
ON THE ANTICENTER OF NILPOTENT GROUPS

BY

The ntcenter C(G) o group, s de,ned by N. Levne 181 s the sub-
roup enerted by the set EG o elements wth trv1 centralizer. Here n
element z s sd te hve trv1 centra1ze (z, y) s cyc1c or ]] y
Free roups nd class e roups nvestted by Oreend1ner Il re examples
e nnte reups where every element hs trv1 centr]zez. n nte
p-group P we hve RP P if nd only if there is t most one subgroup of
order p, i.e. P is cyclic or generalized quternion group. If G is ny finite
group it follows esily that RG G if nd only if the Sylow subgroups re
cyclic or generalized quternion groups. These groups hve been classified
by Zassenhaus [6, Stz 7] nd Suzuki [5, Theorem E]. Abolish groups with
RG 1 re easily determined:

Tmom A [1, Theorem 3]. Assume G 1 is an abelian group. RG 1
if and only if G is either torsion free of rank 1 or G is a $orsion group and a
least one of the Sylow subgroups has rank 1.

In ll cases mentioned so fr the nticenter coincides with the set of elements
with trivial centralizer. Little is known about the structure and embedding
of AC(G) in G in the general cse. For some groups the nticenter hs been
determined [1]. Finite groups with cyclic Sylow subgroup hve ontrivil
nticenter. But suitable product of dihedral groups has nontrivil nti-
center and noncyclic Sylow subgroups. So it seems unlikely that classifica-
tion of all finite groups with nontrivil nticenter cn be given, We show in
this pper that for nonbelin nilpotent groups the question reduces to finite
p-groups hving self-centralizing element. The investigation of these groups
seems to be of independent interest, nd we give here some results for groups
of low class,

Do. RG {x e G for g G, xg gx implies the group generated
by x nd g is cyclic}.

R0 G {x G for g e G, zg gx implies g is power of xi.
The elements of RG re sid to hve trivial centralizer, the elements of

R0 G re clled self-centralizing. The nticenter AC(G) of G is the subgroup
generated by RG.

LEMMA 1. Re G RG. For a subgroup H of G we have H n RG RH.
The sets Ro G and RG are characteristic ses.

Notation. N H is the normlizer of H in G.
c H is the centralizer of H in G.
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H is the ith term of the lower central series of H, H H1.
Z is the ih term of the upper central series of H.
Ha is the normal closure of H in G.
(M) is the subgroup generated by the set M.
[a, b] a-lb-lab a-lab.
[A, B] subgroup generated by the [a, b] with a e A, b e B.
[a, b] [a, b], [a, k b] [[a, k-1 b], b] for ] > 1.
d(G) is the minimal number of generators for G.

The following commutator identities are used repeatedly:

(1) [ab, c] [a, c] [b, c].

If G2 is abelian and a e G2, then for all b, c e G

(2) [[a, b], c] [[a, c], b].

THEOREM 1. If G is locally nilpotent and RG 1, then G is periodic or
abelian.

Proof. Assume G is nonabelian. The proof is based on repeated applica-
tions of the following simple observation.

(i) If 1 x e RG and [x, a] 1, then a and x both have either finite or
infinite order.

(ii) If H (u, v) is nilpotent with u an element of finite order, then H.
is finite.

Let k be the order of u and n the class of H. Then 1 [u, v] [u, v]
mod Ha hence H./H is cyclic and its order divides k. This implies that
Hi/H+I has exponent dividing k for all i with 2

_
i

_
n. Hence

H H/H,+ has finite exponent. Further H is finitely generated since H
is nilpotent and finitely generated. But a finitely generated nilpotent group
of finite exponent is finite.

(iii) If 1 x e RG n Z G, then G is periodic.

There exist noncommuting elements a, b e G, and if

y e Z(a, b) Z,(a, b),

then (y, a) and (y, b) have class not exceeding two, and one, say (y, a) is
nonabelian. The subgroup H (x, y, a) has class two, andx e RG Z G gives
(x,y) (c),x cwithceH. Since[y,a] 1, wehave[c,a] 1;and
1 [x, a] [c, a] [c, a] shows that [c, a] has finite order. Thus (i) implies
that x and all elements of G have finite order.

(iv) If 1 x e RG and (x)a is abelian, then x has finite order.

From (iii) we may assume that there is an a e G with [x, a] 1. If the
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nilpotent group H (x, a) has class/, the subgroup

X ix, [x, a], [x, a]}
is normal in H, and cyclic by Lemma 1 and Theorem A. Since Ix, a] 1 the
element a induces a nontrivial automorphism in X; hence x x-1 if x has
infinite order. But then X n Z1H 1, contrary to the assumption that H is
nilpotent.

(v) If 1 x e RG and (x)a is nonabelian, then x has finite order.

Assume x has infinite order. Since (x)a is nonabelian, there exist conjugates
x,x" ofxwith[xr,x’] 1. From Lemma 1we havexr,x" . RG. Let
H (x’,xp)andyeZ2H- Z1H, andsay[y,x] 1. Now[y,x’]eZH,
and ([y, x], x) is infinite cyclic since x’ is a conjugate of x. If ([y, x],
[y, x] d, x’ d’, then (y, d) has class two; hence

1 [y,d] [y,d] and 1 [y,x’] [y,dj] [y,d]j.

The second equation shows [y, d] has infinite order, which contradicts the
first equation.

(vi) If 1 x RG has finite order then G is periodic.

If b e G commutes with x, we see from (i) that b has finite order. If a e G
does not commute with x the subgroup H (x, a) satisfies the assumptions of
(ii). Hence H2, and also (H, x) is finite. In this finite group the element
a e H induces an automorphism of finite order m. In particular [aM, x] 1;
hence x RG implies (aM, x) is cyclic, so a and thus a has finite order.

Remark. Locally nilpotent periodic groups are direct products of their
Sylow subgroups. Hence [1, Corollary 2.1] RG 1 if and only if RP 1 for
at least one Sylow subgroup P of G.

It is therefore sufficient to consider p-groups. A group G is said to satisfy
the normalizer condition if every proper subgroup U of G is a proper subgroup
of its normalizer Na U. Groups satisfying the normalizer condition are
locally nilpotent [4, Theorem VI.7.e].

LEMMA 2. For p 2 the automorphism group of the quasicyclic group
C(p) has no element of order p. The only nontrivial automorphism of 2-power
order of C(2) is the inversion which maps each element into its inverse.

Proof [4, Proposition III.2.r]. An automorphism a of order p of the cyclic
group C(p+) induces the identity automorphism on the subgroup of order
p" unless a is the inversion.

THEOREM 2. Assume G is a nonabelian p-group satisfying the normalizer
condition and 1 x e RG. Let A be a maximal abelian subgroup ofG containing
x. Then

(i) A is cyclic unless G is the infinite quaternion group or the in-
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finite (periodic) dihedral group;
(fi) AC(G) is generated by the set Ro G of self-centralizing elements unless G

is the infinite (periodic) dihedral group;
(iii) if G is nilpotent, A is cyclic and Ro G generates AC(G).

Proof. To show (i), assume A is not cyclic, and let H Na A. Theorem
A implies A C(p"), and, by assumption, A G and A H. Since A is
maximal abelian, A c. A, so the group of induced automorphisms H/c A is
a nontrivial p-group. For p 2, this contradicts Lemma 2. For p 2,
Lemma 2 gives [H:A] 2, and a’ a- for all a e A and s H A. Since
s e A is fixed by s, the order of s is at most two. If s 1, the group H is
the infinite (periodic) dihedral group D.(R). If s is the unique element of
order two in A, the group H is the infinite quaternion group Q.(R). In either
case the elements in H A have order at most four, so A is the characteristic
subgroup generated by the elements of order greater than four in H. Hence
H No H, and the normalizer condition implies H G.
The set Ro G and the anticenter are easily determined for the two excep-

tional groups D.(R) and Q(R). It follows from [1, Theorem 7] that AC(D) A.
There is no self-centralizing element in D.(R). On the other hand every element
in Q(R) A is self-centralizing, and these elements generate Q(R). Hence
AC(Q(R)) Q(R), and together with (i) this gives (ii).

Finally (i i) follows from (i) since the exceptional groups are not nilpotent.

THEOREI 3. If G is a periodic group with a self-centralizing element x e Ro G
and (x)a is nilpotent, then G is finite.

Proof. Let A be a finite subgroup containing x, and assume A is normal in
some subgroup B of G. Since A is finite, the group of induced automorphisms
B/c A is finite. But

so B is finite. Assume X (x)a has class k. Then X (x, Z X) is normal
in G, and (x, Z X) is normal in (x, Z+ X), and Theorem 3 follows.

LEMMA 3.

(a)

(b)

If the group generated by a and b is metabelian, then

[b, a] I’- [b, a](’’

(ha-l) bm I lib, a], b] (’+j+l) a m,

(where C(m, i) means ().)
Proof. Identity (a) follows immediately by induction from (1). To

prove (b), we observe that a-’ba- bib, a]a--1, so (b) follows from (a),
(2) and induction oa m.

Example. The following example of a metabelian p-group with AC(G) G
shows that the assumption AC(G) 1 imposes no restriction on the class or
the minimum number of generators.
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Let p be an arbitrary prime, d >_ 0 and n >_ 2 integers, and, for p 2,
assume d > 0 or n > 2. Let A be an abelian group with generators
xl, x and defining relations x 1, where d d_l, and d p+
for i < n. The mapping defined by

x x, x_i x_lx and x x +l for 1 _< i < n- 1,

preserves the defining relations of A and is clearly onto. I-Ieace is an
automorphism of the finite group A.
Lemma 3(a) applied to the subgroups , x> of the holomorph of A shows

that has order d. Let G be the cyclic extension of A by (x>, where x in-
duces the automorphism and x x. The set of elements of A fixed by

is (x>, so x is self-centralizing, and [x, x] x+ for i + k < n which
implies that the class of G is precisely n. The elements x, x, ..., x_l

generate G, and in the abelian quotient group GIlA’, x,> these elements are
independen generators; hence d(G) n.

--1Finally we show that the elements x are self-centralizing, and hence
AC(G) G. For c e A the element cx commutes wih x if and only if

x-. x-] 1 for d e A if andcx(xi x-1) " e A commutes with x Since [d, x
only if [d, x] 1, we have c(x x-) (t z-, x>. It remains to show that

X
-1x is a power of x for/c < n. Applying Lemma 3(b) with m d, we

dnhave x 1, and [x, x] 1 for i + k > n, since the class of G is n. Next
the terms with i + /c < n are trivial since [x,, x] x+t, and+p divides

+ ). Forz + k =n, [x, x] andp’+ divides( ), unless
p 2andi 1. Sinces+ 1 d+n- i, these terms are also trivial.
If p 2 and i 1, s d + n 2, so s > 0 by the assumptions in case
p 2. Hence this term is in (x), and z- x shows

THEOREM 4. Assume G is a nonabelian finite p-group, p # 2, and x e Ro G.
If (x) is norma, in G, then AC(G) G and G has generators x, a and defining
relations

a 1, Ix, a] x 0 < k < n.

Proof. The induced automorphism group G/co(z) is a cyclic group of order
p,/c < n. But c(x) (_x) since x e R0 G, so G <x, b> for some b e G with

n--k
x x + Further b e (.) commutes wth b, hence b x for some

n--k
lateger. Since G (x )has orderp, and, forp # 2, agroupwith
cyclic commutator subgroup is regular, ,hell ,he element a x-5 has order
p. By the same reusoning (xa)’ x’. Since (a:) fl Ca(xa) (X*), ,he

element xa is also self-centralizing, hence AC(G) G.

COaOIARY 1. If x Ro G and either (x) is abdian or x Z G, then

d(G) g 2.

Proof. x Ro G plies (x) (x) ,he first case, aad Ix, G]
shows (x) normal G the second case.



LEMMA 4. Let 1 mod p for p 2 and 1 mod 4 for p 2. For
gwen n, each integer y has a representation

y--- 1--tWtW...Wtk mod p.
Proof. This is obvious for n 1, so we proceed by induction on n, and

assumey 1 q- t-t- W kWtp-l,tyl lmodp. Ifthas orderpin
the group of prime residues mod p, then p does not divide

y= l+t+...+t-1.
But then

t--up----f(1-l-t’W q- a) mod p

for a suitable , which proves Lemma 4.

THEOREM 5. Assume G is a finite p-group, p 2, and x e Ro G. If N is a
normal subgroup of G, and (x) is normal in N, then there exists an element h e G
such that G (h, No(x)), and d(G) <_ 3.

Proof. N satisfies the assumptions of Theorem 4, hence N (x, a) with x, a
satisfying the defining relations listed in Theorem 4. In the abelian quotient
group N/N the elements N. x and N.a are independent generators. The
subgroup (x"-, a) (N. a} contains all elements of order p in N. Hence
(N. a) (N a) and (N x) (N x)a(N a), and the automorphism of
N/N induced by g e G is described by the triangular matrix

Since g has p-power order, a , --- 1 mod p. Select h e G such that in the
matrix

corresponding to h the integer fl is divisible by the least power of p. The
matrix equation

is eouivalent to

pn--k,(i) a---- aamod
(ii) --- r(a-1 q- q- 3"-) mod p,
(iii) 3’ 3" r mod p.

Then (ii) and (iii) combined give

(ii’) # 3"yl(t-I -- "- + 1) mod p with Otl 3"-1.
By choice of #1 and Lemma 4 there is an integer i such that (ii’) holds, and
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and r are determined from (i) and (iii). The matrix equation implies

xh--- x mod N,
in particular h-g e No(x), since N. (x). Hence G (h, No(x)}.
No(x) satisfies the assumptions of Theorem 4; hence

But

d(No(x)) -<_ 2, and d(G) <_ 3.

COROLLARY 2. Let G be a finite p-group, p 2, and x e RoG. Then
d(G)

_
3 if (x} satisfies one of the following conditions:

(i) x ZG,
(ii) x} is of class two,
(iii) (x}a satisfies the Engel condition [[u, v], v] 1 for u, v e (x).
Proof. If N is normal in G, x e N, and N satisfies [[u, x], x] 1 for all u e

N, the x e R0 G implies [N, x] (x}; heace (x} is normal iu N. Thus (ii) and
(iii) follow immediately from Theorem 5. To prove (i) let N (x, Z G),
aad observe that N has class two.

REFERENCES

1. J. DOMBEK, Anticenters of several classes of groups, Amer. Math. Monthly, vol. 69
(1962), pp. 738-741.

2. M. GREENDLINOER, A class of groups all of whose elements have trivial centralizers,
Math. Zeitschr., 78 (1962), pp. 91-96.

3. N. LEWNE, The anticenter of a group, Amer. Math. Monthly, vol. 67 (1960), pp. 61-63.
4. E. SCHENKMAN, Group theory, Van Nostrand, New York, 1965.
5. M. SuzvK, On finite groups with cyclic Sylow subgroups for all odd primes, Amer. J.

Math., vol. 77 (1955), pp. 657-691.
6. H. ZASSENVS, ber endliche FastkOrper, Abh. Math. Sem. Univ. Hamburg, vol. 11

(1936), pp. 187-220.

OHIO STATE UNIVERSITY
COLUMBUS, OHIO


