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BY
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Introduction

In his lectures about continuous geometry, [13], John von Neumann gave
a powerful extension of the so-called coordinatization theorem for projective
spaces, which asserts that for every projective space P" of dimension n = 3,
there exists a (skew-) field K, such that the lattice of subspaces of P" is
isomorphic to the lattice of subspaces of the (right-) vector space K™+ (see,
e.g., [5]). He assumed the existence of a homogeneous basis of order n = 4
(defined below) in a complemented modular lattice L and showed that there
exists a regular ring R, such that L is isomorphic to the lattice of finitely
generated right-submodules of the R-right-module R". In the case of a
homogeneous basis of order 3, projective planes are involved in the discussion
(see, among others, [7] and [13].).

This paper deals with related questions for modular lattices with a homo-
geneous basis. Let L be a modular lattice with least element N and greatest
element U. Then a family a;, - -+ , a, of elements of L will be called a homo-
geneous basis of order 7 of L if the following conditions are satisfied:

(i) mu--ruva, = U,

(i) (mu-rv@)nap=Nforalll <7< n,

(iii) there exists a common complement ¢;; for a; and a; in a; U a; for all
1 S 7/;.7 S n, 7 = j.

The c;; may be arranged in a certain way (see 1.6); we then speak of a nor-
malized frame of order n for L and write L, for L together with this frame.
Examples of such lattices are easily given, namely, the lattice L(R") of all
right submodules of the free module R" (where R is any associative ring with
unit) is a modular lattice with the homogeneous basis

a = (I’Oa""O)R""7an= (Oy,Oyl)R

The obvious question now is whether this is the general situation, or in other
words, whether, for a given lattice L, , there exists a ring R such that L, is
isomorphic to a sublattice of L(R"). The non-complemented case was first
discussed by Baer [4] and Inaba [11}, who both assumed that the sublattices
L(N, a;) were finite chains. We know that the cases n = 3, 4 are typical
for the situation in complemented modular lattices, and therefore, restrict
our attention to these two cases.

In the first section, we deal with the construction of a normalized frame
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starting from a given homogeneous basis, and, in particular, prove Lemma
1.5 which is an analogon to the theorem of Desargues in a projective space.
The next section is devoted to the construction of a ternary ring K(L;) from
a lattice L; which uses the methods developed for projective planes [8], [15]
and gives rise to the general definition of a ternary ring (Def. 2.5). This con-
cept is different from another generalization of ternary fields given by Sandler
[16]. A pseudo ternary as defined in [16] seems to be a ternary ring in our
sense only if it is a ternary field. In Proposition 5.7 we show that the ternary
ring K derived from the lattice L(K®) from the above example is isomorphic
to R with the ternary operation (u, z, v) — uz -+ v, hence essentially the same
as R. In general the ring-axioms for K are not valid, even if T'(u, z, v) =
ux + v, as examples of projective planes show. Therefore in the third section
we derive several algebraic properties of K(L;) from assumptions about the
automorphism group of L;. This method was first introduced by Baer [3]
in the theory of projective planes and was used in the case of complemented
modular lattices by Amemiya [1] and the author [2], see also Skornyakov [16].
From the existence of a sufficient number of automorphisms of a special type
(Def. 3.1) we obtain all the ring axioms except the associativity of multiplica-
tion. This law, and the existence of all the automorphisms needed for the
other ones, are proven in Section 4 under the assumption that L; is embedded
in a lattice Ly in a way that the frame of L; consists of elements of the frame
of Ly (see Def. 1.6 andTheorem 4.5). Following Cronhe im [6], in the last
section we define a “parallel system’ P consisting of a set A of “points”, a
set B of “lines”, an incidence relation | © A X B and two equivalence rela-
tions |« € A X 4, ||s & B X B subject to three axioms stated in 5.3. It
turns out that parallel systems may be derived from either a lattice L; or a
ternary ring K, called P(L;) and P(K) respectively. In the first case, 4 is
the set of all complements of a; U a; and B the set of all complements of as .
P(L;) and P(K) are isomorphic if K is the ternary ring defined from L; (intro-
duction of coordinates in P(L;), Theorem 5.6). If K is a ring, then we may
embed the paralled system P(L;)(=P(K)) into the lattice L(K*), (Theorem
5.8), which is a partial converse of Theorem 4.5. Theorem 4.5 and Theorem
5.8 together contain the theorem that a projective plane is embeddable in a
projective space of higher dimension if and only if the theorem of Desargues
holds in the plane (Hilbert [10]).

Examples of lattices L; which are not complemented and not embeddable
in the defined way in a lattice Ly can be obtained from Hjelmslev planes and
will be given in another paper. Also, there are results about relations between
the multiplicative structure of K(L;) and the lattice L(N, as) which will be
discussed later.

0. Notations

0.1. We deal with modular lattices with a least and a greatest element
exclusively. The least element of the lattice L is denoted by N, the greatest
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by U. L(N, a) is the sublattice of elements <a of L. a u' b = ¢ means
aub=candandb = N. Inordertosave brackets, we write a ud n ¢ instead
of au (bn ¢), that is, n binds closer than u. The modular law is then written:

a<c=aubnc=(aub)nec.

Ifauvc=0buc(a b, ceL), we say a and b are perspective and ¢ is the
center of perspectivity. We call the mapping m: 2z — (cuz) nbforz < a
a projection with center ¢ of L(N, a) into L(N, b). In modular lattices,
projections are isomorphisms [13, p. 18].

“Ring” means always associative ring with unit.

0.2. Lemma. Let L be a modular lattice, A eL,r,s < A,rns = N and
P, q two complements of A suchthatrusup > q. Thenz = (rup)n (sugq)
s @ complement of A.

The proof is a simple check:

z2ud = (rup)n(sugq)uAdus (asss < A)

(rusup)n(suq)ud

suqud =U

znd = (rup)n(sugnAd)
= (rup)ns
= (rup)ndns
=rns=N.
In the most cases where we apply this Lemma we will have A = r u s, hence
ruUsup > g trivially.
1. The normalized frame of a modular lattice

1.1. DeriNiTION. Let L be a modular lattice with least element N and
greatest element U. A set of elements a1, -+, @ € L is said to be a homo-
geneous basis of order n of L, if the following conditions hold.

(I) U?—l a; = U.
(I (Uiia:) nae = Nforalll < &k < n.
(III) Foreachj, 1 < j < n, there exists ¢;;such that a, U’ ¢;; = a; U’ ¢15.

We note that according to [13, p. 9] (II) implies the independence of the a;,
e.g. (Uir a:;) n (Uje; a;) = N for all disjoint subsets I, J of {1, - - - , n}.
1.2. Duality. Let a,, --- , a, be a homogeneous basis of L. If we define
A; = Uiz ai, Ci; = ciju Uig,inj @i,
then from

(a) Ni-14: =N,
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(b) (n,f=1 A)uAppy = (U?=k+1 i) Udp = U,
() AinCiy = (Ui ai) n (c15U Uiz, inj @)

= (Ui a:) n ¢ u Uieg,ixjai

(Ui a:) n (a1 U a;) 0 ciju Uiy ij

((Uiwa:) narua;) neyu Uiy, izja
(because of 1 < j we have a; < Uiz ai)
= a;n ¢1; U Uiy i ai
(because of the independence of the a;)
= U:“=2,i,éj a;
= 01060 U?=2,i;éj Qi
= ((U?=1,i,4,~ @) Na; U a1) Nc,; U U?az,i,sj (123
= (U?=l,i,£j ai) n (al u aj) nc; U U?—‘z,i;&j @
= (Uiarixi ai) n (e u Uing iz a)
= Aj n Clj
AiuCiyy=U=A4;uCy

we see that the 4; form a homogeneous basis of order 7 of the lattice I dual
to L. Therefore the concept of a modular lattice with a homogeneous basis
of order n is self dual.

Starting from condition (IIT), we may construct common complements
¢i; (¢ ¥ j) of a; and a; in a: U a; for any pairs (¢, ), which are connected
in a special way:

1.3. ProposITION. Let a1, -+ , as, be a homogeneous basis for L. Then
(IV) for each pair (%, j) with © = j, there exists a common complement
¢ij of a; and a; in a; U a; , such that

cij = ¢ji and  ci; = (i U ¢xj5) 0 (@i U ay)
for all distinct 1,5, k, 1< 14,5,k < n.

The proof of this proposition is given after two lemmas following the
pattern of [13, p. 117-119].

We define L, to be the set of complements of a; in a; U ay, .
1.4. LeMma. If’L #= J #= I = 7:, bij éLij y bjk eij y then

b = (bsjubj) n (a;iU ax) eLi.
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Proof.

bruay = (bijUubpUar) n (a; U a)
= (byuajua) n (a:Ua)
= (a;Ua;ua) n (a: U a)
= a; U o

baxnar = (bijuby) na
= (bi;Uby) n (a;Ua) Nna
= (b ubijn (a;Va)) N ay
= (bprubizn (asva;) n (a;jVax)) na
= (bpubijna;)na
= by N ay
= N.

1.5 LemmaA. For distinct integers ¢, 7, b, m and bs; € Lij ,bjx € Lt  bym € Lim
the following equation holds:

((bs; U bj) 0 (@ U @) U bgm) 0 (a5 U am)

= (bi; U (bjxr U brm) n (@; U @m)) 0 (@i U ).
Proof.

((bi;u ba) n (a; U ;) U bkm) N (i U Gm)
= ((bijUbp) n (iU ax U @) U bgw) 0 (G: U anm)
as a; U a; = (iU a; U an) N (a: U g U a;)
because 7 % m, and b;;Uubj < aiUGLU@Q;
= (bij U by Ubrm) N (a: U @m)
= (bij U (bjt Ubrm) 0 (@4j U am U a:)) N (@i U Gm)
= (bij U (bjxr Ubkw) N (@jU an)) N (a: U Gn).

Remark. In the case of a projective space, a,, bs;; points, this lemma
describes a Desargues configuration with center b;; and axis a; U an .

Now we are ready to prove the assertion (IV) of Prop. 1.3. We may
define ¢;; = ¢;, because @, U' ¢1; = @; U’ ¢1; = G, U @;, and a8 ¢i € L; and
¢1j € Ly, we get from Lemma 1.4:

(civer)n (aiva) eLy and eLys.

Therefore we define
¢ = (€U cy) n (@i U w) = i for all 3, k.
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To establish the second property of the c;;, we see that for £ = 1 this
holds by the definition of ¢;;. Soletk = 1. If 4 = 1, thenj = k, 1:

(e u ;) n (a1 a5)
= (e U (cw U &ij) n (ax U a;)) n (a1 U a;)

= (cx U ciy) n (c U az U @) n (a1 U a;)

I

(ew U ¢3) n (aL U ay)

= 01,

and the same reasoning holds for 7 = 1, ¢ # k, 1. So we may as-
sume 1 5 1, j, k, hence 1, 7, j, k are all distinct.

(cxu i) n (a; U aj)

= (e U (e n ¢17) n (a3 U @) n (a; U a;)

= ((cx U cw) n (a: U a1) U ;) n (a; U aj), by Lemma 1.5,
= (¢ U ¢j) n (a; U a;), by first case,
= ¢ij, by definition.

1.6. DEFINITION. As we have ¢;; = ¢;;, we may restrict the indices by
the condition 7 < j and make the following definition:

The family (a1, -+, @, C2, ***, Cu-1,n) Of elements of L is called a
normalized frame of order n of L, if the conditions (I), (II) from 1.1 and
(IV) from 1.3 hold for the a;, ¢;; (4,5 = 1, - -+ ,n; 7 < j).

Throughout this paper, we deal with the cases n = 3 or n = 4, and the
notation L, (n = 3, 4) stands for a modular lattice L together with a fixed
normalized frame of order n. By saying L; is a sublattice of L, (or L; is
embedded in L;), we mean that L; is the sublattice

L(N, a; U azU a3)

of Ly, where (a1, G2, @3, G, Ci2, **+ , Ca) is the fixed normalized frame of

L, and the frame of L; is (a1, a2, a3, ¢i12, €13, C2), consisting of elements of
the frame of L, .

1.7. Remark. Let the elements a;, ---, a, be atoms of the lattice L.
Then, by [14, p. 78], L is a complemented modular lattice of finite length
(or dimension), and any atom of L is perspective to at least one of the a;.
Now, the a; are all perspective by centers c;;, and as for any other atom
p e L either p = a; or p n a; = N, p is perspective to any of the a;. Hence
L is irreducible [14, p. 80], and is, therefore, isomorphic to the lattice of sub-
spaces of a finite-dimensional projective space.
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2. Construction of a tenary ring from a lattice L;

2.1. Let(a1, a2,a3, €12, €13, C23) be the normalized frame of L3 . In order
to get shorter formulas in the following calculations, we introduce the ab-

breviations
ajua, = A; (4, k #1)

a3u e = E, a:U ¢ = F, wuEnF =D,
d=DnA,.
DErFiniTION. For any z < 4., let
= ((xua)nEuam)nd,
Z=((zua)nDua) nd;.

2.2. LEMMA. The mappings © — z*, x — & are lattice isomorphisms of
L(N, A,) onto L(N, A,) and of L(N, As) onto L(N, As), respectively.

=2z forall <as, Z=2x forall z< a.

Proof. These mappings are isomorphisms as they are products of projec-

tions.
For z < a; we have

¥ = ((xua) n(asuce)ua)nd
= (azn(asUuc) Uz Uuam) N4

(zua) n4d,

]

=zumnd
= z.
For z < a1, & = z follows similarly.

2.3. DerFINITION. Let Lz = {x |2 U a3 = a1 v a5}. We define a mapping
T of L1z X Liz X Lys into L(N, Az) by
T(u, z,v) = (W uv)n (Fua) ua) n A, for u, x, vely.
2.4. ProposITION. (a) T s a ternary operation in Ly, t.e. T(u, x, v) € L1z
for all u, x,v € Lys .
(b) (1) T(am,=z,v) =v="T(z,0a,v)foralzvels.
(i) T(es,z, @) =z = T(x, c1a, a1) for all « e Ly .
(iii) For any w, x, y €L, there exists a unique v eLiz such
thaty = T(u, z, v).
Proof. (a) We first note
ar = ((emua) nEua)nA
= ((11 U az) n A1
= a,, and
@ = m (Lemma, 2.2).
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Because the mappings w — w*, w — 1 are isomorphisms, we have u* u' a; = A;
and & U ay = Agforu, x e Liz. Applying Lemma 0.2 with 4; = 4, u* = 7,
a3 = 8,v = pand & = ¢ we see that (v* uv) n (& U a;) is a complement of
A:. Applying Lemma 0.2 a second time with 4; = 4,03 = r,a2 = 8,00 = p
and (u* uv) n (Fu a;) = ¢ shows that T(u, z, v) is a complement of A;.
Furthermore by definition we have T (u, z, v) < A,, hence T(u, z, v) € L13.

(b) () T(a,z,v) = ((af uv) n (FUas) Uas) N4,
= ((aeuv)n (EUuas) Ua) nAs,
since af = az (see (a)),
= (aenv)n (TUazU az) n A
= (aauv)nAdy,, as T U a2 = a1 U a2, (see (a))
= .
and similarly T(zx, a., v) = v observing that & = a1 .
(i) T(es, 2, a) = ((clsuam)n (Fuas) Uas) nds
= ((Dndiuvua)n(Eua) ua)nA.
= Dn(Aiva)n(Zua)ua)nds,, as aa < D,
= (Dn(fua)ua)nd,
= ((Dn(((xua)nDua)ndsuaz) ua) n 4,
= (Dn((xua)nDuas) ua:) n A,
= ((zua)nDua)ndAd.

= (zua)n (Dua)nA,

(xua) n A,
=z,
T(z, ¢, 1) = ((*ua) n (Gsuas) na) n A,
= ((z*uvam)n (((csua) nDua)nAsua) ua)nAd,
= (@*um) n ((csua) nDua)ua)nd,
= (@*va)nEua)nA,
= ((((cua)nEuvum)nAdium)nEua)nd:
= (((zua)nEua)nEua)n A,
= ((zua)nEua)nd:
= (zua) n(Eua)nA,

= X.
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(iii) If there is any v ¢ L;; with y = T'(u, z, v), then we may calculate
(each line implies the next one):

yua = (u*uv)n (Fuas) ua
(yua)n (Fua) = (w*uv)n (Fuas)

(yuam)n (Fua) uu =u*uw

((yuam)n (Fuas) uu™) nd, =,

and hence » is unique.

On the other hand, if we define v by the last equation, then from Lemma
0.2 we get v € L3 similar to (a), and

T(u,z,v) = ((Wu(yua)n(Eua))n(Fuas) ua)nd,
= (Wn(Zua)u (yua)n (Fuas) Uua)nAd,
= (yua)nd,
=Y

so v is a solution of the given equation.
2.5. The last proposition leads to the following

DEFINITION. An algebraic system (K, T, 0, 1), where K is a set, T a
ternary operation on K and 0, 1 are two distinet elements of K, is called a
ternary ring, if the following axioms are satisfied:

(T 0) T, z,v) =v=T(0,0v) forall z,vekK.

(T1) T(l,2,0) =2 = T(z, 1,0) forall zeK.

(T 2) Given any u, e K. Then the mapping v — T'(u, x, v) is bijective
from K into K.

Because of (T' 0), (T 1), 0 is called the zero element of K and 1 is called
the unit element of K. Prop. 2.4 shows, that (L, T, a1, ci) with the
operation 7' defined in 2.3, is a ternary ring. We denote this ring by K(Ls;)
and call it the ternary ring of L;. In general, K(L;) depends on both L
and the normalized frame chosen for L. From (7 0), (T 1) we feel free to
write a1 = 0, ¢;3 = 1. In connection with the lattice operations, however,
we keep the old notations a; , 15 .

2.6. Other examples of ternary rings. (a) Let R be a ring, and define
T(u,z,v) = ux +vforu,z,veR. (T0),(T1),(T2)areeasy consequences
of the ring axioms. In Theorem 4.5 we show that the ternary ring of a
lattice L which is embeddable in a lattice L, is of this type. Furthermore,
if R is a ring and L; happens to be the lattice L(R®) of all right-submodules
of R® with the normalized frame ((1, 0, 0)R, (0,1,0)R, (0,0, )R, (1,1,0)R,
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(1,0, 1)R, (0,1, —1)R), then it is proved in Prop. 5.7 that
(R, T) = K(L(R")).

(b) Let K be a ternary field as defined in {15, p. 36]. Then K is a ternary
ring. (In fact, here a projective plane serves as Ls .)

(e¢) The cartesian product of a set of ternary rings Ki(\ € A) becomes a
ternary ring if we define the operation T' component-wise. The sequences
(0n) and (1)) are zero respectively unit element of [Jne K -

(d) From a ternary ring (K, 7') we may derive a ternary ring of matrices
(K2, T2) by defining

K, = {(@)]a,b,¢c,de K},
To((2a), (), G3)) = (GEpr@rslnGar@as)-
It is easy to see that() and (31) are zero and one of K;. We check (7'2):

Let A = (%) and P = (%) are given. For a given matrix H = (}i) we
show that there is one and only one matrix V = (3;) such that

Ts(A,P,V) = H.

From the property (72) of the ternary ring (K, T) we get the existence of
a unique z ¢ K with

T(a, p, 2) = h,
and again by the same axiom a unique v ¢ K such that
T(b, r,v) = 2.

Hence there is a unique v such that
T(a, p, T(b,1,v)) = u.

In the same manner the existence and uniqueness of the other entries of the
matrix V are shown..

b(e) From the preceding example, we may take the subring of matrices
(6a).
We leave now the general concept of a ternary ring until Section 5 and return
to the ring K(L;) derived from the lattice L; , which we denote by K in this
and the following two sections.

2.7. As it is suggested by example (a), we try to split the operation 7 in
K into addition and multiplication.

Fixing the first variable in T'(u, x, v) to ¢is = 1, we define an addition by
z4+v=T{,z,v) = ((duv)n(Tua) ua) n 4,.
(See 2.1 for the definition of d.)
2.8 ProposiTiON. (K, +) s a loop with neutral element 0 = a, .

Proof. From Prop. 2.4(a) we get that K is additively closed, the parts
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(i) and (ii), of the same Prop. show that O is neutral with respect to +.
From part (iii) we get a unique solution v of the equation z + » = y. For
given v, y, the element,

((yua)n(@wud)ua)nDua)ndseK
is a unique solution for # + v = y (proof as in Prop. 2.4(iii)).
2.9. Multiplication in K is defined by
ur = T(u,z,0) = ((W*va)n (Fua) ua)nAd,.

2.10. Remark. Similar to 2.8, one can prove the proposition: Let K*
be the set of common complements of a; and a3 in a; U a3. Then (K7, -) is
a loop with neutral element 1 = ¢;3. We leave out the proof as we do not
need this proposition during the rest of this paper.

3. Automorphisms of L; and properties of K(L;)

3.1. DerFiNiTION. Let L be a modular lattice, a, A ¢ L and ¢ an auto-
morphism of L such that

z>a implies 2° =2 and z < A4 implies 2° = .

We call ¢ an (a, A)-automorphism of L and say a is a center and 4 an axis
of ¢. (This notation is different from the notation used in [1], [17, p. 17],
where (@, A)-automorphisms with @ < A are considered, for us, too, the
only important case. Our notation is in line with [15].) The group of all
(@, A)-automorphisms will be denoted by G(a, A). We say L is
(@, A)-transitive, if for any pair p, ¢ of complements of A with p n a =
gna = N,pua = qu a, there exists a ¢ ¢ G(a, A) with p* = ¢.

3.2. LemMa. Leta < A,A =au band¢ e G(a,A). If there exist comple-
ments p, q of A such that ¢ n (p u a) = N, then for any x comparable with a
complement of A, * is determined by p®.

Proof. First let r be a complement of A such that r < qu a. This implies

rn(pua) =rn(qua)n(pua)=rna=N
. ((rup)ndup)n(qua) = (rup)n(qua) =r.
So we have
"= ((rup)ndup)®n(qua)
= ((rup)nd)up’)n(qua)
= ((rup)ndup®)n(qua),

as (rup)nd and qua arefixed by o,
hence 7* is determined by p’.
Now let ¢ be any complement of A. By Lemma 0.2, (but)n (augq) = s
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t* = (bus®) n (aut), hence ¢* is determined by p*.
For any 2 > ¢,z = t u 2 n A, hence 2 = # u 2 n 4, and for
z<tx=(xua)nt hencex’ = (xua)nt.

is a complement of A, and as s < au ¢, t = (bus) n (aut), we have

3.3. LeMmMA. Leta < A, A = au bandr be a fixed complement of A. If,
for any complement s of A with s < a u r, there exists a ¢ € G(a, A) with1® = s,
then L s (a, A)-transitive.

Proof. The proof uses constructions similar to the preceding ones: Let
P, g be any two complements of A withaup = auq. Then

v=(bup)n(aur) and w= (bug)n(aur)

are complements of 4 by Lemma 0.2 and v, w < a u r. Hence there are
¢, veG(a, A) with ©* = v, ¥ = w, and by p = (b u v) n (a up),
g = (buw)n (augq), weget p* = q.

During the following considerations, we will always have A = a; U g;
(ai, a; of the normalized frame of L;), and a = a; for some 7, j.

We are now going to derive algebraic properties of K(L;) from assumptions
about the transitivity of certain groups G(a, 4). The proofs of these proposi-
tions are omitted because they may be taken verbatim from [2] (where L
is assumed to be complemented).

3.4. ProposiTioN. If L; is (a3, A1)-transitive, then
(i) (K, +) s a group,

(i) T(u,z,v) = uzx + vforalu,zvek,

(i) (K, +) is a homomorphic image of G(as , A1).

Proof. (i) and (ii) are to be proved as in [2, p. 29] by showing T (u, z,v)* =
T(u, z,v*). From this equation we get with 0° = y:

z* = T, =, 0)4’ = T(l, =, 0¢) =+ y,
and with 0¥ = z:
0" =2* =z +y=0"+0"

Therefore the mapping ¢ — 0° (0 = a) is a homomorphism of G(as, 4,)
into (K, -+ ), which is onto if L; is (as, A1)-transitive. The kernel H of
this homomorphism consists of all ¢ with 0° = 0, which is true only for the
identity of G(as, A1) in the case that L; is complemented (Lemma 3.2).
Let P denote the set of all complements of 4;. As, by Lemma 3.2, the
restriction ¢ | P is determined by af , we observe that (K, +) is isomorphic
to the group of restricted automorphisms, which we may denote by
G(as, A:)/H.

3.5. ProposiTioN. If Lj is (a2, A1)-transitive, then
1) (K, +) is a group,



638 BENNO ARTMANN

@) T(u,z, uc) = u(zx + c).

Proof. [2, pp. 48-49).

3.6. ProposiTioN. If Lz is (az, Az)-transitive, then
T(u,z, cx) = T(T(u, 1, ¢), z, 0).

Proof. [2, p. 53].

3.7. TaroreEM. If L3 is (as, A1)-, (az, A1)- and (a3, As)-transitive, then
(K, +, ) 1s a not necessarily associative ring with unit, and T (u, z,v) = ux + v
for all u, z, v e K.

Proof. By Prop. 3.4 (K, +) is a group and T'(u, z,v) = uz + v. Hence
from Prop. 3.5. we have

uz + uc = T(u, z, uc) = u(x + ¢)
and from Prop. 3.6. we get
ur + cx = T(u,z,cx) = T(u + ¢, 2,0) = (u+ c¢)x.

As 1 = ¢y3is a unit of K by (T 1), it remains to show that (K, 4+ ) is com-
mutative. From the distributive laws we derive

l+a+b+ab=(14+a)+ 1+ a)
= (1+a) (1+40)
= (1+b)+ a(l +b)
=14+b+4+a-+ ab for all a, bekK,
and this impliesa + b = b + @, as (K, +) is a group.

4. The existence of automorphisms and the associative law
of multiplication in K(L;) from the embedding of L; in L.

4.1. TugorEM. Let L; be embedded in L, as defined in 1.6. Then Lj s
(as , Ay)-transitive for i, b = 1,2, 3;¢ == k.

Proof. By Lemma 3.3., we have to show: For any a withau' a; = ay U a; ,
there exists a ¢ € G(a:, Ai), such that af = a. In order to get shorter
formulas, we use in this proof the abbreviations

Us = Arua, = auaauag,
V=Ay,ua = a;ua;ua,
W = A,UCu = G;:U G;U Cpa .

We are going to construct ¢ as a product of two projections in L, .
Ifweputr = (aucw) nV,
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then rud; = (aucuua;)nVua;
= (xyUcuU a;) n Vua;
= (qruava;)nVua;
=g uaua; =V

rnAr = (auUcw) n Ay

(aucu) nWn 4y

Cra 1 Ay,

= N.

That is, r v Ay = asu* 4;, and, therefore, r is a common complement of Us
and W.
Now the mapping

I

rie— (xva)nW for xzelLs

is a projection (hence an isomorphism) with center a4 from L; onto the sub-
lattice L(N. W), and the mapping

p:ax"— (2"ur)n U

is a projection with center r from L(N, W) onto L; . Hence their product

7mp = ¢ is an automorphism of L; .  We check the desired properties of ¢:
Ifz < Ay, then 2™ = z = 2, hence 2* = z.

If x > ai.then

x‘ﬂ'

(zxuas) n (aiua; U cw)

(zu as) n (a; U cr) U a;
and

z’ur=(xzuvam)n (a;ucu)Va;U(avcu)nV
= (zua)n(ajuc)u(avuaucy)nV
= (zvuam)n(a;uc) U (Gsugmua)nV
= (xUas)n (6;U Cp) Ui U ay
= (zUa) n (a; VU Cre U a; U )

=T U Q4.
Therefore we know

=@ ur)nUs = (zua) nUs
Finally we have

I
8

Gk = Cra, VT =cuU (aUc) NV = aquUcp,

hence af = (cuur)nU; = a.
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4.2. 1In order to prove the associativity of multiplication, we first make the
following definition:
For z, y ¢ L1z, let

P(z,y) = ((wucy)nAdsu (yucw) nd)nAd,.

We note, that this is the definition of multiplication used in [13, p. 132]
and in [7], and in fact, is dual to our one given in 2.9.

4.3. ProposirioN. If Ly is (a3, A2)-transitive, then P(z, y) = yx (the
product defined in K) for all z, y € Ly; .

Proof. (The proof is entirely the same as in [2, p. 56-57].)
As L; is assumed to be (as, A;)-transitive, there exists ¢ ¢ G(as, A2) such
that ¢fs = a2. For this ¢ we have

(czsU €13)® = ¢z U i, because ci3 < 4.,
= @ U C13
=F,
E* = E, because a; < E,
ch = (En (csu 013))"
=FEneF,
A;’ = (0,1 U Cn)‘a
=qUEnF, because @ < 4.,
= D.

Therefore we have for any x e L3
((xucw)nd;) = (a°uch) nAf

= (zua) nD, Dbecause z < A,.
Recalling the definition of

ZT= (((zua)nDua)nAd;
we get
((xucy)nAzua)’ = (zucs)nAzuag

on the one hand, because a; is the center of ¢, and
((xues)nAsua)’ = (rua)nDuag

=Zua;, on the other hand,
hence
T = (j U G,s) n A3

= ((rucs)nAdsua)nAs

= (zues)nd;.
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From this formula we derive
P(z,y) = (Eu (YU c) n A1) n A4s.
Now let ¢ be an element of G(a;, A2) such that

C12 = (y U az) n k.
Then we have at first

Ag‘p (a1 U 012)"

= 0 U sz

=qu(yua)nk
=gnu((yua)nEumnAi,

= auy’, recalling the definition of ¢,
hence

= (4sn (Fua))’ = (muy*) n (FUa).
Secondly

((uen)nA)? = (yuch) ndr, as y < As, a3 < A,
= (yu(yuam)nE)nA4,
= (yua)nd
= 0.
By definition, P(x, y) is <A, , hence
P(z,y)¥ = P(z,y).
On the other hand we may calculate
P(z,y) = ((u (yucu) n 41) n dy)?
= (#"u ((yucr)nd)¥)nA,

= ((muy™)n (asUZ)Uua)nAd,, by the above formulas,
= yz, as defined in 2.9,
This proves P(z, y) = yz.

4.4, ProrosITION. If L; is embedded in Ly (as in 1.6), then the multiplica-
tion in K s associative.

Proof. If we know that the von Neumann-multiplication P is associative,
so will be our one by the last proposition. In [13, p. 132] the associativity
of P is proved in a complemented modular lattice with normalized frame of
order 4, using as principal tool the Lemma 5.2 of [13, p. 117]. But this is
our Lemma 1.5, and the whole proof carries over.

If we agree to use the phrase “K(L;) is a ring” for “(K, +, -) is a ring
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and T(u, z, v) = ux + v”, then we may state as the general result of this
section:

4.5. TaEOREM. If L is embeddable in L, , then K (L) 1s a ring.

5. Pardllel systems and coordinates

In order to get coordinates at least for some elements of Ls, we derive the
following type of ‘geometric’ structure from L; :

5.1. DEFINITION. Let L3 be a modular lattice with normalized frame (ay , a2 ,
as, Ci2, C13, Cgs) and A1 = Q02U U3 . We deﬂne

A ={alau A, = U}
B=1{b|bu a=U)
| ={(a,b) |aed,beB,a < b}
la = {(a,a") |a,a’ €A, au a; = o’ U as}
Iz = {(b,0) | b, b ¢B,bn Ay = b n Ai}.

As usual, we use the notation a | b, a ||4 @', b || 2 b’ for the relations |, |4, ||z -
Instead of (4, B, |, ||4, ||) we write P(L;). Obviously, ||+ and || 5 are equiv-
alence relations in A respectively B. Now the system P(L;) has the prop-
erties:

5.2. ProrosITION. Let a ¢ A, b ¢ B be given.
(P1) There exists one and only one a' € A such that a |4 a', a' | b.
(P2) There exists one and only one b’ € B such that b ||z b, a | b'.

(3) For any p ¢ A with p |4 c12, there exists one and only one b ¢ B such that
a,|band p|b.

(4) For any q € B with q ||z A3, there exists one and only one a € A such that
a|D,alqg. (As=arUa:,D = a1U (c2U @) n (€130 @2) in L3)

Proof. (P1) Leta’ = (aua) nb. First we show o’ e4:
adud, = (auas) nbuasuas

= (auaz) n (buas) U as

a U azU as
=U,

a’ndi= (aua)nbn A,
=a3nb

= N.
Furthermore we have

a'vaz= (avuaz)n(buas) = auas,
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so that indeed @' ||laa. If a” |sa, a”|b, then " = (a" U @) n b =
(au a3) nb = d, hence d' is unique.

(P2) Letbd = (bn ;) ua. The proof of (P2) is dual to the preceding
one.

(3) Letu = (puaz) n A2 (Lemma 0.2 shows u eA), then ay u p =
a1 u u* ¢ B, and for any b’ ¢ B with b’ > p, a1, wehave b’ = p u a; since both
elements are complements of a; and pu a; < b’

(4) Dual to (3).

5.3. This proposition shows, that P(L;) is a P-system (or parallel-system)
in the sense of [6, p. 2], with the additional properties (3) and (4). The
latter two imply ‘regularity’ of the P-system as defined in [6, pp. 17, 20].
To avoid another meaning of this term, we take (3) and (4) into the defini-
tion:

A P-gystem (or parallel-system, or incidence system with parallelism)
P = (A,B,),|la,|ls) consists of sets 4, B, an incidence relation | & 4 X B
and two equivalence relations ||« € 4 X 4, ||z S B X B, such that the axioms
(P1), (P2) as stated in Prop. 5.2 and the following one hold:

(P3) (a) There exists a pair (a, a’) of elements of A, such that for all
p ||4 @', there exists one and only one b ¢ B with p | b, a | b.

(b) There exists a pair (b, b’) of elements of B such that for all ¢ || 5 b’, there
exists one and only one a ¢ A witha | b, a | q.

A typical example of a P-system is a semi-affine plane, that is an affine
plane without one class of parallel lines (the “vertical” ones). This may be
obtained in the manner of Def. 5.1 from a projective plane Ls , and a detailed
discussion shows, that in this case it is possible to reconstruct L; from P(L;)
in a unique way. Motivated by this example, one might interpret the equiv-
alence relations ||4 and ||z as parallelism for “points” (= elements of 4) and

“lines” (= elements of B), respectively and say “a and b are incident’’ when
a|b.

5.4 Definition [6, pp. 2-3]. An isomorphism of a P-system P =
(4, B, |, ||la, ||z) onto a P-system P’ = (A", B, |, |4 , || ») is & pair of bijec-
tive mappings (¢,$):¢ : A — A’, & : B— B’, such that ¢,¢ ™", §, § preserve
incidence and parallelism.

Remark. If ¢,  preserve all relations, so do ¢, &~ [6, pp. 2-3].

5.5. ProrosiTioN. Let K be a ternary ring. Then the system P(K) as
defined below 18 a P-system.

Starting from K (Def. 2.5), we define
P(K) = (AyB;"”A7”B) by A =K><K=B
(In order to distinguish the elements of A and B we write (z, ¥) ¢4 and
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[u, v] ¢ B.)
| = {((x, 9), [u, 9]) |y = T(u,z,v)}

”4 = {((x’ y)’ (T, 8)) ‘2 = "'}
”B = {([u’ ‘U], [m7 n]) ‘u = m}.

Proof. Obviously, ||+ and || s are equivalence relations. For any two pairs
(x,y) €A, [u, v] ¢ B we may calculate T'(u, z, v) and see that (z, T'(u, z, v))
is a point parallel to (z, y) and incident with [u, v]. If also (z, w) | [u, v], then
by the definition of | we know w = 7T'(u, z, v), hence the point (z, T'(u, z, v))
is unique. On the other hand there is a unique z with y = T(u, z, 2) for
given y, u, 2, and with this z we get [u, 2] ||s[u, v], (z, y) | [u, 2]. Therefore
we have (P1) and (P2).

(P3) (a) We look at the points (0, 0) and (1, 0). For any
point (1, p) ||4(1, 0) we have the line [p, 0] incident with (0, 0) because of
0 = T(p, 0, 0) and with (1, p) because of p = T(p, 1, 0). Let [u, v] be
another line incident with (0, 0) and (1, p). Then 0 = T'(u, 0,v) = v and
p = T(u, 1, 0), hence [u, v] = [p, 0]. So the points (0, 0) and (1, 0) are
as required for (P3) (a). The two lines [1, 0] and [0, 0] have the property
(b): [0, v] and [1, O] are both incident with (v, ») by v = T(0,v,v)
andv = T(1,,0), and (z,y) | [0, v] impliesy = T(0, z,v) = v, (z,v) | [1, 0]
implies v = T'(1, z,0) = z, hence (z,y) = (v, v), this point is unique.

5.6. TauporEM. (Introduction of coordinates in P(L;)). If K s the
ternary ring of L , then P(K) and P(Ls3) are tsomorphic.

Proof. Wewrite A(K), B(K) and 4 (L3), B(L;) to distinguish the P-sys-
stem, but denote the relations with the same signs.
To a ¢ A(L;3) we assign the “coordinates”

z(a) = ((avuaz) nDua) nA;
y(a) = (aua) nd;.
ZFa)uas = ((xz(a) uas) nDua) n AU a;
= (z(a)ua) nDua
= (((aum)nDua)nd:ua)nDuag;
((avuaw)nDua)nDuas

I

= auas.

It is easily seen (with the help of Lemma 0.2) that ¢: ¢ — (z(a), y(a)) is a
bijection between A (L;) and A(K).
Now let b e B(Ls). We find “coordinates” for b by defining

u(b) = ((bnA1Ua1) n (C12U aa) U az) nAz,
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that is,
u(d)*=bnAd:, and v(b) = bnA,.

& :b— [u(b), v(b)] is a bijection between B(Ls) and B(K) by straightfor-
ward calculations.

Now let @ € A(L3), b e B(Ls) and a | b. We have to show y(a) =
T(u(b), z(a), v(b)).
T(u(b), 2(a), »(b)) = ((u(d)* uv(d)) n (F(a) U as) Ua:) n 4,
= ((bnAiubnAdy)n(auas) Ua)nAd;,
by the above noted formulas,

= (bn (auaz) uas) nA,,
but a < b, hence

T(u(d), z(a),v(d)) = (aubnasuaz) n A
= (aua2) n 4,
= y(a).
So (¢, #) preserves incidence.
Fora,a’ e A(L;); a ||« o’ means a U as = @’ U a3, hence z(a) = z(a’), the
images in A (K) are parallel.
For b, b’ ¢ B(Ls), b ||»b means b n A1 = b’ n Ay, hence u(b)* = u(b’)*
and the images in B(K) are parallel.
By the remark following in Def. 5.4, the theorem is proved.

5.7 ProposiTioN. Let K be a ring and L(K®) the lattice of all right sub-
modules of the K-right-module K® with the normalized frame (a1 = (1,0, 0)K,
a2 = (0,1,0)K, a = (0, 0, DK, co = (1, 1, 0)K, ¢z = 1, o, 1)K,
e = (0, 1, —1)K) and let the operation T in K be defined by T(u, z, v) =
uz + v. Then we have P(L(K®)) = P(K) and (K, T)) = K(L(K")).

Proof. First we are going to describe the sets A (L(K®)) and B(L(K®))
in terms of generating vectors of K°.

(i) If p e A(L(K®)), then there exists a unique pair (2, y) ¢ K* such that
p = (1,2, y)K.

Proof. We have p u A1 = U, hence
(1,0,0)K <pud: or (1,0,0) epu A;.
That is, there exist 7, s, t, 2, y € K such that (r, s, t) ep and
(r,s,t) — (0,1,0)z — (0,0, 1)y W (1,0, 0),
hence (r,s,¢) = (1, z, y).

If also (1, 2/, ¥') ep, then (0, x — 2,y — ¥') ep n Ay = N, therefore
(1, z, y) is unique.
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If (u, v, w) ep, then
(u, v, w) — (l,x’y)u = (077) — au, w — yu) epnd; = N,
hence (u, v, w) = (1,2, y)u and p = (1, z, y)K.

(ii) If b e B(L(K®)), then there exists a unique pair (u,v) € K’ such that
b= (0,1,u)Ku (1,0, v)K.

Proof. Using b u a3 = U, we get the existence of (7, s, t) €b, (x, ¥y, 2) €b
and u, v ¢ K such that

(r, 8, t) — (0’ 0, v) = (1, 0,0),

hence
(1,0,0) €b,
and
(IL’, Y, z) - (07 0: u) = (0: 1: 0);
hence

0,1, u) eb.
For any (d, e, f) ¢b we have therefore
(d, e, f) — (1,0,0)d — (0,1, u)e = (0,0,f — vd — ue) ebnas = N,

ie.
(d? 6, f) = (1’ O’ v)d + (0’ ]" u)e'
Finally,
(,0,v) — (1,0,v") = (0,0,» — v') ebnaz = N
and
0,1, u) — (0,1,%) = (0,0, —u')ebnas =N

show the uniqueness of » and .

These generating vectors suggest the definitions for the first isomorphism:
If peA(L(K")) is generated by (1, z(p), y(p)), then let ¢(p) = (2(p),
y(p)); and if b e B(L(K®)) is generated by (0, 1, u(b)) and (1, 0, »(b)), let
&(b) = [u(db), v(b)]. From (i) and (ii) it is easy to see that these two map-
pings are bijections between A (L(K®)), B(L(K®)) and K® as required.

If p | b, then there exist r, s ¢ K such that

(1, z(p), y(p)) = (1,0,v)r + (0,1, u)s,

r=1,s=uz(p) and y(p) = u(b)z(p) + v(b),

that is ¢(p) | #(b) in P(K).
If p ||a g, that is p U as = g U a3, then there exists 2 ¢ K such that

(1, z(p), y(p)) + (0,0,2) = (1, z(q)y(q)),

z(p) = z(q), ¢(p) [+ ¢(0)-

hence

hence
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If b || s c, that is
bnA; = (0,1,u(b))K = ¢n 41 = (0, 1, u(c))K,

u(d) = ulc), () |ls(c).

For the second isomorphism of the assertion, we map 2 ¢K onto
(1,0, 2)K ¢ L(K®) and obtain

T((1,0,%)K, (1,0, 2)K, (1,0,v)K) = (1,0, uz + v)K
in the following way: For z < A, , 2* was defined by

then

2= ((zum)n (asuck)uam)nd;.
From this we find ((1, 0, u)K)* = (0, 1, w)K by
((1,0,%)Ku (0,1,0)K) n ((0,0,1)Ku (1,1,0)K) = (1,1, u)K,
((1,1,u)Ku (1,0,0)K) n ((0,1,0)K u (0,0, 1)K) = (0,1, u)K.
Similarly from

2= ((zua)nDua)nd.
we have

(1,0, z)K = (1, z, 0)K.
Now we see that
((1’ 0, u)K)* U (1’ 0’ ‘Z))K = (0: 1’ u)K U (1’ 0’ v)K
and
(1,0,2)Ku (0,0, 1)K = (0,0, 1)K u (1, z, 0)K,

80 that the intersection of these two submodules is (1, z, uz 4 v)K. By
(1, z,ux + v)Ku (0,1,0)K) n 4, = (1,0, ux + v)K,

the desired equation holds.
If K is aring, one can embed L(K?) in L(K*) such that L(K®) is (isomorphiec
to) the sublattice of elements of L(K*) which are less than or equal to

(1,0,0,0)K u (0,1, 0,0)K u (0, 0, 1, 0)K.

This shows that the embedding is possible in the way that the bases fit to-
gether as required in Def. 1.6. Observing this and the first isomorphism of
Prop. 5.7, we may state as a counterpart to Theorem 4.5:

5.8. TaEoREM. If the ternary ring K(Ls) of the lattice Ls 18 an associative
ring, then there e:z:,ists a lattice Ly such, that the P-system P(Ls) 18 isomorphic to
the P-system P(Ls) of the sublattice Ly = L(N, a1 U aa U a3) of Ly .

Expressed in a more informal way, this says: If K(Ls) is a ring, then P(L,)
is embeddable in a modular lattice L, .
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Remembering what was said about semi-affine planes in 5.3 and that in a
projective plane Ls the theorem of Desargues is equivalent to the fact that
K(Ls3) is a field (which we could derive from Theorem 4.5 and Remark 2.10),
we see that Theorem 4.5 and Theorem 5.8 together contain the theorem:
A projective plane is embeddable in a projective space of dimension >3 if
and ounly if the theorem of Desargues holds in the plane.
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