THE COHOMOLOGY OF THE CLASSIFYING SPACE FOR
COMPLEX K-THEORY mod p

BY
MryLEs TIERNEY

1. Introduction

This paper is intended to be the first of several investigating the structure
of K-theory with coefficients. Here we shall be concerned with the mod p
cohomology of the classifying space for complex K-theory mod p. §1 is intro-
ductory and concludes with a definition, and elementary properties, of the
space BU,. In §2 we calculate the cohomology ring H*(2BU,;Z,), and
in §3 the ring H*(BU, ;Z,). §4 is an appendix, and contains a technical
lemma on Bockstein operations, which is used in the calculation of §2. These
results formed a portion of the author’s doctoral dissertation submitted to
Columbia University, and the author would like to thank Professor Samuel
Eilenberg for his support, Professor Donald Kahn for his encouragement, and
Professor Eldon Dyer for his critical reading of this thesis.

If X and Y are topological spaces with basepoints x, and y, respectively,
then we will denote by (X, Y) the space of (free) maps from X to Y, topolo-
gized by the compact open topology. (X, Y)* will denote the space of base-
point preserving maps. The corresponding homotopy classes of maps will be
denoted by [X, Y] and [X, Y]". X A Y, the ‘“‘smash” product of X and Y, is
the space formed from X X Y by collapsing X X you e X Y to the base-
point. The adjointness relation (X A Y, Z)* =~ (X, (Y, Z)")" is valid when
Y is locally compact and regular, X is Hausdorff, and Z is arbitrary [6].
Most of our applications will have X a CW-complex, and Y a finite CW-com-
plex. Given a sequence of spaces and basepoint preserving maps

et o X o Xn—> Xpr— -+,
we say ¢ is exact if the sequence

Y,el": o = [V, Xon] = [V, X = [Y, Xona]" — -
is exact for any Y, and co-exact if the sequence

6 Y]t oo = X, YT = [X0, Y] = X, Y] — -+

is exact for any Y.
Let I denote the unit interval [0, 1], and define

eY:(I,Y)—>Y and 9Y:Y>IAY
to be, respectively, the projection of a path to its endpoint, and the inclusion
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of Y to the base of the cone on Y. If f: X — Y is a basepoint-preserving
map, Ef is defined by requiring that the following be a pullback diagram in the
category of spaces and basepoint preserving maps:

Ef— (1,Y)

q |

x- L vy
Dually, define Cf by requiring that the following be a pushout diagram:

x Ly

nYl lif

INX — Cf
Then

gr™ x
is a fibration (satisfies the ACHP) and

v 4 ¢

is a cofibration (satisfies the AHEP). Letting QY — Ef be the inclusion of
the fibre, and Cf — SX the projection mapping Y to the basepoint, the
sequence

o soBfox Y ovomoxly

is exact, and the sequence

of:xtvosrosx sy s -

is co-exact. We shall call gf the Puppe sequence of f, and €f the co-Puppe
sequence of f. In the following lemma, which is proved in [9], the symbol
= between two sequences means each term in one is naturally homeomorphie
to the corresponding term in the other, and the homeomorphisms commute
with the maps of the sequences.

LemMma 1. Letf: X — Y be a basepoint preserving map.
(1) If Z is a finite CW-complezx, then
(Z, ef)* = &(Z, f)".
(i) If Z or X 1s a finite CW-complex, then
efNZ=e(fAZ).
(iii) If X s a finite CW-Complex, then
(ef, Z2) =~ &(f, Z)".
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Remark. The assumptions of Lemma 1 are clearly stronger than necessary,
but since these conditions suffice for what follows, we use this formulation for
convenience.

Now, let

RN
be a map of degree m, and write L(m, 2) for @n. Then the co-Puppe sequence
of m gives a co-exact sequence:
em: St SIHL(m,2)—+S’Z—77-z+ & — L(m,3) — ---.
Note that ‘
H'(L(m,n);Z) ~Z, if t=n
=~ 0 otherwise

Also, L(2, 2) = RP*—the real projective plane. By Lemma 1 (ii),
em A\ X &~ e(m A X), so we obtain another co-exact sequence:

s gty MAX]
XS Lima) AX— X PAX ox ...

Thus, if £ is any half exact functor in the sense of Dold [5], applying ¢ gives an
exact sequence:

o t(nx) LA D ey L (L(m,m) A X) -

t(Sn—lX) t(m A X) t(Sn-l) — e
By 3.5 of [5], t(m A X) is multiplication by m. Therefore, if we put

(X)) = t(8"X)
and
(X5 2Zn) = t(L(m,n) \ X)

the usual argument gives a universal coefficient sequence:
0—t™X) ® Z, — t"(X; Z,) — Tor ("(X) ;Z) — 0.

Also, the above long exact sequence may be conveniently recorded as a singly
graded exact couple:

£4(X) -5 74(X)

St

(X Zn)
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where ¢ = multiplication by m and is of degree 0, j is reduction mod m and is
of degree 0, and k is an extraordinary Bockstein operation of degree +1 as-
sociated with the coefficient sequence

0-2z"%z%2, -0

where m = multiplication by m and r = reduction mod m. This couple leads,
of course, in the usual way to a Bockstein spectral sequence as in [4]. We
hope to exploit this in a later paper.

Now let U be the infinite unitary group and BU its classifying space.
Then SU, the infinite special unitary group, is the simply connected covering
group of U, and BSU, its classifying space, is a 2-connected fibre space over
BU. Asis well known, [2], if we denote by Qo X the component of the con-
stant loop in X, by X a simply connected fibre space over X, and by X a
2-connected fibre space over X, then

Q% BU = BU, 9°U=U, SU = 8U, and ’BSU = BSU.
In the above discussion, put ¢ = [ , BUJ", and let

K"U(X;Z,) = t(X;Z,).
Then
K"™X;Z,) = [L(m,n) A\ X, BUJ

[L(m,n) A\ X, Q*BSUT’
8" *L(m, 2) A\ X, 2’BSU)
~ [S"X, (L(m, 2), BSU)']".

These spaces (L(m, 2), BSU)* will then be the classifying spaces for complex
K-theory mod m, and we will denote them by BU,,. Putting X = 8 in the
universal coefficient sequence above gives an exact sequence:

0— 7(BU) ® Z, — w(BU,) — Tor (mna(BU), Z,,) — 0.
Therefore, BU,, is connected and since
m(BU) = Z, n even
~ 0, nodd

Q

Q

we have
m(BUn) = Z, neven

~0 mnodd

Moreover, BU,, has the homotopy type of the component of the constant map
in (L(m,2), BU)*, and hence @ BU,, = BU,.

In §2 and §3 respectively, we shall compute the ring structures of
H*(QBU, ;Z,) and H*(BU, ;Z,) for p a prime. In the integral case this
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was done by Borel [1], and the results are:
H*(U )Z) ~ E(gl ) .773, "')
H*(BU,Z) %P(Cz,&;, "')
where the ¢»; are the universal Chern classes, and are images of the %, under
transgression. Notice that we have deviated from the standard notation by
indexing these classes by their dimensions. Thus, for example, our ¢, is

ordinarily written ¢;. This convention will make it easier to keep track of
dimensions in the computations that follow. Similarly,

H*(SU ;Z) = E(Js, s, )
H*(BSU ;Z) ~ P(&,G, "),
where if 7 denotes transgression in the universal fibration, 724 = G,
1> 2.
In order to use these results and the standard tool of algebraic topology
for calculating cohomology, namely spectral sequences, we put BU, as total

space in a fibration whose base and fibre, up to homotopy type, are SU and
BU respectively. So consider the co-Puppe sequence

B8 ip2) -8B
defined above for p prime. Putting BSU in the second variable and applying
Lemma 1, we obtain a fibration

@*BSU — BU,

!
BSU 2 aBSU,

where we denote the map (p, BSU)® again by p. Up to homotopy equivalence
we may rewrite this as
BU — BU,

}
Su L su.
Again by Lemma 1, this fibration is induced by p from the universal fibration

over SU with fibre BU. For technical reasons, which will become apparent
later, we wish to deloop this fibration. So, consider the fibration

K(Z,2) — EY,

! Y
SU —3 K(Z,3)

and let ¢ : H"(SU : Z) — H""(BU : Z) denote the suspension. Then
clearly, oij; = c;—the first universal Chern class. Thus, applying @ to this
fibration gives

K(Z,1) — QEY;

i)
BU-% K(Z,2)
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and QEY,; = BSU. Now if we put our co-Puppe sequence for
st B
in the first variable, and EY; in the second, we obtain a fibration
QEY; — (L(p, 2), EY3)"

! » ~
QE Ys b QE Ya .
Let us denote (L(p, 2), EY;)" by BU,. Then, again up to homotopy, we
may rewrite this as
SU — BUA

!
BSU 2 Bsv,

and this fibration has the property that @ applied to it gives our original
fibration for BU,.

2,

Here we shall begin the calculations by computing H*(QBU, ; Z,).
Towards the end of the calculation we shall have to make a distinction be-
tween the cases p odd and p even, but for now, p will denote any prime. So,
consider the fundamental fibration

BU -, BU,
lx
SU L, sU
and apply Q.
We obtain

J
UlsQBU, EU—U
[
BU-Z, BU

where the fibration on the right is the universal one (EU contractible), and
the fibration on the left is induced from it by p. Since p is just the p-fold
diagonal composed with p-fold loop multiplication and this last is compatible
under homotopy equivalence with the given H-space structure of BU, we may
apply the Whitney duality theorem to obtain:

*
D Ci = Zh+ ctip=i C2iyp * 0t Cogp

Now if we collect terms in this sum, we obtain a sum of terms of the form
3, - - - c3, corresponding to terms ¢, +-- czj, where ¢ of the c’s are
Coky 5 -+, @ Of the ¢’s are ¢, . For each choice of », g1, -+, ¢, and
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kyy -+, k., satisfying the conditions listed below, there are p!/(q! - - ¢,!)
such terms. Thus,

|
% R p‘ a1 . ndr
P Co; E ——Q1 ... o 1Czkl Cak,

where the sum is over integers q1, *++ , ¢, k1, + -+ , k. for 1 < r < psuch that
1<eppep=L--,na+ - +a=pak+ -+ ¢k =1 and
0< ki <ky<--- <k . Exceptfor anon-vacuous occurrence of the case
r = 1, which implies 7 = 0 (p), all of these coefficients are divisible by p.
Thus, if 2 # 0 (p), we have

p¥eai = peas + pdai
where ds; is decomposable.
If : = 0 (p), say ¢ = pj, then
P i = of; + Pba,
Therefore, mod p we have
p¥esi = 0 if 13 0 (p)
P = ofj

The naturality of transgression shows that in the fibration

o
U-Ls QBU,
7
BU

we have, in mod p cohomology, ¥2:—1 is transgressive, and
TYoia = 0 when < 5% 0 (p)
TYapia = €3 .

An application of the comparison theorem for spectral sequences {10], shows
that in the Serre spectral sequence of the above fibration,

Ew,-’UP(Cz,"' 7621"'”)/{05"”’03’]"”}
®E(y1;"' ;y2i—1:°")7 i§—é0(p).

Let 0(2, and @i , 1 % 0 (p), be classes in H*(QBU,:Z Z,) defined by
arj = 7' "y and 4 651 = Yai1. Then by Proposition 4.3 of the appendix,

H*@QBU, 32) ~ Plas, -+ g, ) /led? -+ oa? -+ )
®E(a;,--',agi-1,"’) ©# 0 (p)

asaleft P(as, -+, a5, )/{as? -+, ¥, -+ -} module.
When p is odd, this isomorphism is valid as algebras by 4.4, since then
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E(p, +++ ,Yeiz, - -+ ) isfree as an algebra. For any p, let
B8, : H(QBU, ; Z,) — H"™(QBU, ;Z,)

be the Bockstein operation associated with the coefficient sequence

02,22, "52,-0.
Then, Corollary 4.2 of the appendix gives
Bpasiy = 7 *(css + das) mod Bp(ker ¢/*) = ap; + d,

where d is decomposable, and in {a2 RN a;,' , +++}—the ideal in
H*(QBU, : Z,) generated by the s, j>0.

To obtain the algebra structure of H*(QBU; ;Z,) we must argue further.
By the above we have

H*(QBU;;Zy) = E(ay, -+ yanj, o) @ Eat, -+, ahiya,*++)

asaleft E(as, -, on; REERS] Ipodule. Also Sq* by = osiye + d where d is
a decomposable element in {as, ---, az, , -++}. Hence, since S¢*ysip1 =
Ysiy1 , We have

a4,+1 = Sq i+l = Sq Sq 05414—1 = Sql(aém + d,),

where d’ ekerz in dimension 8 + 1, and is thus decomposable and in
{Otz, L ,az,, ”‘}. Then,

O£41:+1 = Sqla;,;‘.l + Sql d, = Otgi.;.z + (d + Sql d’).

Smce Sq' is an E(asz, -+, as;, ) module homomorphlsm (8¢ is zero in
H*(BU : Zz)), we see that d” = d + S¢'d’ is decomposable, and in
fos, -+, a@s;, -++}. Therefore,

19 ’ 14 /2 2
Qi1 = agips + d” # 0, but oy = agina + d7° = 0.

(Note that asire + d” = 0 would give an indecomposable element in ker ='*.)
Now we can define an obvious map of algebras

E(a‘:""’a;j,"') ®P(a;)'°' 70‘;1'4-1"")/{0‘;4)”'70‘ig+17"'}
— H*(QBU,;Zy), j # 1 (4)

Clearly, in each dimension this map takes a vector space basis into a basis, and
hence is an isomorphism. Therefore, we have finally,

H*(QBU, : Zo) ~ E(as, -+, o, =+ )

®P(a;~;"' :a;%ly"')/{a?"" 7a;3+1}"'} j# 1(4)
as an algebra.
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Recall that the fibration

BU-% BU,

lw
SU
may be delooped to give

SU % BUA
7
BSU

where QBU, = BU, . Then the same argument as above gives
H*(BU;)ZP) 'RJ’P(&;, s, Oy, "')/{6‘27 vt 'a§j7 "'}
[0 E(&gp._l,au, s, Ogil, "‘)1 i?""‘ 0(p)

as an algebra for p odd. (The generator @, arises because there is no class
é3 for §ap to kill.) Forp = 2, we have

H*(BU;,Zz)%E(EM,"' )&21'"")
®P(a37""&4“-17"')/{&3)”';aii-l-l’”'}i 3#3’ J#l (4)
3.

To compute H*(BU, ;Z,) one would like to use a similar technique-
Namely, analyze the universal fibration

BU—-E

!
SU

and transfer the results to the fundamental fibration via p. Unfortunately,
this does not seem to work here. One can indeed analyze the above universal
fibration, and by changing the polynomial generators of BU, determine all the
differentials in the spectral sequence. However, since only some of the new
generators are transgressive, and the ones that are not pass further into the
spectral sequence upon transference by p, this does not seem very helpful, and
hence we proceed somewhat differently. To begin with, we recall two
theorems of Browder [3]. First

THEOREM 5.14. Let X be an arcwise connected, simply connected H-space;
then

03 QH (X ;Z,)) — P(HTH(9X ;Z,))
18 a monomorphism if 1 # 2 (2p) and an epimorphism if 1 # —1 (2p).
Secondly,

TaEOREM 5.8. Let w : E — B be a fibre map such that E and B are H-spaces
and = is multiplicative. Let the fibre of m be F. Then in the spectral se-
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guence of =,
E.RE"QE*QE( 2-)QE(---wj---)  for r>2,

where the filtration degree x; < r, and the complementary degree w; < r — 1.
Further, dim z; = p%(2m;) + 1 where 2m; s the dimension of some gen-
erator of H*(F : Z,) and dim w; = p'(2n;) — 1, where 2n; is the dimension
of some generator of H*(B ;Z,).

Now consider the previous universal fibration, and for ¢ % 0 (p), let z»; in
H*(BU ;Z,) be defined by #2; = ofzis1. Then by the first theorem above,

x2: # 0, and furthermore must be indecomposable. Otherwise, being primi-
tive, it would be a p*® power, which for dimensional reasons is impossible.

Remark. Ifi=0(p),says = p’k where k 5 0 (p), then
O M (Gapi1 1) = Topi ka1 -
Thus by induction on j we obtain
oot = 007 H(Gopi-11s1) = O H(olapi-1ra1) = (2B ) = al

where for p = 2, interpret @' as S¢™.
Since x2:, 7 #£ 0 (p), is indecomposable, we may write

H*(BUyzp) NP("' y L2y ° 0 ’62171':"'): 1# 0(1’), .72 1.

By the above remark, the c;,; are not transgressive, nor in fact is any indecom-
posable element of dimension 2pj.
Now consider the fibrations

BU-LBU, E<—BU
e ]
sSU -2, sv.

Then on the right, H*(SU ;Z,) ~ E(Fs, *++ , Jeiz1, - -+ ), and the Jospr are
primitive. So by the preceding, and the naturality of transgression, we have
on the left: x,;is transgressive for ¢ # 0 (p) and 122; = pPaeya = 0. Thus, for
i % 0 (p) let an; in H**(BU, : Z,) be defined by ¢*as; = 25;. Then in the
spectral sequence for w, P(-++, X2, -++), 2 % 0 (p), is contained in
im¢* = E%*. We want to show the above inclusion is also onto.

For this consider the following piece of the long exact sequence of spaces:

BU -2, BU
ld
BU, ™2, sU.

Note that we have previously written simply = for the more cumbersome =p.
Now, as is well known, if f : E — B is a map, then Ef is the fibre of the fibra-
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tion obtained by converting f to a fibration. Furthermore, if f was already a
fibre map with fibre F, then F = Ef. Thus in the above sequence we may
assume BU = E(=p), i = «'p and p is the inclusion of the fibre. Also, if in
the above discussion E and B are H-spaces and f is an H-map, then Ef is an
H-space in a natural way, and «f is a multiplicative fibre map. Giving all
spaces above the H-space structure of pointwise multiplication of maps, p is
multiplicative. Thus, 7 is a multiplicative fibre map, and so, we may assume,
is 7. Therefore, Browder’s second theorem on the structure of terms in the
spectral sequence of a multiplicative fibre map applies to both = and <.
Consider the spectral sequence of 4. Then imp*~ E%* =
P(c?,---,ck, - ),andim ¢* ~ E%°. Now Browder’s theorem says

E.~E:"Q Ex*® E

where F is an exterior algebra on odd-dimensional generators. Here, how-
ever, H*(BU ; Z,) has only even-dimensional elements, so that

E.~ EX° @ EY*

and 4.4 of the appendix gives H*(BU ;Z,) ~ im :* ® im p* as an algebra,
since im p™ is a polynomial algebra. Let the map

¢ :imp* — H*(BU ; Z,)

be the unique extension of the function c¢f; — czp; . Denote the inclusion
im ¢* — H*(BU ;Z,) by 9. Then the above isomorphism is given by

im * @ im p* 124, H*(BU ; Z,).

Now write
H*(BU;ZP) NP("' ax%)"') ®P("' ;62231'7"’)» i#O(p)) jZ 1
and denote the inclusion P(- -« , &g, +++) — im* by n’. Map

P("' y Lai "') ®P("' s C2pj 5 ~--)—>imi*®imp*, i#O(p) ]Z 1
by @ p*. Then (n ® ¢)(n" ® p*) is an isomorphism, since
1® )" ®p*) = (m) ®1

is a monomorphism, and both domain and range have the same finite dimension
in each degree. Thus s ® p* is an isomorphism also. Since

7 ®p" = (1)1,

and p* | P(- -+, capj, - -+ ) is an isomorphism (hence so is 1 ® p*), it follows
that 9" ® 1 is also an isomorphism. Now, considering all algebras simply as
graded vector spaces over Z,, let K be the cokernel of n’. Then the following
is exact (and splits):
!
00— P(--- ,my, ") 2 im - K—0.
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Tensoring with P(- -+ , ¢34, - - - ) gives the exact sequence
0._)P(... x2i,"‘)®P("’,02pj,"')

_77___®_1_) lm’i*®P("',02,,,‘,°'-)-—>K®P(°°-,02p,-,'-')-—->0.

Thus K @ P(«:-,¢ypj, *++) = 0, giving K = 0. Therefore,
imd* = P(, @i, 1), T # 0 (p).

We return now to our original fibration for BU, and determine the kernel of
x*. We remark first, that for 7 5 0 (p), We have = yzm # 0 (in fact is inde-
composable). If it were zero, then 0 = or ym.l 7' *ofirs = 7 %2, which
is false. Consider Fapjt1 , however Since J2p;y1 is primitive, and = is multi-
plicative, it follows that «*7zp;+1 must also be primitive. Suppose it were inde-
composable. Then by Browder’s first theorem we would have (if 7 = p* 'k

where k £ 0 (p))
0 # Uw*gsz.J, = T/*O'gzpj.,d = w’*xé’kq = 0.

Thus, 7*Faps41 is decomposable, and if it is not zero, it must be a p*® power of
a non-zero element of dimension h. But then we would have 2pj + 1 = ph
or p(h — 2j) = 1, which is absurd. Therefore 7*7zp;11 = 0, and Fap;yy is in
ker 7*. Thus, ker #* = ideal in H*(SU ;Z,) generated by the @41, and
imr* X Es®~E(-++,%un, --+) wheres # 0 (p). For these values of <,
define Ol2ii1 € H%.H(BUP H Zp) by 0241 = 7!'*3721:4.1 .
We will now show that
E,~ EX° ® Eg*.

Using the second quoted theorem of Browder we have
szE:'o ® E?o'* ® E("’ y Liy "’)’

(There are never any classes of type w, since these arise from even-dimensional
generators in the base, which do not exist here.) Let the ; be arranged by
total degree, so that x; has minimal dimension, and recall that dimension
;=1 (2p) foralls. Let u, be a classin H"(BU,;Z,) such that xu, = ;.
In this case the technique of 4.3 gives

1® q: B’ @ E* — H*(BU,; Z,)

is an algebra monomorphism, and an ssomorphism through dimension n — 1.
Since p, is least dimensional, if it were decomposable it would lie in the image
of n ® q. But then, passing to E , 2, would be in the image of y ® ¢, which
is false. Thus u, is indecomposable. Supposen = 2pj + 1. Then uyppisin
Q(H*(BU,;Z,)). Since BU,isahomotopy commutative, homotopy associ-
ative H-space, Milnor-Moore [7], Proposition 4.23 shows

P(H*(BU,;Z,))n = Q(H*(BUy;Zy))n
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for odd n. Thus we obtain a class uspsa in P(H*(BU, ;Z,)). But by the
suspension theorem of Browder quoted earlier, o is an epimorphism in this
dimension, s0 we get a class fapjpe in QCH*(BUY ¢ Z,)) with the property that
ofispirz = mapir1. Now there is only one indecomposable generator in this
dimension, namely &p;12. Since up to a non-zero field coefficient, c@ypire =
0 fizpj+2 , W€ MAY ASSUME fopj42 = Qgpj+2- Lhen, however, we get

I-‘;pﬂ-l = olgpjt2 = 0'77'*62m'+2 = 7"*0'52m'+2 =7 *gzpj+1 = 0,
which is a contradiction. Thus there are no classes z; and
E.~ Ex° ® E3*.
A final application of 4.4 gives

H*(BUp;Z,) % E(-++ yomip1,+++) @ P(+++ ,a0i,+++), 15 0(p)
as an algebra.

As an application of these results we may prove: in a Postnikov system for
BU,wehave k"™ = O forn < p, is unequal to 0 forn > p, and k% = @} 8,.
The first statement follows from dimensional considerations. For the last,
consider the 2p*® stage in a Postnikov system for BU,, .

K(Z,,2p) — (BUp)M)
L

2p—2

(BUp)2p-2 '—k““——’ K(Zp,2p + 1)
1
¥
K(Z,,2).

Let 4 denote the fundamental class of K(Z,, 2p). Then since 75** = k*77%,
if K = 0 4’ appears as an indecomposable element of H**((BU,)s ; Zp),
but this gives an indecomposable element of H**(BU, ; Z,), which is impos-
sible by the above. Thus k**™® 0. Since

(BUp)zpr = I1251 K(Z,, 2j)

it follows by dimension that 4% = @} 8,(s*), where ¢ is the fundamental
class of K(Z,, 2). Since higher k-invariants must suspend to %**~* by
periodicity, k> 5 0 for n > p.

Having this, one may also compute the primary ecohomology operation
that appears as dy,—; in the spectral sequence converging to KU*( : Z,).
Namely, the fact that it s a differential, i.e. has square zero, and must suspend
to k** by periodicity, shows that it must be @5 8, — 8, ®3 .

4. Appendix

Here we prove a general theorem on connecting homomorphisms in chain
complexes, and then, under some very special conditions, give a procedure for
finding the Bockstein operator mod p in the total space of a fibration. We
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shall also give a very mild generalization of a theorem of Serre [8], which we
used in §2 and §3.

Let § denote the connecting homomorphism associated with the following
exact sequence of torsion free integral cochain complexes:

0—-4-LBYL0—0.

We will denote the coboundary in either A, B or C by d. Then consider the
exact coefficient sequence:

0-z2z%z,-0

where p is multiplication by p, and r is reduction mod p, and denote by 8 the
connecting homomorphism associated with any one of the exact sequences:

0445 402,-0
0—-BELBLB®Z,—0

o-cBclLcez,—o0.

Note that we identify p = 1 ® p,r = 1 ® r. We shall also use the same
symbols for the induced homomorphisms in cohomology. We write also j, for
i®1:A®Z,— B Q® Z, etec.

Now i) : H(B ® Z,) — H(C ® Z,), and suppose 2 ¢ H(B ® Z,) is
such that shzeimr. Let 2y eH“(C) satisfy 7, = 7px. Consider
o2, e H'(A). Then roz; = 6,, 1% = 8p1p & = 0, 50 there is z, e H*™ (A) such
that px, = 6z, . Consuder ¥y e H “+1(B) Suppose we had chosen a1 instead
of 2:. Then r(z; — 21) = 080 @, — 21 = pF; and oz, — o2y = pdZ:, and
J 6x1 = 0, so the choice of z; is 1mmater1a1 Suppose however, we had chosen
x5 instead of ;. Then p(z; — xg) = 0and 2, — 2, = B%. Hence

Fx — g *5 = "85, = ﬂhxz.

Thus, we have that j*p~6r~ zp(x) is well defined modulo 8im ;% , or since
im j5 = ker iy , modulo 8 ker ¢ i,

TuroreM 4.1. Bz = j*p~or (s(z) mod 8 ker ¢y .

Proof. Let x = [b,]—the cohomology class of b, e B? ® Z,. Let b'e B
be such that 7o' = b, , and let b® ¢ B“™ be such that pb® = db'. Then, by
definition, Bz = [b°]. Now consider the diagram:

B-LB®Z,—0

| s

c-L0®2,—0

|

0 0.
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Let ¢' e C? satisfy r¢' = 4,b,. Since iyx = [i,b,) eim r in cohomology, ¢'
may be chosen to be a cocycle. Choose b® ¢ B¢ such that :b* = ¢!, and o' € 47"
such that ja' = db®. Then, by definition, [a'] = &7 i5(2z). Then

ri(b® — b') = rib® — b = rc' — 10" = pbp, — b, = O.
Thus, there is ¢’ € C? such that pc* = ¢(b* — b') = ¢! — b and b* ¢ B? such
that i* = ¢&. Now pdc® = d(c" — ib') = —dib' = — idb* = —ipb® = — pib’.
So since p is a monomorphism, we have dc® = —1b’, and hence
i(® + db*) = b + idb* = —dd* + d* = 0.
So, let a® ¢ A7 be such that ja* = b® 4+ db*, and consider pa’. pa’is a cocycle,
and [pa’] = p*7'8(z). Now

j(a" — pd®) = db® — pja® = db® — p(b® + db*) = db® — pb® — pdb*
5 = db® — db' — dpb* = d(b® — b — pb).
ut

i(® — b — pb') = ¢ — b — ipb* = ¢ — b' — pib*
=c — ' —pd =c — b — (¢ —d)=0.

Therefore, there is a’e¢A? such that jo* = b* — b — pb'. Thus,
j(a' — pa®) = djas = jda’, and since j is & monomorphism, we have finally,
o' — pa’ = da’. Therefore,

pi*8(x) = ortin(z) or B(z) = ;M7 V()
modulo indeterminacy in 8 ker ¢ .

CorOLLARY 4.2, Let (X, A) be a pair of spaces, and let

0— (X, 4) L 0(x) S ¢(4) -0

denote the short exact sequence of singular integral cochains. Then B is the Bock-
stein operator associated with the exact sequence

0—-Z—->Z—>2Z,—0.

8 is the connecting homomorphism of the pair (X, A) with integer coeffi-
cients and assuming 75 () € im r, we have

Br = j*p~'or *ip(x) modBkerdy.

Of course, if the above formula is reduced mod p, one obtains the same formula
for the Bockstein 8, associated with

0-2,2%2,52,-0,

with & replaced by the connecting homomorphism of (X, 4) with Z,: co-
efficients.
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Now consider a fibration
FLEZLB
We have a commutative diagram
o
H*(E, F) —— H*(E)
N /!
N
H*(B).
Suppose 2 e H(E ;Z,) is such that i‘; Z eim r, where
in  H*(E ;Z,) — H*(F ;Z,)

and suppose further that there i I8 2 + iy such that z, is transgresswe
Then we have Ya € H (B) with 7/*y, = 82,. Assume now y,, = py, . Then

pr' ¥y, = 1r *pys = 7™y, = d2,. Hence for an element in p~*or 4} = we may
choose 7’ yx . Then

PFr*y. = ¥y, = j¥ptor s x = Bz mod B ker .

Therefore we obtain finally the following procedure. Let ze H(E ; Z,)
satisfy the following properties:

(1) <y zeimr.
(ii) Thereis a 2z; in 1% = which is transgresswe
(iii) There is ¥, in 72, such that y, = DYs .

Then, mod 8 ker i we have gz = = e
For the theorem of Serre, let

FLESB

be a fibration, and suppose that in the spectral sequence of = (with coefficients
in a field K) we have

E.,~ Ex* @ E*
the isomorphism being the one given by inclusion. Then
Prorostrion 4.3. H*(E) ~ @ Ex*asa left E%° module.

Proof. We have the following two standard commutative diagrams:

E3 *

HYE) —— HYF) H?(B) -~ H?(E)
N W N .
X\\ //"7 X\\ /"7

E% E2°

where, in each case, x is an epimorphism and 5 is a monomorphism. So, let
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g: B3 — H ?(E) be an additive right inverse for x, i.e. x¢ = 1. Consider
the map

n® q: Ex® @ E"* — H*(E)
and filter the left hand side by
FP(E%® @ Ea¥) = 2ip B @ ES™.
Then n @ ¢ is filtration preserving, and induces
7® q: B ® B — EL¥,

which is an isomorphism by assumption. Thus 7 ® ¢ is an isomorphism.
Since n ® ¢is clearly an Fx%"° module homomorphism, the proposition is proved.

CoROLLARY 4.4. The above isomorphism 1is valid as algebras iff ¢ may be
taken to be an algebra homomorphism, for example, when Ew* is free as an algebra.
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