MORSE FUNCTIONS ON GRASSMANNIANS

BY
James C. ALEXANDER'

It is occassionally useful to have an explicit Morse function on a manifold.
In this note we describe a quite explicit “nice” Morse function on the Grass-
mann manifolds G(n, k) of n planes in (n + k)-space. We work on real
Grassmanns for definitiveness; however with obvious adaptions, the pro-
cedure works for complex or quaternionic Grassmanns. In the case of
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G(1, k) (projective space), the resulting functions are of the type defined in
{3, p.- 26]. In the case of G(2, k), they have the form of sectional curvature
calculated at a point. It was consideration of this special case as developed
in [2] that led to these results. We refer the reader to [3] for a general discus-
sion of Morse theory. It is no doubt the case that several of the methods
and/or results of this note are known; however we have followed the path of
least resistance, which is to reprove them and to put them into a cohesive form
rather than search the literature.
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The statement

We consider a particular well known model of G(n, k). Let M(n, k) be
the set of all » X (n -+ k) matrices of rank n. GL(n) = M(n, 0). If
X,Y eM(n, k) define X ~ Y if X = 7Y for some 7 ¢ GL(n). This is the
equivalence relation of row equivalence. Then G(n, k) = M(n, k)/~.
The correspondence is as follows: fix a basis in (n + k) space and then the row
vectors of X determine an n-plane. It is a known result, and is in any event
a straightforward computation in linear algebra, that a set of representatives
of G(n, k) are the reduced echelon matrices; those of the form shown in the
figure where the elements in the ‘“‘boxes” of size u X 7, are arbitrary. The 7,
are column numbers. If the 7, are fixed and the elements in these boxes vary
over all values, the resulting set in G(n, k) is a cell. This decomposition into
cells is the Schubert decomposition. It is minimal. Let I = (¢, ---, %)
withl <4 < - <14, <n+ k. Denote this cell A(J). Its dimension is

(2) al) = Z:—l My = El::“l (n—p+ D0 — a0 — 1).

(We let 4 = 0.) Let ¢(I) denote the center of the cell, that point where all
values in all boxes are zero. Let

Q=Q(nmk) ={I =(i, ,0)|[1<a< - <in<n+k.
Q(n, k) has C(n, k) = (n + k)!/n! k! elements. We order @ as follows: if

I= (il, e 7in)"]= (j1’ rjﬂ)’deﬁnels Jif'iqu,,fOI‘u =1, ,n
From (2), we get

1. Lemma. For I, J ¢ Q(n, k),

d(I) — d(J) = 21 (i — ju)-
Hence I > J tmplies d(I) > d(J).

For X = (xug) € M(n, k), let det; (X) = det; (x4g) be the n X n deter-
minant of X obtained by choosing the 7, - - - , 4, rows (we do not care about
the sign).

2. THEOREM. Let for: M(n, k) — R be

> d(I) deti(X)
3 n X = phi
(3) Far(X) S ded (%)
IeQ
Then fu x induces a C* function f = foi : G(n, k) — R with the following prop-
erties.

(a) fle(I)) = d(I).

(b) The c(I) are precisely the critical points of f; they are non-degenerate.

(e) Index.nf = d(I).

(d) If G(n, k) is considered the subset of G(n, k + 1) with last column zero,
Jogr1 | G(n, k) = fur.
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(e) The m-skeleton of the Schubert decomposition is a subset of Vo = fui
(— »,al#fa > m.

The general construction

Let ¢*(n, k) be the set of all pairs (I, J) where I, J are unordered n-tuples
of the first (n + k) positive integers. Let R: ¢*(n, k) =R ((I, J) — Rr.s)
satisfy

(4a) Riy = Ryr
(4b) Ry = (—1)"'R;, forsesS,.
Here 8, is the symmetric group and | s | = sign s.

s(i, “vry t) = (G, ) tam)-

Let X = (2q8) and Y = (yus) be members of M(n, k). LetI = (4, ---
%), J = (J1, *++,Jn). Define

(5) 92 (X, Y) = 2w Res riy *+* Tuiy Yy Ynin
3. Lemma. If X' = oX,Y = 7Y for o, 7 € GL(n),
(6) gr (X', Y') = (det o) (det 7)gr(X, Y).

Proof. Fix Y. Let the rows of X be vectors in (n + k)-space. X thus
determines an n-plane. Consider g(X) = gz (X, Y) as an n-linear function in
this n-plane. By (4b) it is alternating. Thus if X' = ¢X, ¢(X') = (det o)
g(X). The full result follows from (4a).

4. CoroLLARY. If §z (X) = ¢ (X, X), then
(7) gr (6X) = (det 0)’fr (X).
Call R diagonal if
Ris = (=1)"R;; if J = s(I) for some s ¢ S,
=0 if J = s(I) for any s € Sa .

In this event, denote B;; = ;. If, in addition, all A\; = 1, call R trivial and
denote gz by go. In these cases we can put gz in two other convenient forms.
Suppose (n + k)-space has an inner product < , > and the fixed basis
is orthonormal. Let X, --- , X, be the row vectors of X and likewise for Y.

(8)

5. Lemma. If R s diagonal,
(9) gr (X, Y) = ZIeQ(n,k) N det; (X) det; (Y).
If R is trivial,
(10) g0 (X, V) = gz (X, Y) = P, (—1)"NX1, Yo) -+ (X, Yorm)-

Proof. (10) comes from expanding the right hand side and comparing
with (9). (9) comes from expanding the right hand side and comparing with
(5).
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6. CoroLLARY. If R s diagonal,
(11) Gr (X) = g2 (X, X) = D reqwmm M deti(X).
In particular §o (X) = go (X, X) > O0forall X e M(n, k).
The following is now obvious from corollaries 4 and 6.

7. ProrosiTioN. For any R satisfying conditions (4), fr = §r/fo 18 (in-
duces) a well-defined C” function on G(n, k).

8. Remarks. (a) Let O(n, k) € M(n, k) be the set of matrices whose row
vectors are orthonormal. Then O(n, 0) = O(n), the orthogonal group. If,
for X, Y €eO(n, k), we define X ~ Y if X = ¢Y for some o e O(n), G(n, k) =
O(n, k)/~. TFurthermore g, | O(n, k) = 1. Hence fr = §z|O(n, k) and
no division is necessary.

(b) If for n = 2, RI,J is denoted R,jkl , X, = (xu, ety X1,n+k), X, =
(a1, ***, T2aex) are denoted respectively X = (w1, -+, Tugw), ¥ =
(?/1 y T s“+k)7

o = > Riju®:iyize s
X XNY,Y) - (X, Yp

which is the form of sectional curvature in local coordinates [2].

9. LemMA. c¢(I) is a critical point of fr if and only of Ry, = 0 if J differs
from I in precisely one element.

Proof. (See [2, Prop. 5.1].) We use the following local coordinate system
around c(I) suggested by (1). Let I = (41, -+, %) € Q(n, k). Fix

i, =1, j=r (r =1, «++, n)
=0, j#r
Then {z;x |k 5% 4. for r = 1, ---, n} are local coordinates around c(I).

Note that fe(c(I)) = Rir. For ¢ # any 4, , let I(l, €) be the sequence
(&1, -+, €a) with
e =1, J#I
=g J=1L

We need to prove that ¢(I) is critical if and only if all Ry rx,e = O.
In this coordinate system

gofr = gr = Rr 1 + 2ZR;1a, %1, + quadratic and higher order terms.
Here the sum ranges over all relevant [, e. Hence

dfr
axz‘e

6go

(12) a.'l;l,e

fe+ 9

= 2R ra,9 + linear and higher order terms.

Since go = 1 + quadratic and higher order terms, (12) becomes at ¢(I) where
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all Tie = 0,

ofe
0% 1,¢ |e(n

= 2RI,I(k,e) .
The result is immediate.

The special case

We return to the f described in theorem 2. It is clearly, by Corollary 6,
the case of fr when R is diagonal with \; = d(I). Thus by Prop. 7, it is a
well-defined C* function. At ¢(I), det; = 1 is the only non-zero deter-
minant; hence (a) is established. (d) is trivial. By Lemma 9, the ¢(I)
are critical. To prove they are nondegenerate and to find their indices we
proceed as follows. Let d(I) = \;. Since f(c(I)) = Ar, we consider
(X)) — M.

A — Ar) detd (X
s oy, g) et? (X)
)

If X e A(I), dety; (X) = Ounless J < I. (Interms of the coordinate system
used in the proof of lemma 9, this amounts to holding z;, = 0ifj < r, k >
i, .) Invoking Lemma 1, we see that

(14) J(X) =<0 fXeA(I) — c().

Thus the dimension of the negative-definite subspace of the Hessian at ¢(I)
is > d(I). On the other hand, if we let the complementary variables vary;
that is hold z;, = 0ifj > r, k < 4, , we get that det; (X) = Ounless J > I.
Thus the dimension of the positive-definite subspace of the Hessian at ¢(I) is
> dim G(n, k) — d(I) = nk — d(I). Combining these two facts proves
that ¢(I) is non-degenerate and the index there is d(I). (14) also proves
part (e).

We are left with proving that the ¢(I) are the only critical points. We do
this by proving that the gradient Vf = 0 at X # ¢(I).

The gradient

We first set some notation. Let X = (zi;) ¢ M(n, k) < E"™™. The
coordinates in E*™** are {a;;}. Let e;; = 9/dzi; ; a typical tangent vector
is Y yijei;. Let N(n, k) be the set of all n X (n + k) matrices; then ¥ =
(ys;) € N(n, k) and thus the tangent bundle of M (n, k) is

(X, Y) [ X eM(n, k), Y e N(n, k)}.

Let O(n, k) be the Stiefel manifold of orthonormal n frames in (n + k)-
space. (See Remark 8(a).) Let ws bethe projection from A = A(n, k) to
G(n, k) for A = M or 0. Let Y” denote the transpose of the matrix Y. 0,
denotes the 0 n X n matrix. If A = A(n, k) is a manifold, T* is its tangent
bundle.
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10. PrOPOSITION.
™ = {(X,Y) | X e M(n,k),Y e N(n, k)}
T ={(X,Y)| X eO(n, k), Y eN(n, k), XY is antisymmetric}
T T ={(X,Y) | X eA(n, k), Y eN(n, k), XY™ = 0,}

T¢ = x4 T factored out by the equivalence (X, Y) ~ (¢X, oY) forc e T. Here
A = M or O whence T s respectively GL or O.

Proof. We remark that the conditions can easily be verified to be dimen-
sionally correct. T™ was determined above. We consider T°. Let E be an
antisymmetric (n + k) X (n + k) matrix, X ¢ O(n, k). exp E = the ex-
ponent of E ¢ O(n, k).

¥ = lim X(exptE) — X
t-»0 t
is a tangent vector to O(n, k) at X and furthermore, all tangent vectors are
of this form. We have

lim X(exp tE)X" — XX"*
t->0 t
Thus XY”* = XE'X" = —XEX" = —(XY")” and T° is as stated.

In considering T¢ we let A = M; the case A = O is similar. For X e
M(n, k), w3 ma (X) is a submanifold of G(n, k) ; let T be the subbundle of T¢
which is tangent at each point to this submanifold. Let S be the bundle
claimed to be T°.

We will show there is a split exact sequence of bundles

0T > T >y 8S—0

YX' = = XEX".

which, along with its splitting, is respected by the action of GL(n). This
will establish the result.
Let E e GL(n). At X e GL(n), all vectors in the fiber of T are of the form

lim (exptE)X — X
t->0 t

Thus T: = {(X, X1) e M(n, k) X N(n, k) | each row of X; is linearly de-
pendent on the rows of X}. Hence w3 S is the orthogonal complement of T}
and the split sequence is valid. For ¢ ¢ GL(n), define 5: T — T* by (X,
Y) = (¢X, cY). & induces maps on T; and =y S which behave as claimed.
Thus the result is proved.

We now want to consider gradients. We use the notation V, f which is a
vector field in T*. All functions are at least C".

Suppose F is a function on O(n, k). If F is invariant under the left action
of O(n), F induces a function f on G(n, k). Vef can be determined as
follows: let 8: T° — mo T be the orthogonal projection. Note that, extend-
ing the notation of the last proof, & = 8. Then #6Vaef = 0V, F.

= EX.
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11. ProposiTioN. Let X = (zi;) e O(n, k). Let Vo F(X) = (X,Y) e T°
where Y = (y;;(X)). Then at m(X) e G(n, k), Ve is the equivalence class of
(X, Z) where Z = (2:(X)) with

(15) Rij = Yij — X4j Zk.zxik Y -

Proof. Let the rows of X be Xy, -+, X,, those of ¥, Yy, -+, Y,.
X1, -+, X, are orthonormal. If 6’: T° — T is the projection orthogonal to
9,0 =1 — 6. Let 6" be the projection to the space spanned by X;. Then
0 = Y 71 0;. Since 0:(Z: Yi) = 2 (Xy, Vi) X4,

!
Bl(Zk,j ykjekj) = Zh,k,sz,'yijzh e .

Thus §'( Zk'j Yri€ki) = D mk.jviLi; Yri Tmem . The result now is trivial.

Now let G: M(n, k) — R be a function, let 2: O(n, k) — M(n, k) be the
inclusion and ¥: *T™ — T° the orthogonal projection. It is a special case
of a standard result that

Vo(G | O(n, k) = ¥(i*Vu G).
Suppose, as in our case, that G = g/go with go | O(n, k) = 1. Since
¥(*Va go) = 0,
(16)  Vo(G|O(n, k) = go"¥i*(go Var g — gV go) = Z(i*Vu ).

We have g = 2 ;A\, det; *(X). Let min; (4j) (X) denote the determinant of
the (4, /)™ cofactor in the matrix of which det; (X) is the determinant. If
7 ¢ I,letmin; () (X) = 0. Then Vy f(X) = (X, Y) where ¥ = (y;;) and

Yij = 2.1 27; dety (X) min; (47) (X).

Using (15) and (16) we have, for X € O(n, k), m Vo f(mo X) = (X, Y) where
Y = (y;,-) with

(17) yi; = 912\ det, (X) min; (47) (X)
— ik 2N @i T dety (X) min, (k) (X).
Since, for any 7,
(18) >k xa miny (k) (X) = 64 det, (X),
it is the case that
Yij = 221 Ar det; (X) min; (45)(X) — Dos 2\ zij det, (X)
= 2 \r det; (X) miny (37) (X) — 2z f(X).

Ifalin; = 1,f = 1 and all y;; = 0. Thus we have proved

12. LemMa. If X = (x:;) € O(n, k),
(20) 21 detr (X) mins (4)(X) = ys;

(19)
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If we substitute the expression for z,; from (20) into (19), we get finally
(21) Yyi; = 221 (A — f(X)) dety (X) min; (47) (X).

The embedding

We have to prove that for m (X) £ ¢(I), some y,; in (21) is not zero.
Rather than do this directly, we embed G = G(n, k) as a nonsingular variety
in a projective space P and extend f to a functions on all of P. The critical
point set on P will tell us about that on G.

Consider a (C(n, k) — 1)-dimensional projective space P with homogeneous
coordinates (£)rcqmiy - We assume » ;£ = 1. The map e: G — P given
by & = det; (X) is known to embed G as a submanifold and non-singular
algebraic variety [1, chap. VII]. The det; are up to sign the Pliicker co-
ordinates. Let

o) (&) € 0O(1, C(n, k)), H = (97) ¢ N(1, C(n, k)).
Then mg T¥ = {(&, H) | 2_r &rnr = 0} as in Proposition 10.
If X eO(n, k) and (X, Y) e m T the map ex : T° — T7 is given at X by
(22) mr = Doy ming (4) (X).
Note that then
Sorkrnr = XniYiidety (X) ming (4)(X) = D ¥ii iy = 0

by Lemma 12 and Proposition 10. Thus ex(T°) < T%.

The standard metric ( , ) in Euclidean space induces one in O(n, k).
This metric is invariant under the left action of O(n) and is respected by the
splitting in Proposition 10. Hence it induces a metric in G'(n, k) which is
the one we have used to define Vg. Thus if ¥ = (y), Y = (y's;) are e
N(n, k), the fiber of T at X,

(Y, Yo = D2ii¥is ¥is -

13. PROPOSITION. e s an isometry into.

Proof. Because of the homogeneity of the situation, we need prove it at
only one point m X, say X = (x:;) where

x‘j=1: 1317.7£na
= 0, otherwise

Then if (X, Y) em T’ yij = 0forj < mn. Forl < i < mn,j > n,let[q,]]
€ Q(n, k) be the sequence (1,2, --+,%, -+, ni;) where " denotes omission.
Then

min; (7)(X) =1, I = [,

= 0, otherwise.
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Thus

(ex Y, ex Y )p= 2-1( 2 ap Yap ming (aB) (X) - pI y;ﬁ min; (v8) (X))
= leisn,»n Yis I‘/:‘f = (Y, Yl)@-
This proves the result.
We now identify G with its image in P as Riemannian manifolds and drop

the symbol e.
Define F: P — R by

(23) F(E) = 2 ME.
Then F |G = f. Also Vs F(E) is the class of (Z, H) where
(24) nr = 2(\r — F(E))& .
Let x; ¢ P be the point (£;) where
E =1 J =1,
=0, Js=I.

Set xr equivalent to x, if Ay = N;. Then from (24), we have

14. ProOPOSITION. Vp F = 0 precisely on the sub-projective spaces spanned
by equivalent points x; .

Call this set Sp.
The singular point set on G is determined by the following.

15. ProrosiTioN. If X ¢ G C P, Vp F(X) s already tangent to G. Thus
Ve F(X) = Vef(X).
Accordingly, Ve f = 0 precisely on Sp n G.

Proof. The metric on P (and on G C P) identifies the tangent bundle T
and its dual. Hence we may regard (21) and (24) as the components of
df and dF respectively. Thus ¢*dF = df or equivalently ex V¢f = Vs F.
This is what is needed for the proof.

The final step in the proof of Theorem 2 can now be given. It is simply a
case of noting that if A\; < N\; whenever I < J, then

SrnG = {x; = c(I) | I eQ(n, k)},
and invoking Proposition 1.

Comments

Although we have presented the results in this note as a proof of Theorem
2, that theorem is actually a special application of the methods used. TFunc-
tions of the type in Proposition 7 occur naturally in several contexts and the
methods give information about their critical point sets. In particular
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Propositions 14 and 15 completely determine the critical point set if R is
diagonal.

We can look at the more general case as follows: let A"E"** be the nth
exterior product of E"**, If &, -+, €,44 is & standard basis for E"™ and
¢!, --+, e"™ is its dual basis, we can consider R = {R;} as the compotents

of a symmetric bilinear form on A"E™** and write it

1 J
YanRise’ ®e

where ¢/ = €7 A --- A g™ and the sum is over all (I, J) € (Q(n, k))*.

It can be diagonalized in A"E™** by a C(n, k) X C(n, k) orthogonal trans-
formation €, although not necessarily by a power matrix (i.e. @ need not be
induced by an orthogonal transformation in E***). @ operates naturally on
P = P°™P and weform eg : G — P byea = Q. eq is thus a “non-
standard’’ isometric embedding of G in P. It is easy to see that the function
fr of Proposition 7 is the restriction to eq G of a function of type (23) on P.
Unfortunately there is no guarantee of a result analogous to proposition 15.
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