in al u a. Then (K, is
a loop with neutral element 1 c1. We leave out the proof as we do not
need this proposition during the rest of this paper.

3. Automorphisms of L3 and properties of K(L3)
3.1. DEFZNZTZON. Let L be a modular lattice, a, A e L and an auto-

morphism of L such that

x>_ a implies x x and x_A implies x x.

We call an (a, A )-automorphism of L and say a is a center and A an axis
of . (This notation is different from the notation used in [1], [17, p. 17],
where (a, A)-automorphisms with a

_
A are considered, for us, too, the

only important case. Our notation is in line with [15].) The group of all
(a, A)-automorphisms will be denoted by G(a, A). We say L is
(a, A)-transitive, if for any pair p, q of complements of A with p n a
qna N, pua qua, thereexistsaCeG(a,A) withp q.

3.2. LEMMA. Let a <- A, A a u" b and e G a, A ). If there exist comple-
ments p, q of A such that q n (p u a) N, then for any x comparable with a
complement of A, x is determined by p.

Proof. First let r be a complement of A such that r

_
q u a. This implies

rn (pua) rn (qua) n (pua) rna iV

((rup) nAup) n (ua) (rup) n (qua) r.

So we have
r ((rup) nAup)/n (qua)

((rup) nA)up*)n(qua)*
((rup) nAup)n (qua),

as (rup) nA and qua are fixed by ,
hence r* is determined by p.
Now let be any complement of A. By Lemma 0.2, (b u t) n (a u q) s
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isacomplementofA, and as s _< au q, (b u s) n (au t), we have
(b u s) n (a u t), hence * is determined by p*.

For any x >_ t, x u x n A, hence x * u x n A, andfor
x_< t,x (xua)t, hencex (xua) nt*.

3.3. LEMMA. Let a <_ A, A a u" b and r be a fixed complement of A. If,
for any complement s ofA with s <_ a u r, there exists a G(a, A with r s,
then L is a, A )-transitive.

Proof. The proof uses constructions similar to the preceding ones" Let
p, q be any two complements of A with a u p a u q. Then

v (bup) (aur) and w-- (bq) (aur)

are complements of A by Lemma 0.2 and v, w <_ a u r. Hence there are, beG(a, A) with # v, r w, and by p (b u v) (a up),
q (buw) n(auq),wegetp-* q.
During the following considerations, we will always have A a u a

(a, ai of the normalized frame of La), and a a for some i, j.
We are now going to derive algebraic properties of K(La) from assumptions

about the transitivity of certain groups G(a, A ). The proofs of these proposi-
tions are omitted because they may be taken verbatim from [2] (where La
is assumed to be complemented).

3.4. PROPOSITION. If L8 is (as, A1)-transitive, then
(i) K, W) is a group,
(ii) T(u, x, v) ux + v for all u, x, v K,
(iii) (K, W) is a homomorphic image of G(a A1).

Proof. (i) and (ii) are to be proved as in [2, p. 29] by showing T(u, x, v)
T(u, x, v*). From this equation we get with 0 y"

x T(1, x, 0)/-- T(1, x, 0*) x+y,

and with 0 x"

0* x x+y 0+0..
Therefore the mapping $ -- 0 (0 al) is a homomorphism of G(aa, A)
into (K, +), which is onto if La is (aa, Ax)-transitive. The kernel H of
this homomorphism consists of all $ with 0* 0, which is true only for the
identity of G(aa, Ax) ill the case that La is complemented (Lemma 3.2).
Let P denote the set of all complements of Ax. As, by Lemma 3.2, the
restriction $ ]P is determined by ax*, we observe that (K, + ) is isomorphic
to the group of restricted automorphisms, which we may denote by
G(aa A)/H.

3.5. PROPOSITION. If La is (a A)-transitive, then
(i) (K, T) is a group,
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(ii) T(u,x, uc) u(x + c).

Proof. [2, pp. 48-49].

3.6. PROPOSITION. If La is (a A)-transitive, then

T(u, x, cx) T( T(u, 1, c), x, 0).

Proof. [2, p. 53].

3.7. THEOREM. If La is (aa A)-, (a., A)- and (as, A)-transitive, then
(K, -b is a not necessarily associative ring with unit, and T(u, x, v) ux v
for all u, x, v K.

Proof. By Prop. 3.4 (K, - is a group and T(u, x, v) ux -b v. Hence
from Prop. 3.5. we have

ux - uc T(u, x, uc) u(x - c)

and from Prop. 3.6. we get

uz + cx T(u, x, cx) T(u -b c, x, O) (u + c)x.

As 1 c is a unit of K by (T 1), it remains to show that (K, -b is com-
mututive. From the distributive luws we derive

1- a+ b+ ab (1 - a) -t- (1 -a)b

(1 -t- a) (1 -b b)

(1 - b) -b a(1 -t- b)

1 b+a-ab for all a, beK,

and this implies a b b -t- a, as (K, -t-) is a group.

4. The existence of automorphisms and the associative law
of multiplication in L) from the embedding of L in

4.1. THEOREM. Let L be embedded in L4 0,8 defined in 1.6. Then La is
(a, A)-transitive for i, ]c 1, 2, 3; i .

Proof. By Lemmu 3.3., we have to show" For any a with a u" a a u a,
there exists a e G(a, A), such that a a. In order to get shorter
formulas, we use in this proof the abbreviations

U Aua aaaa,

V Aua auaua,

W Ak U c4 a u a u ck4.

We are going to constrUct as a product of two projections in L.
If we putr (ac)V,
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ruAk (auck4ua)nVua

(auck4ua) aVua
(aaa) aVa
aiua4ua V

raA (auc)aA

That is, r " A a u" A, and, therefore, r is a common complement of Ua
and W.
Now the mapping

v’x (xua) aW for xeL

is a projection (hence an isomorphism) with center a from La onto the sub-
lattice L(N. W), and the mapping

X ( r)U

is a projection with center r from L(N, W) onto La. Hence their product
p is an automorphism of La. We check the desired properties of "Ifx A,thenx x x,hencex x.

If x > a,:. then
x (xa) (aaic)

(xaa) (ac)a
and

xur (xa) (aiuc)uau (auc)nV

(xua) (auc)u (a, uac) V

(xua) (aiuc)u (aaua,)V

(xua) (auc)a,a

(xua) a (aicuaa)

xa4.
Therefore we know

x*= (xur)U= (xa)U=z.
Finally we have

hence a (c u r) n U, a.
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4.2. In order to prove the associativity of multiplication, we first make the
following definition:
For x, y e Lla, let

P(x, y) ((x u c2a) r Aa u (y c) A1) fl A.
We note, that this is the deflation of multiplication used in [13, p. 132]

and in [7], and in fact, is dual to our one given in 2.9.

4.3. PROOSTmN. If La is (aa, A)-transitive, then P(x, y) yx (the
product defined in K) for all x, y e Lla

Proof. (The proof is entirely the same as in [2, p. 557].)
As La is assumed to be (aa, A)-transitive, there exists e G(aa, A2) such

that ca a. For this we have

(c2a ca) ca c3, because c3 A2,

a2 c13

F,
E E, because a3 E,

c5 (E. (c v c,))
EnF,

A (a c)
a E n F,
D.

Therefore we have for any x e L3

((x c3) A3) (x v c3) n A
(x a) D,

Recalling the definition of

((xva)nDva3)nAa
we get

((xvc3) nAavaa) (xvc3) nA3va3
on the one hand, because a3 is the center of , and

((xc23) nA3a3) (xva)nDvaa

xv aa,
hence

(va3) nA3
((xvca) nA3va3)nA3

(x c,) . A.

because

because x_< A2.

on the other hand,
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From this formula we derive

P(x, y) (4 u (y u cls) n

Now let h be an element of G(a3, A.) such that

c2 (y u a) [ E.
Then we have at first

hence

Secondly

A (al u c2)

au (yuas) nE

au ((yua2) nEuanA
* recalling the definition of=auy,

(As n (4 u as) ) (a u y*) n (, u as).

((yucls) nA)--- (yucs) nA, as y <_A,as_<A,
(yu (yua)nE)aA1

(yua)nA

a2.

By definition, P(x, y) is <_A2, hence

P(x, y) P(x, y).

On the other hand we may calculate

P(x, y) ((4 u (y u c) n A1) n As)

( ((y c.) A)) A
((aluy*) (aau4) ua.)nA,,

yx

This proves P x, y) yx.

by the above formulas,

as defined in 2.9.

4.4. :PROPOSITION. If L is embedded in L4 (as in 1.6), then the multiplica-
tion in K is associative.

Proof. If we know that the yon Neumann-multiplication P is associative,
so will be our one by the last proposition. In [13, p. 132] the associativity
of P is proved in a complemented modular lattice with normalized frame of
order 4, using as principal tool the Lemma 5.2 of [13, p. 117]. But this is
our Lemma 1.5, and the whole proof carries over.

If we agree to use the phrase "K(La) is a ring" for "(K, , ) is a ring
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and T(u, x, v) ux + v", then we may state as the general result of this
section"

4.5. THEOREM. I] L3 is embeddable in Ld then K(L3) is a ring.

5. Parallel systems and coordinates

In order to get coordinates at least for some elements of L3, we derive the
following type of ’geometric’ structure from La

5.1. DEFINITION. Let L3 be a modular lattice with normalizedframe (a a.
a c c13 c3) and A a a We define

A {alau’A-- U}
B

{(a,b) laA,bB,a < b}

!i, {(b, b’) b, b’ eB, b n A b’ n A}.
b’ for the relationsAs usual, we use the notation a b, a .]]. a’ b

Instead of (A, B, !, a, II ,) we write P(L3). Obviously, IIa and II, are equiv-
alence relations in A respectively B. Now the system P(L3) has the prop-
erties"

5.2. PROPOSITION. Let a e A, b B be given.
a’(P1) There exists one and only one a’ A such that a ]1. a’, lb.

(P2) There exists one and only one b B such that b b, a b.
(3) For any p A with p ]]. c12 there exists one and only one b e B such that
a b and
(4) For any q e B with q II, A3 there exists one and only one a e A such that
a D, a q. (A3

Proof. (P1) Leta’ (aua3) nb. First we showa’A"

a’uA (aua3) nbua.u

(aua3) n (bua3) ua2

a u a3 u a

a’nA (aua3) nbnA1

a3nb

Furthermore we have

a’ u a3 (a u a3) n (b u as) a u
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so that indeed a’ ila a. If a" I1 a,
(a t a) b a’, hence a’ is unique.
(P2) Let b’ (b A1) t a. The proof of (P2) is dual to the preceding

one.
(3) Letu (p u a2) A2 (Lemma0.2 showsuA), thenal u p

al u u* e B, and for any b’ e B with b >_ p, al, we have b’ p u al since both
elements are complements of a3 and p u al <_ b’.

(4) Dual to (3).
5.3. This proposition shows, that P(L) is a P-system (or parallel-system)

in the sense of [6, p. 2], with the additional properties (3) and (4). The
latter two imply ’regularity’ of the P-system as defined in [6, pp. 17, 20].
To avoid another meaning of this term, we take (3) and (4) into the defini-
tion-

A P-system (or parallel-system, or incidence system with parallelism)
P (A, B I, 114, liB) consists of sets A, B, an incidence relation

_
A B

and two equivalence relations ]!4 A A, I1 B B, such that the axioms
(P1), (P2) as stated in Prop. 5.2 and the following one hold"
(P3) (a) There exists a pair (a, a’) of elements of A, such that for all
P ]la a’, there exists one and only one b e B with p lb, a b.
(b) There exists a pair (b, b’) of elements of B such that for all q lib b, there
exists one and only one a e A with

A typical example of a P-system is a semi-affine plane, that is an affine
plane without one class of parallel lines (the "vertical" ones). This may be
obtained in the manner of Def. 5.1 from a projective plane L, and a detailed
discussion shows, that in this case it is possible to reconstruct L from P(L)
in a unique way. Motivated by this example, one might interpret the equiv-
alence relations !!4 and lib as parallelism for "points" elements of A and
"lines" (= elements of B), respectively and say "a and b are incident" when

5.4 Definition [6, pp. 2-3]. An isomorphism of a P-system P
(A, B, I, ]l, s) onto a P-system P’ (A’, S’, I’, I] a’, II s’) is a pair of bijec-
tive mappings (, $)" A -- A ’, B B’, such that , -1, $, ;- preserve
incidence and parallelism.

Remark. If , $ preserve all relations, so do -, - [6, pp. 2-3].

5.5. PROPOSITION. Let K be a ternary ring. Then the system P(K) as
defined below is a P-system.

Starting from K (Def. 2.5), we define

P(g) (A,B,I, II4,11B) by A gg= S

(In order to distinguish the elements of A and B we write (x, y) e A and
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[u, v] B.)
{((x, y), [u, v]) Y T(u, x, v)l

114 {((x, y), (r, s)) Ix r}

II, ([u, v], Ira, hi) u m}.

Proof. Obviously, [[4 and ii B are equivalence relations. For any two pairs
(x, y) e A, [u, v]e B we may calculate T(u, x, v) and see that (x, T(u, x, v) )
is a point parallel to (x, y) and incident with [u, v]. If also (x, w) [u, v], then
by the definition of we know w T(u, x, v), hence the point (x, T(u, x, v) )
is unique. On the other hand there is a unique z with y T(u, x, z) for
given y, u, x, and with this z we get [u, z] II[u, v], (x, y) I[u, z]. Therefore
we have (P1) and (P2).

(P3) (a) We look at the points (0, 0) and (1, 0). For any
point (1, p) 114(1, 0) we have the line [p, 0] incident with (0, 0) because of
0 T(p,O,O) and with (1, p) because ofp T(p, 1,0). Let[u,v]be
another line incident with (0, 0) and (1, p). Then 0 T(u, O, v) v and
p T(u, 1, 0)’, hence [u, v] [p, 0]. So the points (0, 0) and (1, 0) are
as required for (P3) (a). The two lines [1, 0] and [0, 0] have the property
(b)" [0, v] and [1, 0] are both incident with. (v, v) by v T(0, v, v)
and v T(1, v, 0), and (x, y) [0, v] implies y T(0, x, v) = v, (x, v) [1, 0]
implies v T(1, x, 0) x, hence (x, y) (v, v), this point is unique.

5.6. THEOREM. (Introduction of coordinates in P(L3)). If K is the
ternary ring of La then P(K) and P(L3) are isomorphic.

Proof. We write A (K), B(K) andA (La), B(La) to distinguish the P-sys-
stem, but denote the relations with the same signs.
To a e A (La) we assign the "coordinates"

x(a) ( (a u a) n D u a.) n

y(a) (a u a) n A.
’2(a) u aa ( (x(a) t a.) n D u an) n Aa a

(x(a) t a) n D u a

(((auaa) nDua2) nA.ua.) nDua3

((ataa) nDta.)nDuaa

auaa.
It is easily seen (with the help of Lemma 0.2) that : a (x(a), y(a)) is a
bijection between A (La) and A (K).
Now let b B(La). We find "coordinates" for b by defining

u(b) ((b n A t al) fl (C12 U an) u a) n A,
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that is,
u(b)* b n A and v(b) b n A..

;" b --. [u(b), v(b)] is a bijection between B(La) and B(K) by straightfor-
ward calculations.
Now let a A (La), b B(La) and a b. We have to show y(a)

T(u(b), v(b) ).

T(u(b), x(a), v(b) ) ( (u(b)* t v(b) ) n ((a) u a,) u a) n Au
((bnAtubnA,.)n (auaa) ua)nA,

by the above noted formulas,

(bn (auaa) ua)nA.,
but a _< b, hence

T(u(b), x(a), v(b)) (a u b n aa u a) n a
(ata)nA
y(a).

So (q, ) preserves incidence.
a a hence x(a) x(a), theFor a, a’ A (L); a]la means a u aa t a,

images in A (K) are parallel.
b’ b’ hence u(b)* b’ *Forb, b’eB(L),bl] meansbnAt nAx, u( )

and the images in B(K) are parallel.
By the remark following in Def. 5.4, the theorem is proved.

5.7 PROPOSITION. Let K be a ring and L(K) the lattice oi all right sub-
modules of the K-right-module K with the normalized frame (ax (1, 0, 0)K,
a (0, 1, 0)g, aa (0, 0, 1)K, ct (1, 1, 0)g, cta (1, 0, 1)K,
ca (0, 1, -1)K) and let the operation T in K be defined by T(u, x, v)
ux + v. Then we have P(L(K) ) P(K) and (K, T) --_ K(L(K) ).

Proof. First we are going to describe the sets A(L(K)) and B(L(K))
in terms of generating vectors of K.

K(i) If p e A (L(K) ) then there exists a unique pair (x, y) e such that
p (1, x, y)K.

Proof. We have p u A U, hence

(1,0,0)K <_ pA or (1,0,0) puA.

That is, there exist r, s, t, x, y e K such that (r, s, t) e p and

(r, s, t) (0, 1, O)x (0, O, 1)y W (1, O, 0),

hence (r, s, t) (1, x, y).

y y’If also (1 x’, ) ep, then (0, x x’,y epnAt N, therefore
(1, x, y) is unique.
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If (u, v, w) p, then

(u,v,w) (1, x,y)u (O, v xu, w yu) ep n A1-- N,
hence (u, v, w) (1, x, y)u and p (1, x, y)K.

(ii) If b e B(L(K),) then there exists a unique pair (u, v) e such that
b (0, 1, u)K u (1, O, v)K.

Proof. Using b u aa =. U, we get the existence of (r, s, t) e b, (x, y, z) e b
and u, v e K such that

hence

hence

(r, s, t) (0, O, v) O, 0),

(1, O, v) e b,

(x, y, z) (0, 0, u) (0, 1, 0),

(0, 1, u) e b.

For any (d, e, f) e b we have therefore

(d, e, f) (1, O, v)d (O, l, u)e (O, O, f vd ue) e b n aa N,
ioeo

Finally,
(d, e, f) (1, O, v)d d-- (0, 1, u)e.

(1, O,v) (1, O,v’) (O,O,v-- v’) ebnaa N

(O, l, u) (O, l, u’) (O, O, u u’) eb n aa N

show the uniqueness of v and u.
These generating vectors suggest the definitions for the first isomorphism:

If p eA(L(K3)) is generated by (1, x(p), y(p)), then let p(p) (x(p),
y(p)); and if b eB(L(K3)) is generated by (0, 1, u(b)) and (1, 0, v(b)), let
$(b) [u(b), v(b)]. From (i) and (ii) it is easy to see that these two map-
pings are bijections between A (L(K) ), B(L(K3) and K as required.

If p b, then there exist r, s e K such that

hence
(1, x(p), y(p)) (1, 0, v)r + (0, 1, u)s,

r 1, s x(p) and y(p) u(b)x(p) -[-v(b),

hat is (p) I$(b) in P(K).
If p II q, that is p u aa q u aa, then there exists z e K such that

(1, x(p), y(p)) -[- (0, 0, z) (1, x(q)y(q)),
hence

(q).
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If 5 II c, that is

5 n A1 (0, 1, u(5))K c n A1 (0, 1, u(c))K,
then

For the second isomorphism of the assertion, we map x e K onto
(1, 0, x)K e L(K8) and obtain

T((1, 0, u)K, (1, 0, x)K, (1, 0, v)K) (1, 0, ux - v)K

in the following way" For z _< A2, z* was defined by

From this we find ( (1, O, u)K)* (0, 1, u)K by

((1, O, u)g u (0, 1, o)g) n ((0, O, 1)g u (1, 1, o)g) (1, 1, u)g,

((1, 1, u)g u (1, O, O)K) n ((0, 1, O)K (0, O, 1)g) (0, 1, u)g.

Similarly from

we have
((zua)nDuaa)

(ii O,’x)K (1, x, 0)K.
Now we see that

((1, O, u)K)* t (1, O, v)K (0, 1, u)K u (1, O, v)K
and

(1, O, x)g u (0, O, 1)g (0, O, 1)g u (1, x, o)g,

so that the intersection of these two submodules is (1, x, ux v)K. By

((1, x, ux - v)K u (0, 1, O)K) n A (1, 0, ux - v)K,

the desired equation holds.
If K is a ring, one can embedL(K ) in L(/) such that L(K8) is (isomorphic

to) the sublattice of elements of L(K) which are less than or equal to

(I, O, O, O)K (0, 1, O, O)K (0, O, I, O)K.

This shows that the embedding is possible in the way that the bases fit to-
gether as required in Def. 1.6. Observing this and the first isomorphism of
Prop. 5.7, we may state as a counterpart to Theorem 4.5:

5.8. THEOREM. If the ternary ring K(L) of the lattice L is an associative
ring, then there exists a lattice L such that the P-system P(L,) is isomorphic to
the P-system P(La) of the sublattice L L(N, a u a u a) o$L

Expressed in a more informal way, this says: If K(La) is a ring, then P(La)
is embeddable in a modular lattice L.
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Remembering what was said about semi-affine planes in 5.3 and that in a
projective plane L the theorem of Desargues is equivalent to the fact that
K(L) is a field (which we could derive from Theorem 4.5 and Remark 2.10),
we see that Theorem 4.5 and Theorem 5.8 together contain the theorem"
A projective plane is embeddable in a projective space of dimension >_ 3 if
and only if the theorem of Desargues holds in the plane.
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