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1. Introduction
The following result is a consequence of the work of Dyer and Hamstrom

[1]. Suppose K, X and Y are metric spaces, K compact X complete, the
dimension of Y is equal to n and the space of homeomorphisms of K onto it-
self (c-o topology) is LCn+l. Then if f is a completely regular mapping from
X to Y such that the inverse of each point is homeomorphic to K, then f is
locally trivial.

Since it is conjectured that the space of homeomorphisms of a manifold is
locally connected in all dimensions, the above theorem gives rise to the ques-
tion as to whether the local connectivity of the space of homeomorphisms
could be replaced by assuming that K is a manifold or an absolute retract.

In [3] McAuley conjectured" Suppose that (E, p, B is a Serre fibration and
that E and B are finite-dimensional Peano continua. Then if each fiber is
homeomorphic to a fixed Peano continuum, p is locally trivial.

In this paper an example is given which would answer the first question
negatively for K an absolute retract and the example also shows that Mc-
Auley’s conjecture is false even for Hurewicz fibrations.

2. Definitions

(2.1) A map p from a metric space E onto a metric space B is completely
regular if given any b e B and any > 0 there exists 0 such that if bl e B
and d(b, bl) < then there exists a homeomorphism from p-(b) onto p-(bl)
which moves no point as much as .

(2.2) A map p from a space E onto a space B is a Hurewicz fibration if the
mapping

p* E-, Z l(e,f)E B’ p(e) f(0)}

defined by p* (g) (g(0), pg) admits a section.

It should be noted that if p is a Hurewicz fibration then p has the absolute
covering homotopy property.

(2.3) A mapping p from a space E onto a space B is locally trivial if there
exists a space F such that for each b e B, there is an open neighborhood U of
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b in B together with a homeomorphism " U F - p-l(U) of U F
onto p-l(U) satisfying pv(u, x u for u e U, x e E.

3. The example
The example in this paper is that of a Hurewicz fibration which is also a

completely regular map. The total space is a two-dimensional absolute re-
tract, the base space is the unit interval, and the fibers are one-dimensional
absolute retracts. However this mapping is not locally trivial.

(3.2) Description of example. Let C be the usual Cantor set on [0, 1].
Let E be the following subset of Euclidean three space Ra"

E= x, y, z e z O and 0_x_ 1
Rand 0

and 0 z_ (1/3)(1-x) where ceC-{0ul}
and c a/3 is in reduced form}
u{(x y,z) e y (c 1)x-k 1
and 0_z_ (1/3")x where ceC-{0ul}
and c a/3 is in reduced form}

Define p E -- I (the unit interval) by p(x, y, t) x (see Figure 1).
The function p is continuous. The total space E is easily seen to be a 2-

dimensional absolute retract. If e I, then p-(t) is homeomorphic to the
following subset F of R"

R 1}
in reduced form}

Ru{(x y) e [y 0 and

and 0_y_ (1/3) where x= (a/3)

(See Figure 2).

FIGURE 1
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FIGURE 2

It is easily seen then that F is a one-dimensional absolute retract and that
p is completely regular.

(3.3) The map p is not locally trivial.

Proof. This is an immediate consequence of the fact that if p is locally
trivial it is trivial (i.e. a product) since the base is contractible.
The following lemma suggested by the referee will be used to show that

p is a Hurewicz fibration.

(3.4) IEMMA. Suppose p’ is a Hurewicz fibration from E’ to B, p is a map
from E to B and r is a fiber-preserving retract from E to E. Then p is a Hure-
wicz fibration.

Proof. Trivial.

(3.5) The map p is a Hurewicz fibration.

Proof. Let

RE {(x,y,z) e I0 <_x <_ 1,0 <_ y <_ 1, and0 <_ z_< 1}.

Define p" E -- B by p’(x, y, z) x and note there is a fiber-preserving
retraction of E’ onto E. Hence by (3.4) the proof is complete.
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