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1. Introduction
This paper is intended to be the first of several investigating the structure

of K-theory with coefficients. Here we shall be concerned with the mod p
cohomology of the classifying space for complex K-theory mod p. 1 is intro-
ductory and concludes with a definition, and elementary properties, of the
space BU,. In 2 we calculate the cohomology ring H*(BU,;Z), and
in 3 the ring H*(BU,;Z,). 4 is an appendix, and contains a technical
lemma on Bockstein operations, which is used in the calculation of 2. These
results formed a portion of the author’s doctoral dissertation submitted to
Columbia University, and the author would like to thank Professor Samuel
Eilenberg for his support, Professor Donald Kahn for his encouragement, and
Professor Eldon Dyer for his critical reading of this thesis.

If X and Y are topological spaces with basepoints x0 and y0 respectively,
then we will denote by (X, Y) the space of (free) maps from X to Y, topolo-
gized by the compact open topology. (X, Y)" will denote the space of base-
point preserving maps. The corresponding homotopy classes of maps will be
denoted by [X, Y] and [X, Y]’. X/ Y, the "smash" product of X and Y, is
the space formed from X X Y by collapsing X X y0 u x0 Y to the base-
point. The adjointness relation (X/ Y, Z)" (X, (Y, Z)’)" is valid when
Y is locally compact and regular, X is Hausdorff, and Z is arbitrary [6].
Most of our applications will have X a CW-complex, and Y a finite CW-com-
plex. Given a sequence of spaces and basepoint preserving maps

--* Xn+l -- Xn - X._I

we say e is exact if the sequence

[Y, el’: ’’--- [Y, Z+]" --* [Y, X.]" --. [Y, X,-ll" --is exact for any Y, and co-exact if the sequence

[e, Y]’: -. [X_, Y]" --. [X, Y]" -. [X+, Y]’-*

is exact for any Y.
Let I denote the unit interval [0, 1], and define

eY (I, Y)’-- Y and Y Y--- I / Y

to be, respectively, the projection of a path to its endpoint, and the inclusion
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of Y to the base of the cone on Y. If f" X -. Y is a basepoint-preserving
map, Ef is defined by requiring that the following be a pullback diagram in the
category of spaces and basepoint preserving maps"

f --- (I, r)"

x _g
Dually, define fby requiring ha he following be a pushou diagram:

xg

IAX Cf
Then

EFX
is a fibration (satisfies the ACHP) and

r c
is a cofibration (satisfies the AHEP). Letting 8Y Ef be the inclusion of
the fibre, and Cf-- SX the projection mapping Y to the basepoint, the
sequence

f.... --, f-z r f x r
is exact, and the sequence

f X Y C] SX Sf. SY SCf

is co-exact. We shall call ff the Puppe sequence of L and f the co-Puppe
sequence of f. In the following lemma, which is proved in [9], the sbol

between two sequences means each term in one is naturally homeomorphic
to the corresponding term in the other, and the homeomorphisms coute
th the maps of the sequences.

IEMMA 1. Le$ f X Y be a basepoin preserving map.
(i) If Z is a finite CW-complex, then

(z, /)" (z,/)’.
(ii) U Z or X is a finite CW-complex, then

ef z e(f z).
(fii) If X is a finite CW-Complex, $hen

(eL z)" (L z)’.
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Remark. The assumptions of Lemma 1 are clearly stronger than necessary,
but since these conditions suffice for what follows, we use this formulation for
convenience.
Now, let

be a map of degree m, and write L(m, 2) for m. Then the co-Puppe sequence
of m gives a co-exact sequence"

era" S s=- L(m,2) S m_ s._., i(m, 3 ....
Note that

H(L(m,n) ;Z) Z if i= n

0 otherwise

Also, L(2, 2) RP--the real projective plane. By Lemma 1 (ii),
m X (m X), so we obtain another co-exact sequence:

-X mAX-X L(m,n) XX m Xx
Thus, if is any half exact functor in the sense of Dold [5], applying gives an
exact sequence:

t(X) t(mAX)t(X)t(L(m,n) AX)
t(_X) t(m A X) t(-)

By 3.5 of [5], t(m A X) is multiplication by m. Therefore, if we put

t--(x) t(s.x)
and

t-’(X; Z) t(L(m, n) A X)

the usual urgument gives a universM coefficient sequence:

o t-(x) z t-’(x; z) Tor (t-’+(X) ;Z) 0.

Also, the above long exact sequence may be conveniently recorded as a singly
graded exact couple:

c*(x) c*(x)
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where i multiplication by m and is of degree 0, j is reduction mod m and is
of degree 0, and k is ar extraordinary Bockstein operation of degree W 1 as-
sociated with the coefficient sequence

o- z-% z z-, o
where m multiplication by m and r reduction rood m. This couple leads,
of course, in the usual way to a Boekstein spectral sequence as in [4]. We
hope to exploit this in a later paper.
Now let U be the infinite unitary group and BU its classifying space.

Then SU, the infinite special unitary group, is the simply connected covering
group of U, and BSU, its classifying space, is a 2-connected fibre space over
BU. As is well known, [2], if we denote by 20 X the component of the con-
stant loop in X, by . a simply connected fibre space over X, and by a
2-connected fibre space over X, then

oBU BU, U U, 2SU SU, and 2BSU BSU.

In the above discussion, put BU]*, and let

R-’u(i ;z) t-’(x ;z.).
Then

/-(X ;Z,n) [L(m, n) / X, BU]"
_, [L(m, n) / X, fl2BSU]"

[S’*-L(m, 2)/ X, flBSU]"
[S’*X, (L(m, 2), BSU)’]’.

These spaces (L(m, 2), BSU)" will then be the classifying spaces for complex
K-theory mod m, and we will denote them by BUm. Putting X S in the
universal coefficient sequence above gives an exact sequence"

0 ---. r,,(BV) (R) Z,, ,(BU,n) Tor (’,_I(BU), Zm) --* 0.

Therefore, BUm is connected and since

r,,(BU) Z, n even

0, n odd
we have

r,(BUm) Zm n even-- 0 nodd

Moreover, BUm has the homotopy type of the component of the constant map
in (L(m, 2), BU)’, and hence 2) BUm BUn.
In 2 and 3 respectively, we shall compute the ring structures of

H*(2BU, ;Z) and H*(BU ;Z) for p a prime. In the integral case this



554 MYLES TIERNEY

was done by Borel [1], and the results are:

H*(U;Z)E(I, ,...)

H*(BU; Z) P(c2 c4 ...)

where the ci are the universal Chern classes, and are images of the .;-1 under
transgression. Notice that we have deviated from the standard notation by
indexing these classes by their dimensions. Thus, for example, our c2i is
ordinarily written ci. This convention will make it easier to keep track of
dimensions in the computations that follow. Similarly,

H*(SU ;Z) E(, ,...)

H*(BSU ;Z) P(4, 6,"’),

where if r denotes transgression in the universal fibration, r2-1 2,
i>2.

In order to use these results and the standard tool of algebraic topology
for calculating cohomology, namely spectral, sequences, we put BU, as total
space in a fibration whose base and fibre, up to homotopy type, are SU and
BU respectively. So consider the co-Puppe sequence

.I P_ sl ___> L(p, 2) -- _2 .2 __._>

defined above for p prime. Putting BSU in the second variable and applying
Lemma I, we obtain a fibration

gtBSU ---> BU,

BSU tBSU,
where we denote the map (p, BSU)" again by p. Up to homotopy equivalence
we may rewrite this as

BU ---+ BU

zv Z zv.
Again by Lemnm 1, this fibration is induced by p from the universal fibration
over SU with fibre BU. For technical reasons, which will become apparent
later, we wish to deloop this fibration. So, consider the fibration

K(Z, 2) -+ EI

SU K(Z, 3)
and let z H(SU Z) -- H-I(BU Z) denote the suspension. Then
clearly, a c--the first universal Chern class. Thus, applying 2 to this
fibmtion gives

K(Z, 1) fEIV

BU K(Z, 2)
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and tE#, =- BSU. Now if we put our co-Puppe sequence for

in the first variable, and EIa in the second, we obtain a fibration

22E (L(p, 2),

E? 2, E?.
Let us denote (L(p, 2), E)" by BU. Then, gMn up to homotopy, we
my rewrite this s

SU BU
BSU BSU,

and this fibration has the property that 9 applied to it gives our original
fibration for BU.

Here we shall begin the calculations by computing H*(OBU,; Z).
Towards the end of the calculation we shall have to make a distinction be-
tween the cases p odd and p even, but for now, p will denote any prime. So,
consider the fundamental fibration

BU i_ BU,

zv-L zv
nd apply
We obtMn

.!

U z-2BU, EU-- U

Bu P._P- BU

where the fibration on the right is the universal one (EU contractible), and
the fibration on the left is induced from it by p. Since p is just the p-fold
diagonal composed with p-fold loop multiplication and this last is compatible
under homotopy equivalence with the given H-space structure of BU, we may
apply the Whitney duality theorem to obtain:

P C2i .dJl+ -.+3’p----’--i C2jl C2ip

Now if we collect terms in this sum, we obtain a sum of terms of the form
ql qr
C2kl"’’C2kr corresponding to terms c2’1 c2’ where ql of the c’s are

ckl ,--., qr of the c’s are c2r. For each choice of r, q,.-- qr, and
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kl, k, satisfying the conditions listed below, there are p!/(ql! q,!)
such terms. Thus,

@ ql qrp c2
p

C2kl C2krq q

where the sum is over integers q, q, k, ,k for i <_ r <_ p such that
1 <_ q <_ p, g 1,... r, q -{- -{- q p, qlk -{- -{- qk i, and
0 _< kl < k < < k. Except for anon-vacuous occurrence of the case
r 1, which implies i 0 (p), all of these coefficients are divisible by p.
Thus, if i 0 (p), we have

,
p c2 pc2 pd

where d is decomposable.
If i 0 (p), say i pj, then

p cs, cs 2r pb,

Therefore, mod p we have

p c 0 if iF6 0(p)

p c.. c.
The naturality of transgression shows that in the fibration

i’U --. 2BUp

BU

we have, in mod p cohomology, y._ is transgressive, and

ry._ 0 wheni 0(p)

rys._ cs..
An application of the comparison theorem for spectral sequences [10], shows
that in the Serre spectral sequence of the above fibration,

Eoo P(c. ,... csi ...)/{c ,... c2. ...}

(R) E(yl,...,y2_I,...), i O(p).

Let a2j and a_, i 0 (p), be classes in H*(BU," Z) defined by
aj c2# and - s- Y2i-1. Then by Proposition 4.3 of the appendix,

!pH*(OBU Z) P(a as ...)/{as a.# ,...}

(R) E(a!, ,a._x,...) i 0 (p)

as a left P(as, a2#, ...)/{as a. ..} module.
When p is odd, this isomorphism is valid as algebras by 4.4, since then
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E(yl, y2-1, ) is free as an algebra. For any p, let, H’(BU, ;Z) -- H"+I(BU, Z,)

be the Bockstein operation associated with the coefficient sequence

0 - Z -P Z ___,r Z - 0.

Then, Corollary 4.2 of the appendix gives., a2-1 ’*(c + d) mod fl(ker i’*) a2’ + d,

where d is decomposable, and in {a,..., a, ...}the ideal in
H*(BU Z) generated by the a, j > 0.
To obtain the algebra structure of H*(BU ;Z) we must are further.

By the above we have

H*(flBU ;Z2) E(a a2 @ E(al aal ,’’"

as left Ea, a, module. Also Sq d where d is
decomposable element in {a, a, }. Hence, since Sq y

ys+, we hve

where d’ ker i’* ia dimensioa 8i W I, aad is thus decomposable ad ia
Then,

/2 d/a4+= Sq as+ + Sq as + (d W Sq d).

Since Sq is an E(a, at, module homomorphism (Sq is zero in
H*(BU Z)), we see that d d Sqd is decomposable, and in
{a,...,a,’-’}. Therefore,

d t4 t da+ as+ 0, but a+ as+x+ 0.

(Note that a’s+ + d’ 0 would give an indecomposable element in ker w’*.)
Now we can define an obvious map of Mgebms

,..., ...) ..., ...,
---, H*(aBU. ;Z), j 1 (4)

Clearly, in each dimension this map takes a vector space basis into a basis, and
hence is an isomorphism. Therefore, we have finally,

H*(BU Z.) E(a, a2, ...)
14 I4

(R) P(a,...,al,...)/(a,...,a+,...} j 1 (4)
as an algebra.
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Recall that the fibration

may be delooped to give

BU i_ BU,

SU

zu BU;

BSU

where 2BU’ =-- BU,. Then the same rgument as ubove gives

H*(BU ;Z) P( ., a: ..)/{a

@ E(av_,a,... ,a2_,...), i 0 (p)

as an algebra for p odd. (The generator a:v- arises because there is no class
5 for 2v- to kill.) For p 2, we have

H*(BU2 ;Z) E(a4, a2, ...)

3.
To compute H*(BU;Z) one would like to use similar technique.

smely, 8nslyze the universs1 fibrstion

BUE

SU

8nd trsnsfer the results to the fundsments1 fibrstioa vi8 p. Uafortunstely,
this does not seem to ork here. One on indeed 8nslye the bove universs1
fibrstion, 8rid by ohsnging the polynomis1 generators of BU, deterne 811 the
dierentisls in the speotrs1 sequence. However, since only some of the new
generators 8re trsnsgressive, 8nd the ones thst 8re not pss further into the
spectrs1 sequence upon trsnsference by p, this does not seem very helpful,
hence e proceed somehst dierently. To begin with, e recsll two
theorems of Browder [3]. First

TsOM 5.14. Le X be an arcwise connected, simply connected H-space;
$hen

Q(H’(X ;Z,)) P(H{-(X ;Z))

is a monomorphism iIi 2 2p and an epimorphism iIi 1 2p ).

Secondly,

To5.8. Le E B be a fibre map uch ha E and B are H-paces
and is muliplicaive. Le he fibre of be F. Then in he spectral se-
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quence of r,

E E* ’ (R) E’* (R) E(... x ...) (R) E(... w...) for r >_ 2,

where the filtration degree x < r, and the complementary degree w < r 1.
Further, dim x pq(2m) i where 2m is the dimensi of some gen-
erator of H*(F Z) andmw p (2n) 1, where 2n is the dimension
of some generator of H*(B ;Z).

Now consider the previous universal fibration, and for i 0 (p), let x: iu
H(BU ;Z) be defined by x +. Then by the first theorem above,
x 0, and furthermore must be indecomposable. Otherwise, being primi-
tive, it would be a p power, which for dimensional reasons is impossible.

Remark. If i 0 (p), say i pk where k 0 (p), then

Thus by induction on j we obtain

/Xi-1

where for p 2, interpret as Sq.
Since x2, i 0 (p), is indecomposable, we may write

H*(BU;Z) P(...,x,...,c,...), i 0 (p), j 1.

By the above remark, the c2 are not transgressive, nor in fact is any indecom-
posable element of dimension 2pj.
Now consider the fibratioas

BUBU EBU

sv su.
Then on the right, H*(SU ;Z,) E(a, +, ), and the + are

primitive. So by the preceding, and the naturality of transgression, we have
on the left" x: is transgressive for i 0 (p) and rx p+ 0. Thus, for
i 0 (p) let a in H(BU’Z) be defined by i*a x. Then in the
spectral sequence for v, P(..., x, ...), i 0 (p), is contained in
im i* E*. We want to show the above inclusion is also onto.
For this consider the following piece of the long exact sequence of spaces"

BU P> BU

BU vp SU.

Note that we have previously written simply for the more cumbersome vp.
Now, as is well known, if f E B is a map, then Ef is the fibre of the fibra-
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tion obtained by converting f to a fibration. Furthermore, if f was already a
fibre map with fibre F, then F El. Thus in the above sequence we may
assume BU E(’p), i .p and p is the inclusion of the fibre. Also, if in
the above discussion E and B are H-spaces and f is an H-map, then Ef is an
H-space in a natural way, and f is a multiplicative fibre map. Giving all
spaces above the H-space structure of pointwise multiplication of maps, p is
multiplicative. Thus, is a multiplicative fibre map, and so, we may assume,
is i. Therefore, Browder’s second theorem on the structure of terms in the
spectral sequence of a multiplicative fibre map applies to both v and i.

Consider the spectral sequence of i. Then imp* E*
P(c, c, ), and im i* E’. Now Browder’s theorem says

E E’ @ E* @ E

where E is an exterior algebra on odd-dimensional generators. Here, how-
ever, H*(BU ;Z) has only even-dimensional elements, so that

E E’ @ E*
and 4.4 of the appendix gives H*(BU ;Z) im i* im p* as aa algebra,
since im p* is a polynomial algebra. Let the map

q im p* H*(BU Z)

be the unique extension of the function c+ + c+. Denote the clusion
im i* H*(BU Z) by . Then the above isomorphism is given by

imi* imp*.V @.q) H.(BU Z).
Now write

H*(BU ;Z) P(... ,x,...) @ P(..., c],...), i 0 (p), j 1

and denote the inclusion P(... x, + im i* by ’. Map

P(...,x,...)@P(...,c+,...)+imi*@imp*, i0(p) j>_l

by v’ p*. Then ( q)( @ p*) is an isomorphism, since

is monomorphism, and both doma and range have the same finite dimension
iu each degree. Thus ’ @ p* is an isomorphism also. Sce,, p*= (,, p*),

and p* [P(... c+, is an isomorphism (hence so is 1 @ p*), it follows
that @ I is also an isomorphism. Now, considering all algebras sply as
graded vector spaces over Z, let K be the cokernel of v. Then the following
is exact (and splits)"

O+ P(... ,x:i ...) im i* + K+O.
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Tensoring with P(... c, gives the exact sequence

0--+ P(... x, ...) (R) P(..., c., ...)

’ (R) 1 .. "..)--K(R)P(..- c2,.im (R) P(. c.,, ) --- 0.

Thus K (R) P(..., cv;, ...) 0, giving K 0. Therefore,

imi* P(...,x,...), i 0(p).

We return now to our original fibration for BUv and determine the kernel of.
r We remark first, that for i g 0 (p), we have *-r y2+ 0 (in fact is inde-
composable). If it were zero, then 0 r y+l r y.+l r x, which
is false. Consider 7+, however. Since 7j+1 is primitive, and r is multi-
plicative, it follows that *"r y,,+ must also be primitive. Suppose it were inde-
composable. Then by Browder’s first theorem we would have (if j pa-lk
where k 0 (p))

0 rr y.j+ r y+ O.

Thus, *- pr y+l is decomposable, and if it is not zero, it must be a power of
a non-zero element of dimension h. But then we would have 2pj + 1 ph
or p(h 2j) 1, which is absurd. Therefore *-r Y’+I 0, and +x is in
ker *. Thus, ker r ideal in H*(SU ;Zv) generated by the ?.v+1, and
im r E’ E(... 9.+1, "") where i 0 (p). For these values of i,

H+(BU Z) by a,+x *-define a+x e r y.+.
We will now show that

E= E*’ (R) E*.
Using the second quoted theorem of Browder we have

*’ (R) (R) E(..., ).

(There are never any classes of type w, since these arise from even-dimensional
generators in the base, which do not exist here.) Let the x be arranged by
total degree, so that x has minimal dimension, and recall that dimension
x =- 1 (2p) for all i. Let , be a class in H’(BU, ;Z) such that x#. x.
In this case the technique of 4.3 gives

, (R) q" E*’ (R) E*---- H*(BU, ;Z)

is an algebra monomorphism, and an isomorphism through dimension n 1.
Since is least dimensional, if it were decomposable it would lie in the image
of v (R) q. But then, passing to E, xl would be in the image of v (R) q, which
is false. Thus . is indecomposable. Suppose n 2pj -t- 1. Then #+ is in
Q(H*(BU Z) ). Since BUis a homotopy .commutative, homotopy associ-
ative H-space, Milnor-Moore [7], Proposition 4.23 shows

P(H*(BUv ;Zv)) Q(H*(BU, ;Zv))n
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for odd n. Thus we obtain a class g.+ in P(H*(BU;Z,)). But by the,
suspension theorem of Browder quoted earlier, a is an epimorphism in this
dimension, so we get a class .+ in Q(H*(BU Z) th the property that
ag+ +. Now there is only one indecomposable generator in this
dimension, namely a+. Since up to non-ero field coefficient, aa+
ag,+, we may assume gi+ ai+. Then, however, we get

2i+ 2i+2 *2+ * *-C2+ Y2+ O,

which is a contradiction. Thus there are no classes x and

E E’ @ E*.
A final application of 4.4 gives

H*(BU ;Z) S(..., a2,...) @ P(..., a2,, ...), i 0 (p)

as an algebra.
As an apication of these results we may prove" a Postnikov system for

BUwe have k2- 0 for n < p, is unequal to 0 for n p, and k- .
The first statement follows from densional considerations. For the last,
consider the 2p stage in a ostnikov system for BU.

K(Z, 2p) (BU)2

2p--2
(BU)2_ K(Z, 2p + 1)

K(Z ,2).

Let i denote the fundamental class of K(Z, 2p). Then since T{ k2-,
if k2-2 0 i2 appears as an indecomposable element of H2((BU) Z),
but this ves an indecomposable element of H(BU ;Z), which is impos-
sible by the above. Thus- 0. Since

(BU,)_ H5 K(Z,,

it follows by dimension that k- (i), where i is the fundamental
class of K(Z, 2). Since higher k-invariants must spend to k- by
periodicity, k2- 0 for n p.
Having this, one muy also compute the primary cohomology operation

that appears as d2- in the spectral sequence converging to KU*( Z).
Namely, the fact that it is a differential, i.e. has square zero, and must suspend
to k2-2 by periodicity, shows that it must be .

,4. Appendix

Here we prove a general theorem on connecting homomorphisms in chain
complexes, and then, under some very special conditions, give a procedure for
finding the Bockstein operator mod p in the total space of a fibration. We
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shall also give a very mild generalization of a theorem of Serre [8], which we
used in 2 and 3.

Let denote the connecting homomorphism associated with the following
exact sequence of torsion free integral cochain complexes"

o AA  c o.
We will denote the coboundary in either A, B or C by d. Then consider the
exact coefficient sequence"

o- z zLz - o
where p is multiplication by p, and r is reduction rood p, and denote by/3 the
connecting homomorphism associated with any one of the exact sequences"

O--,AP._A r._A(R)Z---O
O---, B P-P B r-- B (R) Z--,0

oCLCC(R) zo.
Note that we identifyp 1 (R) p,r 1 (R) r. We shall also use the same
symbols for the induced homomorphisms in cohomology. We write alsoj for
j (R) I’A (R) Z-- B (R) Z etc.
Now i*’Hq(B (R) Z)- Hq(C (R) Z), and suppose x eHq(B (R) Z) is

such that i* x e im r. Let x Hq(C) satisfy rx i* x. Consider
x Uq+ A Then rx 4 rx 4 i* x O, so there is x. Uq+ A such

"* Hq+ B "that px. 6x. Consider 3 xo. e ). Suppose we had chosen x xnstead
ofx. Thenr(x-- x) Osox-- x pund6x tx pl, and
3 6xx 0, so the choice of x is immaterial. Suppose, however, we had chosen
x instead of x. Then p(x x) 0 and x x. f:. Hence

$ .$ $

$ --i^ --I .$

Thus, we have that 3 P or (x) is well defined modulo im3, or since
.$"* "* modulo g kerlm3p ker ,,

THEOREM 4 1 X "* - - "* "*=3 P or (x) modgker.

Proof. Let x [b]--the cohomology class of b Bq (R) Z.
be such that rb b, and let b Bq+e be such that pb db.
definition, Ox [b]. Now consider the diagram"

B-r--B(R) Z -- 0

C---r C (R) Z---O

0 0.

Let b e Bq

Then, by
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.$Let C e C stisfy rc i b Since x [i b]
may be chosen to be a cocycle. Choose b
such that ja db. Then, by definition, [a] r-i* (x). Thea

ri(b b) rib rib rc i,rb i,b,- i,b, O.

Thus, there is c Cq i(b b c b Bqe such thatpc ib and e such
thatib c. Nowpdc d(c ib) --dib idb -ipb pib.
So since p is a monomorphism, we have dc -ib, and hence

i(b’ db) ib W idb --de’ dc O.

So, let a Aq+ "a be be such that 3 q- db, and consider pa. pa is cocycle,
and [pa] pj*- x Now

j(a pa) db pja db p(b q_ db) db pb pdb
db- db

_
dpb d(b- b _pb).

But

i(b b pb) c ib ipb c ib pib
c-ib-pc d-ib- (c*-ib)=0.

Therefore, there is a b bAq such that ja pb. Thus,
j(a pa) djaa jda, and since j is a monomorphism, we have finally,
a pa da. Therefore,

pj*-i(x) r-i*(x) or (x) j*p- r-i*(x)
modulo indeterminacy in ker i*.
Conohnv 4.2. Let X, A) be a pair of spaces, and let

0 ----> C(X, A) J- C(X) i_) C(A) 0

denote the short exact sequence of singular integral cochains. Then is the Bock-
stein operator associated with the exact sequence

0-- Z--, Z-- Z --* 0.

is the connecting homomorphism of the pair (X, A) with integer coeffi-
cients and assuming i* (x) e im r, we have

X $ --1,, --1.* .*
=3 P or ztx) modflker.

Of course, if the above formula is reduced rood p, one obtains the same formula
for the Bockstein associated with

0 Z &Z Z -, O,

with a replaced by the connecting homomorphism of (X, A) with Z co-
efficient
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Now consider a fibration

Fi_+E_+B.
We have a commutative diagram

H*(E, F) 3 H*(E)

H*(B).
Suppose x e Hq(E ;Z) is such that x e im r, where

’*" H*(E Z) -+ H*(F Z)
--1and suppose further that there is z e r x such that z is transgressive.

Then we have y e H+(B) th*y z. Assume now y py:. Then
pv*y: *-py y z Hence for an element in p-r-’* x we may
choose ’*y:. Then

Therefore e obtain n1]y he folloing prooedure. Le z e (;Z)
sisfy he foIIong properties"

(ii) There is z, in - "*z z hioh is rnsgressive.
(iii) There

Then, rood ker C: e vez = .
For he heorem of Serre, le

FIEB
be a fibration, and suppose that in the spectral sequence of r (with coefficients
in a field K) we have

E E*’ (R)

the isomorphism being the one given by inclusion. Then

Pooso 4.3. H*(E) E’ E* as a left E’ module.

Proof. We have the following two standard commutative diagrams"

H+(E). HH(F) (B)- H(E)

E E’
where, in each case, x is an epimorphism and is a monomorphism. So, let
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q E --+ Hq(E) be an additive right inverse for x, i.e. xq 1. Consider
the map

(R) q" E*+’ (R) E’*---+ H*(E)
and filter the left hand side by

F (R) Z: (R)

Then (R) q is filtration preserving, and induces

(R) q" E’ (R) E* -+ E’*,

which is an isomorphism by assumption. Thus v (R) q is an isomorphism.
Since v (R) q is clearly an E+*’ module homomorphism, the proposition is proved.

COROLL+RY 4.4. The above isomorphism is valid as algebras iff q may be
taken to be an algebra homomorphism, for example, when E* isfree as an algebra.

IEFERENCES
1. A. BOREL, Sur la cohomologie des espaves fibrds principaux et des espaces homognes

de groupes de Lie compacts, Ann. Math. (2), vol. 57 (1953), pp. 115-207.
2. R. BOTT,. The stable homotopy of the classical groups, Ann. Math. (2), vol. 70 (1959),

pp. 313-337.
3. W. BROWDER, On Differential Hopf algebras, Trans. Amer. Math. Sou., vol. 107

(1963), pp. 153-176.
4., Torsion in H-spaces, Ann. Math. (2), vol. 74 (1961), pp. 24-51.
5. A. DOLD, Half exact functors and cohomology, mimeographed notes, Seattle 1963.
6. S. T. Hu, Homotopy Theory, Pure and Applied Mathematics, vol. VIII, Academic

Press, New York, 1959.
7. J. MLNOR AND J. MOORE, On the structure of Hopf algebras, Ann. of Math. (2), vol.

81 (1965), pp. 211-264.
8. J. P. SERRE, Homologie singulire des espaces fibrds, Applications, Ann. Math. (2),

vol. 54 (1951), pp. 425-505.
9. M. TIERNEY, Some applications of a property of the functor El, Pacific J. Math., vol.

24 (1968), pp. 401--411.
10. E. (. ZEEMAN, A proof of the comparison theorem for spectral sequences, Proc. Cam-

bridge Philos. Sou., vol. 53 (1957), pp. 57-62.

RCE UNIVERSITY
HOUSTON TEXAS


