INVARIANT AND EXTENDIBLE GROUP CHARACTERS

BY
I. M. Isaacs

1. Let @ be a finite group and let N A G. Suppose x ¢ Irr (), the set of
irreducible complex characters of N and that x is invariant under the action of
G. We seek conditions sufficient to guarantee that x can be extended to G,
in other words that there exists 8 e Irr (G) with 8 | N = x. A related question
which is considered in §2 is the following. Suppose N € H A @G and that x
can be extended to H. What conditions will guarantee that some extension of
x to H is invariant in G. In this paper we will provide sufficient conditions
for both problems provided that N has a normal solvable subgroup N, such
that x | N is irreducible. In particular, our results apply if NV is solvable.
Although both of the theorems proved here may be true without this assump-
tion, these proofs depend strongly on solvability.

We begin with some general remarks which are probably well known. (For
instance see [1].) Let ¥ be a representation of N which affords x. Since yx is
invariant in G, for each g ¢ G there exists a matrix Y, such that for all & ¢ N,

(%) Y EMR)Y, = £(g hg).
Since x is irreducible, it follows from Schur’s lemma, that
(%) Yﬂ; Y, = f(g, 92)Yﬂ1vz

where f is a function from G X @G into the complex numbers. We may choose
the Y, in the following manner. Pick a transversal T for the cosets of N in G
with 1 ¢ T and define Y, arbitrarily such that (x) is satisfied for 1 = ¢ e T.
Set Y, = I, the unit matrix. For arbitrary ¢ e G, write g = in for ¢ ¢ T and
neNandput Y, = Y, X(n).

The function f associated with this choice of the Y, satisfies

flim, bme) = f(t, &)

for all ¢; ¢ T and n; ¢ N and because of this f defines a function f on G/N X G/N
and f is a factor set of G/N. If fis a coboundary, then for some function &
on G/N we have

Fy) = a@)a(y)/ay)
for z, y ¢ G/N. This defines a function « on G which is constant on the cosets
of N such that
f(g1s 92) = alg)a(g)/a(g go).
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It follows from this and (sx) that the map g — a(g)™'Y, is a representation of
G and since f(1,1) = 1, wehave a(g) = 1for g e N and thus this representation
is an extension of ¥.

Now by a theorem of Gaschiitz (Thm. 15.8.3 of [4]), it follows that a condi-
tion sufficient to guarantee that f is a coboundary is that for each prime
p | [G: N1], the restriction of f to some Sylow p-subgroup P/N of G/N is trivial.
If for each such prime, a P can be found such that x can be extended to P,
then an extension X» of ¥ to P exists and forte T'n P, we may let Y, = ¥5(¢).
The resulting factor set f satisfies f(x, y) = 1 for z, y ¢ P/N and this proves

ProrositioN 1. If for each prime p | [G:N], x can be extended to the inverse
image in G of some Sylow p-subgroup of G/N, then x can be extended to G.

A general result about extendible characters which we use repeatedly ap-
pears as Theorem 2 of [2]. We state it here as

ProrosiTioN 2. Suppose x has an extension 6 ¢ Irr (G). Let 8 ¢ Irr (G/N)
be viewed as a character of G. Then 86 ¢ Irr (@), all B9 are distinct for distinct
B e Irr (G/N) and any 6, € Irr (G) with x a constituent of 6, | N is of the form
80 for some B € Irr (G/N').

In particular, it follows from Proposition 2 that the set of extensions of x to
G is {N\0 | N is a linear character of G/N} where 8 is any given extension.

Tueorem 3. Let G/N be a p-group and suppose that a Sylow p-subgroup of
G 1s abelian. Suppose there exists No A N such that N, ts solvable and x | No is
irreducible. Then x s extendible to G.

Proof. By double induction on | N | and for each value of | N | on [G:N].
Note that the theorem is trivial if | N | = 1 orif [(:N] = 1. We may assume
that No = S(), the maximal solvable normal subgroup of N, so Ny A G.
If Ny < N then by induction and Proposition 1, ¢ = x | N can be extended to
¢ onGsoxande | N are both extensions of ¢ to N. Thus x = Ne | N) where
\ is a linear character of N/N,. Since x and ¢ | N are both invariant in G, it
follows from Proposition 2 that A is invariant in G and we have K A G,
No < K C N,where K = ker \. Since N/K is abelian, the theorem applies in
G/K to N and by induction, N can be extended to u on G and it follows that
up is an extension of x to G. We may assume then that Ny = N is solvable.

Since we may assume N > 1,let M < N, M A G be maximal so that N/M
is an elementary abelian g-group for some prime g. We have by Clifford’s
Theorem that x | M = e i1 0; where the 6; are distinct irreducible characters
of M which are conjugate in N and form a full orbit under the action of G.
If ¢ > 1, let T be the inertia group of 6, in G'so T'n N is the inertia group of 6, in
Nandt=[G:T] =[N:NnT]soNT = Gandsince NnT A T and N/M is
abelian, we have N n T A (. By the maximality of ¥ wehave NnT = M
and thus the induced character8) = x. Also T/M isap-groupand | M | < |N |
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so by the inductive hypothesis, 6, can be extended to ¥ on 7. Now
1) = ty(1) = 9(1) = x(1) and since

0= | M, 6] =[N0 =WK|N,x

we must have y° | N = x and we have produced an extension of x.

We may suppose then that ¢ = 180 x | M = ¢f and 0 is invariant in G. If
¢ = p, then since I/ < N, we can apply the inductive hypothesis and extend
0 to Y on G. Since G/M is a p-group, it is abelian and thus every irreducible
constituent of §¢ is an extension of 6 by Proposition 2. It follows that any
irreducible constituent of x° has degree equal to 8(1) < x(1). We must
therefore have equality and thus x is extendible.

We now consider the remaining case which is ¢ # p. Suppose that x is not
extendible to G. We claim that if ¢ is any irreducible constituent of §°, then
px(1) | ¢(1). Let Go 2 N have index p in G so [Go: N] < [G:N] and by the
second inductive hypothesis, x can be extended to Gy. Since Go/N is abelian,
every irreducible character of Gy whose restriction to N contains x as a con-
stituent is an extension of x. Thusif ¢ | N has constituent x, ¢ | Go reduces to a
sum of p irreducible conjugate constituents, each of which is an extension of
x and 80 ¢ (1) = px (1) in this case. Now [ | N, 8"] 5 0 so some irreducible
constituent xo of ¢ | N is a constituent of 6" and by the above, we may assume
that xo  x. Assume x | M is reducible so e > 1. Since N/M is elementary
abelian it follows (for instance by Proposition 2.5 of [5]), that for some sub-
group L, M C L < N, of index ¢ in N, x | L is reducible and hence x vanishes
on N — L. Since x is invariant in G, it vanishes on N — L’ for every g ¢ G.
Thus x vanisheson N — Ny¢ L° = N — M. Thus

leb, e6] = [x | M, x | M] = [N:M]

so [N:M] = ¢&. Now ex is a constituent of 6" and has degree ¢’0 (1) = 6" (1).
Therefore 6° = ex and x is the unique irreducible constituent of 6¥. This
contradicts x 5% xo and thus we must have x | M is irreducible and since N/M
is abelian we must have xo = Ax for some linear character A of N/M by Propo-
sition 2. If xo is not invariant in G, then it is in an orbit of size divisible by p
and hence pxo(1) | ¢ (1). Since x(1) = xo(1), the claim follows in this case.
If xo is invariant in G then by Proposition 2 we must have M invariant in G
also. Now let K = ker A\. For z ¢ N, A(z) determines the coset Kz and it
follows that N/K C Z(G/K) so M[G, N] < N. By the maximality of M we
have [G, N] € M and thus N/M C Z(G/M) and therefore N/M is a direct
factor of G/N so X can be extended to a linear character u of @. We have then,
x = N 'xois a constituent of p "¢ | N. Thus (W) (1) = ¢(1) = px(1) and
the claim is fully established.

Now let P/M be a Sylow p-subgroup of G/M. Since 8 is invariant in P, it
can be extended to ¢ on P by the inductive hypothesis. If ¢ is an irreducible
constituent of ¢, then 6 is a constituent of ¢ | M and therefore px (1) | ¢(1).
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Hence px (1) divides ¢°(1) = [G:P]o(1) so
ped(1) | [G:P]o(1) and p |[G:P],
a contradiction by the choice of P. The proof is complete.

To apply the theorem to the case where G/N is not a p-group, we define a
certain set of primes w(x), associated with x. If ¥ is any representation of G
which affords x, we may define A(n) = det X(n) for n ¢ N, and we call the
resulting linear character of N the determinant det x of x. It is clear that
det x is independent of the choice of ¥. Now \ is an element of the group
N of linear characters of N and by o(\) we mean the order of \ as an element of
this group. We now set

7(x) = {p | p divides x (1) or o(det x)}.
Clearly 7 (x) € =(| N |).

Lemma 4 (Gallagher). Let N = det x and suppose G/N is a p-group. If
P 1 x(1) and \ can be extended to G, then x can be extended to G.

Actually, Gallagher proves this as Theorem 5 of [2] without any assumption
on G/N except that ([G:N], x(1)) = 1. His proof consists of showing it first
when G/N is supersolvable and then using the Brauer-Tate Theorem to ob-
tain the general result. The general theorem follows easily from that part of it
stated here as Lemma 4 together with Proposition 1.

Lemma 5. Suppose G/N is a p-group and x 18 a linear character with
p { o(x). Then x can be extended to G.

Proof. Let K = kerx. Then as was seen in part of the proof of Theorem 3,
N/K C Z(G/K). Now |N/K| = o(x) which is prime to p so it follows that
N/K is a direct factor of G/K and x can be extended.

CoroLLARY 6. Suppose No A N is solvable and x | No s irreducible. For
every prime p e w(x) which divides [G:N], suppose that a Sylow p-subgroup of G
s abelian. Then x s extendible to G.

Proof. By Proposition 1, we may assume that G/N is a p-group. If
p ¢ 7 (x), then by Lemma 5, det x can be extended to G so by Lemma 4, x is
extendible. If p e w (x) then a Sylow p-subgroup of G is abelian and Theorem 3
applies.

2. Throughout this section we suppose that N & H A G, N A G and that
x € Irr (N) is invariant in @ and is extendible to H. In order to be able to
apply Theorem 3, we shall also assume that a solvable No A N exists with
x | Noirreducible. If for every prime p | [G::N] with p ¢ 7 (x) we have a Sylow
p-subgroup of @ abelian, then by the previous results it is clear that x can be
extended to G and thus some extension of x to H is invariant in G. It is our
purpose here to obtain the latter conclusion under the weaker hypothesis that
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for those p e = (x) which divide both [G: H] and [H : N], a Sylow p-subgroup of
G is abelian. We begin with two lemmas.

Lemma 7. Lete H S D € G, D A G where ([G:D], [H:N]) = 1. Suppose
that some extension 0 of x to H s invariant in D. Then some extension of x to H
s tnvariant in G.

Proof. If g € G then ¢ is an extension of x to H which is also invariant in D.
By Proposition 2, ° = A\ where A € Irr (H/N ) is linear and invariant in D.
It follows that L = N[D, H] C ker Aso 6| L = 6° | L and 6| L is invariant in G.
Let 8 be the set of characters of H which extend 6 | L. Since D centralizes
H/L and fixes 6, D fixes every element of 8§ so G/D acts on 8. Since H/L is
abelian, Irr (H/L) = Cis a group. Now C acts transitively on 8 by multipli-
cation and (|G/D|, |C|) = 1. The actions of these two groups on § are
compatible with the action of G/D on C in the sense of Glauberman’s Lemma
(Theorem 4 of [3]) and that lemma applies to yield the result.

Lemma 8. There exists an extension 0 of x to H such that #(0) & = (x). If
no prime of w (x) divides [H:N] then 0 is unique. In any case, if some extension
of x to H 1is tnvariant in G, we may take 0 invariant in G also.

Proof. Choose any extension 6, of x to H. If 6, is any other extension then
6, = ubpwhere pis a linear character of H/N. Letf = x(1)sodet6; = u’ det 6.
If o (u) is divisible by some prime not in 7 (x) then so is 0 (4’). In this case
if #(60) & w(x) then w(61) & = (x) and this establishes the uniqueness if
[H:N] is divisible by no prime of = (x).

Now, in general, let N\ = det 6, and let m be the full = (x) part of o(\) so
N\" has w(x ) order. Let u = A\ and notethat u | N = (det x)™ has = (x)
order so we must have u | N = 1. Letn = o(u), a v (x)’ number and choose
an integer a with ¢fm = —1 modn. Let9 = p’8,. Sinceu|N = 1,60isan
extension of x and if §isinvariantin G, soisf. Nowdetd = u™\ = N/ = \"
for some integer k. Since \™" = 1, 0(det 8) | m and thus = (9) = (x), proving
the lemma.

THEOREM 9. Suppose No A N is solvable and x | Ny ¢s vrreducible. Also
suppose that for every prime p e = (x) which divides both [H:N] and [G:H] that a
Sylow p-subgroup of G s abelian. Then some extension 0 of x to H is invariant
n G.

Proof. By double induction on | @ |, and for each value of | G|, on [H:N].
Note that if H = N the theorem is trivial since we can take § = x. Let 6, be
an extension of x to H with w(6y) € 7 (x). Let L = NH’ so that the kernel
of every linear character of H/N contains L. It follows that 6 | L is invariant
inG. Ifpewr(8|L)divides both [G:H] and [H: L], then since w (6| L) < 7 (x)
and [H:L] | [H:N], a Sylow p-subgroup of @ is abelian and if L > N then
[H:L] < [H:N] and induction applies to yield the result, since we may assume
that No = S(V) so No A L. We therefore may assume that L = N so H/N
is abelian. Also suppose H > N.
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If H/N is not a g-group for some prime ¢, let @/N be a Sylow ¢-subgroup of
H/N for some q | [H:N]. Then @ A G, Q < H and if p ¢ w(x) divides both
[Q:N] and [G:Q], then we must have ¢ = p and p | [G: H] so a Sylow p-subgroup
of @ is abelian and by induection, x can be extended to ¥ on @ with y invariant
in @, since [Q:N] < [H:N]. By Lemma 8 we may assume that = () & = (x).
Now ¢ = X (6o |Q) where ) is alinear character of Q/N. Since H/N is abelian,
A can be extended to u on H and it follows that ufp is an extension of ¢. Induc-
tion applies again because [H:Q] < [H:N] and the theorem follows in this
case. We therefore assume that H/N is a g-group.

If g ¢ 7 (x), then by Lemma 8 there exists a unique extension 4 of x to H such
that 7 (0) € 7 (x) and thus 0 is necessarily invariant in G and we are done.
Suppose then that ¢ e w(x). Assume now that H/N & Z(G/N). Let
D/N = Cyw(H/N)soN < HC D A G. Since D < @G, we may assume by
induction that 6pis invariant in D. We claim q¢ 4 [G: D], or else by hypothesis,
a Sylow g-subgroup of @ is abelian and C(H/N) contains a full Sylow g¢-
subgroup of G, contradicting ¢ | [G:D]. We therefore have ([G:D], [H:N]) =1
and Lemma 7 applies to yield the theorem.

We may assume then that H/N & Z(G/N) and every linear character of
H/N isinvariant in G. It follows that the inertia groups of all the extensions
of x to H are equal. Let T be this common inertia group. Now let M be any
subgroup of G which satisfies H C M < G. By induction, some extension of
x to H is invariant in M so M C T and it follows that T'/H is the unique maxi-
mal subgroup of G/H. Thus G/H is a p-group and if p # ¢ then Lemma 7
applies with H = D and we are done. Finally, if p = ¢, then G/N is a ¢-
group and a Sylow g¢-subgroup of G is abelian so Theorem 3 applies and x is
extendible to G. The theorem follows immediately from this.
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