ON THE ANTICENTER OF NILPOTENT GROUPS

BY
WorraaNGg P. KArrPE

The anticenter AC(G) of a group, as defined by N. Levine [3] is the sub-
group generated by the set RG of elements with trivial centralizer. Here an
element 2 is said to have trivial centralizer if (z, ¥) is cyclic for all ¥ e celz).
Free groups and a class of groups investigated by Greendlinger [2] are examples
of infinite groups where every element has trivial centralizer. In a finite
p-group P we have RP = P if and only if there is at most one subgroup of
order p, i.e. P is cyclic or a generalized quaternion group. If G is any finite
group it follows easily that RG = G if and only if the Sylow subgroups are
cyclic or generalized quaternion groups. These groups have been classified
by Zassenhaus [6, Satz 7] and Suzuki [5, Theorem E]. Abelian groups with
RG # 1 are easily determined:

TaeoreM A [1, Theorem 3]. Assume G # 1 is an abelian group. RG # 1
if and only if G s either torsion free of rank 1 or G is a torsion group and at
least one of the Sylow subgroups has rank 1.

In all cases mentioned so far the anticenter coincides with the set of elements
with trivial centralizer. Little is known about the structure and embedding
of AC(@) in G in the general case. For some groups the anticenter has been
determined [1]. Finite groups with a cyclic Sylow subgroup have a nontrivial
anticenter. But a suitable product of dihedral groups has nontrivial anti-
center and noncyclic Sylow subgroups. So it seems unlikely that a classifica-
tion of all finite groups with nontrivial anticenter can be given. We show in
this paper that for nonabelian nilpotent groups the question reduces to finite
p-groups having a self-centralizing element. The investigation of these groups
seems to be of independent interest, and we give here some results for groups
of low class.

DerinitioN. RG = {z ¢G | for g ¢ G, 29 = gz implies the group generated
by « and ¢ is eyclic}.

RyG = {z ¢G | for g ¢ G, xg = gx implies g is a power of x}.

The elements of RG are said to have trivial centralizer, the elements of
Ry G are called self-centralizing. The anticenter AC(G) of G is the subgroup
generated by RG.

LeMMA 1. RyG C RG. For a subgroup H of G we have H n RG C RH.
The sets Ry G and RG are characteristic sets.

Notation. Ng H is the normalizer of H in G.
¢, H is the centralizer of H in G.
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H, is the ¢** term of the lower central series of H ,H=H,.
Z: is the ¢*® term of the upper central series of H.

H?¢ is the normal closure of H in G.

(M) is the subgroup generated by the set M.

la, b] = a'b7'ab = a7’

[A, B] = subgroup generated by the [a, b] with a ¢ 4, b ¢ B.
la, 1B] = [a, b], [a, x b] = [[@; k1], b] for k& > 1.

d(@) is the minimal number of generators for G.

The following commutator identities are used repeatedly:

(1) [ab, ¢] = [a, ]’ [b, c].
If G, is abelian and a € G, , then for all b, ¢ ¢ G
(2) [[a7 b]’ C] = [[a’ C], b]

TraEorREM 1. If G is locally nilpotent and RG # 1, then G is periodic or
abelian.

Proof. Assume & is nonabelian. The proof is based on repeated applica-
tions of the following simple observation.

(i) If1 s z ¢ RG and [z, a] = 1, then a and = both have either finite or
infinite order.

(ii) If H = (u, v) is nilpotent with » an element of finite order, then H,
is finite.

Let k be the order of u and n the class of H. Then 1 = [u*, v] = [u, v]*
mod Hj ; hence H, /Hj is cyclic and its order divides k. This implies that
H; /H;y1 has exponent dividing %k for all ¢ with 2 < 7 < n. Hence
H, = H,; /H,4 has finite exponent. Further H, is finitely generated since H
is nilpotent and finitely generated. But a finitely generated nilpotent group

of finite exponent is finite.
(iii) If 1 # z e RG n Z; G, then @ is periodic.
There exist noncommuting elements a, b € G, and if
Y € Zx(a, b) — Zi(a, ),

then (y, a) and (y, b) have class not exceeding two, and one, say (y, a) is
nonabelian. Thesubgroup H = (z, ¥, a) hasclasstwo, andz ¢ RG n Z; G gives
@y =)z = ¢* with ceH. Since [y, a] & 1, we have [c, a] > 1; and
1 = [z, a] = [¢, a] = [c, a]’ shows that [c, a] has finite order. Thus (i) implies
that  and all elements of G have finite order.

(iv) If 1 # z ¢ RG and (x)¢ is abelian, then x has finite order.

From (iii) we may assume that there is an a ¢ G with [z, a] # 1. If the
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nilpotent group H = (z, ) has class k, the subgroup
X = <x7 [xa a]) R [xa ka])

is normal in H, and cyclic by Lemma 1 and Theorem A. Since [z, a] # 1 the
element a induces a nontrivial automorphism in X; hence 2* = 2" if « has
infinite order. But then X n Z; H = 1, contrary to the assumption that H is
nilpotent.

(v) If 1 # z ¢ RG and ()¢ is nonabelian, then z has finite order.

Assume z has infinite order. Since (x)¢ is nonabelian, there exist conjugates
#', &” of z with [/, 2] # 1. From Lemma 1 we have 2/, 2" ¢ RG. Let
H= (' 2"YandyeZ, H — Z H, and say [y, '] # 1. Now [y, z'l ¢ Z, H,
and ([y, 2'], ') is infinite cyclic since 2’ is a conjugate of z. If ([y, 2'], ) = (d),
ly, 'l = d', 2’ = d’, then (y, d) has class two; hence

1=y, d]=1lyd and 1sly2]=1ly,dl=1l,d"

The second equation shows [y, d] has infinite order, which contradicts the
first equation.

(vi) If 1 # z ¢ RG has finite order then @ is periodic.

If b ¢ @ commutes with x, we see from (i) that b has finite order. If ¢ ¢ G
does not commute with x the subgroup H = (z, a) satisfies the assumptions of
(ii). Hence H,, and also (H,, z) is finite. In this finite group the element
a ¢ H induces an automorphism of finite order m. In particular [a™, z] = 1;
hence z ¢ RG implies {a™, ) is cyclic, so ¢™ and thus a has finite order.

Remark. Locally nilpotent periodic groups are direct products of their
Sylow subgroups. Hence [1, Corollary 2.1] RG 5 1 if and only if RP 5 1 for
at least one Sylow subgroup P of G.

It is therefore sufficient to consider p-groups. A group G is said to satisfy
the normalizer condition if every proper subgroup U of G is a proper subgroup
of its normalizer Ng¢ U. Groups satisfying the normalizer condition are
locally nilpotent [4, Theorem VI1.7.e].

LemMA 2. For p # 2 the automorphism group of the quasicyclic group
C(p”) has no element of order p. The only nonirivial automorphism of 2-power
order of C(2%) is the tnversion which maps each element into its inverse.

Proof [4, Proposition III.2.r]. An automorphism o of order p of the cyclic
group C(p"*") induces the identity automorphism on the subgroup of order
p" unless ¢ is the inversion.

TueorREM 2. Assume G is a nonabelian p-group satisfying the normalizer
condition and 1 = x ¢ RG. Let A be a maximal abelian subgroup of G containing
z. Then

(1) A s cyclic unless G 1is the infinite quaternion group or the in-
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finite (periodic) dihedral group;

(i) AC(Q) 1is generated by the set Ry G of self-centralizing elements unless G
18 the infinite (periodic) dihedral group;

(i) ¢ G 1s nilpotent, A is cyclic and Ro G generates AC(Q@).

Proof. To show (i), assume A is not cyclic, and let H = NgA. Theorem
A implies A == C(p”), and, by assumption, A > G and A > H. Since A is
maximal abelian, A = ¢z A, 50 the group of induced automorphisms H/cx A is
a nontrivial p-group. For p 5 2, this contradicts Lemma 2. For p = 2,
Lemma 2 gives [H:4] = 2,and o’ = a *forallaeA andse H — A. Since
s ¢ A is fixed by s, the order of s’ is at most two. If s* = 1, the group H is
the infinite (periodic) dihedral group D,=. If §* is the unique element of
order two in A, the group H is the infinite quaternion group @z . In either
case the elements in H — A have order at most four, so A is the characteristic
subgroup generated by the elements of order greater than four in H. Hence
H = Ng H, and the normalizer condition implies H = G.

The set By G and the anticenter are easily determined for the two excep-
tional groups D.= and Q.= . It follows from [1, Theorem 7] that AC(D,=) = A.
There is no self-centralizing element in D;» .  On the other hand every element
in @ — A is self-centralizing, and these elements generate Q,~. Hence
AC(Qs=) = Q= , and together with (i) this gives (ii).

Finally (iii) follows from (i) since the exceptional groups are not nilpotent.

TeeorEM 3. If G is a periodic group with a self-centralizing element x ¢ Ry G
and (x)° is nilpotent, then G is finite.
Proof. Let A be a finite subgroup containing x, and assume A is normal in

some subgroup B of G. Since A is finite, the group of induced automorphisms
B/cg A is finite. But

cs A Ccp{z) C (x) C A4,

so B is finite. Assume X = () has class k. Then X = (z, Z; X) is normal
in G, and (z, Z; X) is normal in (z, Z;;; X), and Theorem 3 follows.

LEmmMA 3. If the group generated by a and b s metabelian, then

(a') [b, am] = H:'n-l [b’ G'a]C("m.)
(b) (ba-—l)m = p" H [[b, : a], p b]C(m.i+j+1) a—m’
0<i+j<m

(where C(m, 1) means (7).)

Proof. Identity (a) follows immediately by induction from (1). To
prove (b), we observe that a~"ba™ = b[b, a™la"™", so (b) follows from (a),
(2) and induction on m.

Ezample. The following example of a metabelian p-group with AC(G) = @
shows that the assumption AC(G) £ 1 imposes no restriction on the class or
the minimum number of generators.



ON THE ANTICENTER OF NILPOTENT GROUPS 607

Let p be an arbitrary prime, d > 0 and n > 2 integers, and, for p = 2,
assume d > 0 or n > 2. Let A be an abelian group with generators
&y, -+, T, and defining relations z7* = 1, where d, = dn-y, and d; = p*™*
for ¢ < n. The mapping ¢ defined by

Ty = Tn, XTpa = Tua®, and 27 = z;axipy for 1 <i<n— 1,

preserves the defining relations of A and is clearly onto. Hence ¢ is an
automorphism of the finite group 4.

Lemma 3(a) applied to the subgroups (o, ) of the holomorph of A shows
that ¢ has order d, . Let G be the cyclic extension of A by (z), where « in-
duces the automorphism ¢ and 2** = x,. The set of elements of A fixed by
o is (x), so z is self-centralizing, and [a;,:2] = z%4; for ¢ 4+ k < n which
implies that the class of G is precisely n. The elements x, 23, <+, Tna
generate G, and in the abelian quotient group G/{4”, z,) these elements are
independent generators; hence d(G) = n.

Finally we show that the elements xs #! are self-centralizing, and hence
AC(G) = Q. For c e A the element ca’ commutes with z; 2™ if and only if
e’ (z ™) € A commutes with z, z™". Since [d, 2, 2] = 1 for d ¢ A if and
only if [d, z] = 1, we have ce(2z ") = {&x ™", T,). It remains to show that
2o is a Jpower of 2, 2" for k < n. Applying Lemma 3(b) with m = d, , we
have zi* = 1, and [z ,: 2] = 1for¢ + k > n, since the class of Gis n. Next
the terms Wlth 1 + k < n are trivial smce [xx,:2] = w,+k, and p° divides
(237°). Fori + k =mn, [z, sa] = 22 and p*™ divides (1+1+ ), unless
p=2and7 =1 Sinces+ 1 =d -+ n — 7, these terms are also trivial.
Ifp=2and7i=1s=d+4+ n — 2,80 s > 0 by the assumptions in case
p = 2. Hence this term is in (z2), and ™ = x, shows ((2z 2 )™ = (z,).

TuroreM 4. Assume G is a nonabelian finite p-group, p #= 2, and x ¢ Ry G.
If (x) is normat in G, then AC(@) = G and G has generators x, a and defining
relations

2" =g =1, [z, a] = 2" 0<k<m.

Proof The induced automorphism group G/cex) is a eyeclic group of order

p k< n. Butcelz) = (x) since ¢ e Ry G, 80 G = <z, b> for someb ¢ G with

2° = 2", Further v* ¢ c (1) commutes Wlth b, hence b*° = 2**" for some
integer u. Since Gy = (& ') has order p%, and, for p 2, a group with
cyclic commutator subgroup is regular, then the element ¢ = 27 has order

p*. By the same reasoning (za)?* = . Since (:c) n cg(xa) = (a:”’ Y, the
element za is also self-centralizing, hence AC @) =
CoroLLARY 1. If z € Ry G and either (x)° is abelian or = ¢ Zy G, then
ad(@) L 2.

Proof. =z € Ry G implies (x)° = (x) in the first case, and [z, G] © Z; G < (z)
shows (x) normal in G in the second case.
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LeMmMa 4. Lett = 1modpforp 2 2andt = 1 mod 4 for p = 2. For
gwen n, each integer y has a representation
y=14+t+8E4+ -+t mod p"

Proof. This is obvious for n = 1, so we proceed by induction on #n, and
assume y = 1 4+ ¢t + --+ + " + pp", ¢t # 1 mod p”. If ¢ has order p’ in
the group. of prime residues mod p”, then p" does not divide

fr=l4t4 o+
But then

" = £ (L 4 -+ 7)) mod p”
for a suitable a, which proves Lemma 4.

THEOREM 5. Assume G is a finite p-group, p = 2, and x ¢ RyG. If N isa
normal subgroup of G, and (x) is normal in N, then there exists an element h ¢ G
such that G = (h, N (z)), and d(@) < 3.

Proof. N satisfies the assumptions of Theorem 4, hence N = (z, a) with z, a
satisfying the defining relations listed in Theorem 4. In the abelian quotient
group N/N, the elements N,z and N a are independent generators The
subgroup (", a) = (N, a) contains all elements of order p° in N. Hence
(N20)° = (N,a)” and (N,2)° = (N:z)*(N:a)?, and the automorphism of
N/N, induced by g € G is described by the triangular matrix

G -

Since g has p-power order, « = v = 1 mod p. Select h ¢ G such that in the

matrix
G )
0 m

corresponding to h the integer B; is divisible by the least power of p. The

matrix equation .
a B\_(an BY) (o O
0 v 0 v 0

is eauivalent to

(i) a=do mod p )
(i) 8=6yr(ai’ -+ 717") mod p,
(iil) vy = virmod p

Then (ii) and (iii) combined give
(i) B=Fiyvi(t 4+ -+ +t+ 1) mod p* with ¢ = g7’

By choice of 8; and Lemma 4 there is an integer ¢ such that (ii’) holds, and
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o and 7 are determined from (i) and (iii). The matrix equation implies
27 = 2° mod N,,

in particular A7’y e No(z), since Ny C {(x). Hence G = (h, Nq(x)). But
N 4(x) satisfies the assumptions of Theorem 4; hence

d(Ngz)) <2, and d(G) < 3.

CoRrOLLARY 2. Let G be a finite p-group, p # 2, and x e RyG. Then

d(@) < 3 if (x)¢ satisfies one of the following conditions:
(1) zeZ;G,
(ii) (x)® ¢s of class two,

(iii) ()¢ satisfies the Engel condition [[u, v], v] = 1 for u, v e (x)°.

Proof. If N is normal in G, z ¢ N, and N satisfies [[u, 2], 2] = 1for all u ¢
N, the z ¢ By G implies [N, 2] C (x); hence () isnormal in N. Thus (ii) and
(iii) follow immediately from Theorem 5. To prove (i) let N = (2, Z,G),
and observe that N has class two.
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