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1. Introduction

A real (resp., complex) Lindenstrauss space is a real (resp., complex) Ban-
ach space V for which the dual V* is isometric to an L'space. The real
Lindenstrauss spaces were introduced by Grothendieck [13], and were first
investigated in depth by Lindenstrauss [20]. It has recently become appar-
ent that one can often gain new insights into the structure of a Banach space
V through the use of Choquet theory on the closed unit ball K of V*. In par-
ticular, Lazar has proved in [19] that the real Lindenstrauss spaces V are
characterized by a certain ‘‘simplex-like” condition on K. This theorem
has played an important role in the subsequent development of the theory of
real Lindenstrauss spaces (see [9], [10], [11], [24]).

In this paper we shall demonstrate that a complex analogue of Lazar’s
condition, that was proposed in [9], characterizes the complex Lindenstrauss
spaces (see Theorem 4.3). We have reason to believe that this result will
make the theory of complex Lindenstrauss spaces as accessible as that for the
real spaces.

I am indebted to Professor Robert Phelps for a suggestion that consider-
ably simplified the measure-theoretic arguments occurring in an earlier ver-
sion of this paper. Specifically, he contributed the present definition for the
measure o(| u|), which he had arrived at in his investigations of complex
function spaces.

Throughout this paper we shall use the following notation: If K is a com-
pact Hausdorff space, then C (K) is the Banach space of complex continuous
functions on K with the uniform norm. If (X, 8, u) is a measure space with
X 8, L'(X, 8, u) is the Banach space of complex integrable functions on X
with the L'norm. If V is a complex Banach space, V* is the Banach dual
of V, i.e., the complex linear functions on V with the usual norm. If J is a
subspace of V, we let J° denote the annihilator of J in V*,

2. Complex L-spaces

We will say that a complex Banach space W is a C-space if it is isometric
to C(K) for some compact Hausdorff space K. We will say that W is an L-
space if it is isometric to L' (X, 8, u) for some measure space (X, 8, u) with
X €8. The real analogue of the following result first appeared in [13]. For
the complex case see [23, §1.13].
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LemMA 2.1. Let W be a complex Banach space. Then W is an L-space if
and only if W* is a C-space.

If W is a C-space, then W™ is an L-space. The converse is false, i.e., the
Lindenstrauss spaces constitute a wider class than do the C-spaces.

The real version of the following result is due to Goodner and Nachbin (see
[7, p. 95], [12], [22]). The complex case is a result of Hasumi [14].

LemMA 2.2. Suppose that W is a complex Banach space. Then the following
are equivalent:

(a) W has the property that if Vi & Vi are complex Banach spaces, and
01: Vi — W is a bounded linear map, then there is an extension 62 : Vo — W of
6 for which [[8:] = || 6.]-

(b) W is isometric to C (K), where K s a compact Stonean space.

I am obligated to J. Lindenstrauss and L. Tzafriri for the following ob-
servation:

CoroLLARY 2.3. Suppose that W is an L-space and that = is a projection
of W into itself with || = || = 1. Then =(W) s an L-space.

Proof. We have a natural isometry
r(W)* = W*/z(W)".

Letting =* be the adjoint projection, it is a simple matter to verify that u —
u + ker 7~ induces an isometry

W*/ker o* = =* (W*).

From Lemma 2.1, W* is isometric to C (K) for a compact space K, and since
C(K) is a dual space, K is hyperstonean (see [8]), and W™ satisfies (a) of
Lemma 2.2. Since || #* || < 1, it follows that the same is true for #* (W™),
since one may first extend 6; to a map 6 of V; into W* with the same norm,
and then use 7* o 6, . Thus #(W)* = «*(W") is a C-space, and from Lemma
2.1, = (W) is an L-space.

Suppose that W = L'(X, 8, u). The subspace of step functions is dense
in W. In the proof of Theorem 4.3, we will need a systematic procedure for
approximating general functions by step functions, which we will now ex-
plain.

Given p e W, let

N@p) ={zeX :p() £ 0}

(this is determined to within a u-null set). We say that a countable subset
® = {B1, B, ---} of 8 is a partition for p if

(a) 0< u(Bj) < » for all 7,

(b) B;NB, =0 for j # k,

(¢) N(p) < UB;.
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Given a family € = (C, C,, --+} satisfying u(C;) < « and (c), a simple
induction will provide one with a family ® satisfying (a)—(c). Thus given a
sequence of functions pi, pz, -+ , the sets

Ci = f{zeX:|p;)| 2 1/k}

will generate a common partition ® for all of the functions p1, p2, -+ .
Given p ¢ W and a partition & = {By, B;, - -} for p, the conditional ex-
pectation of p with respect to ® is the step function

Bo1®) = i [s@)7 [ o],
where x5 is the characteristic function
xs(@) =1 zeB
=0 z¢B.

E(p | ®) is determined to within null sets, and the following relations hold
for p, ¢ e W and ¢ ¢ C almost everywhere:

(@) E(p+4¢|®)=E@|®) + E@|@®),

(b) E(ep|®) = cE(|®),

) |[E@|®)| <E(p|®),

@ [E@|®) du=[pdu
In particular from (¢) and (d), E(p | ®) is itself a member of W, with
(2.1) IE@|I®) | <lpl-

LemMMA 2.4. Given pr, -+ , pm € W and & > 0, there is a common partition
(Bf‘”'ply e 3pm'w1:th
lor — E(u|®) || <&, k=1, ,m.

Proof. If we let
Cop ={2:1/n < |pu(x) | < nf,
then

[ 1m@ e Lo
XN Cnk

as m — . From this it is apparent that there exists an integer no and a
Borel set S, € $ such that for all k,

(@) |pe@)| < moforallzesS,

() Jrws | Pe@) | du(@) < /3,

(€) u(S) < .

Let D C C be the closed disk of radius no and center 0, and let D; , j =
1, 2, -++, r be closed disks of diameter less than &/3u(S,) with

D c UD;.
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Taking intersections and differences of the sets
Sp=peD)nS, j=1-,r; k=1--,m,
we obtain disjoint By, - -+, B, in 8 such that for all &, k,
I e (@) — Pe() | < &/3u(So) allw,yeBs,
and S, = U B,. We select disjoint B,;1, Beiz, - -+ in 8 with

Boin © X\So, u(Begn) < =,
and for which
Uk N (0x)\So S Ui B .

Deleting null-sets, ® = {B1, Bs, --} is a partition for the py .
Given k, and z ¢ B, , h < s, we have

2@ — Bl ®) @] = | 0@ = B [ 2:0) ) |

= u@) [ @ — 2 @) )

< 8/3“(80)’
andif x eBy,h > s,
2@~ E@ @) @) | < 5@ [+ uB)™ [ 12:0) | duw).
Thus

12— Ee| @) | < TioseunlB)/3u(S) +2 [ 1peldu <

3. Complex measure fields

In this section we shall summarize the Bourbaki theory of measure fields.
We will not need the sophisticated theory of “adequate’ fields introduced in
the second edition of Intégration [4], [5].

Let K be a compact Hausdorff space, and M (K) = C(K)* be the Banach
space of complex regular Borel measures on K. We will use the notation:

MiK) ={peME) : ||n] <1,
M*(K) ={peMEK) :n2>0}
PEK)={peME):p20, |u]l =1

i.e., P(K) consists of the probability measures on K. If p e K, we let 8(p)
be the unit mass at p.

Given ue M (K), let | ,ul be the total variation of u. We recall that for
feCT(K),

lul() =sup{lul)|:lel <f, ¢eCK)}

(see [4, III, §1.7]). There exists a | u |-essentially unique complex Borel
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function ¢ on K such that [¢(p) | = 1forall p e K, and u = ¢| u| (see [15,
p. 325]). The representation u = ¢| u | is called a polar decomposition for u.
Suppose that T and K are compact Hausdorff spaces, and that » is a meas-

ure on T. A field N of complex K-measures on T is a map 6 — N\ of T into
M (K). We define
M| = sup {|| Nl : 0T}

and we will write A > 0if Ny > O for all 6 ¢ T. Given a field A, we define
the field | A | “pointwise”:
Mo = [No].

Providing M (K) with the weak™ topology, A is continuous (resp. Borel) if
and only if 8 — N (f) is continuous (resp. Borel) for each fe C(K). Given
feCT(K),

[Me(f) = sup {|Mle) |10 e C(K), |e| < Sl

hence if \ is continuous, 8 — |A|¢(f) is lower semi-continuous and thus
Borel.
Let us assume || A || < «. If A is Borel, we define a measure

8= [20) b )
on K by letting

3.1) B8 = [ () dv(e) forfeC(K).

If \ is continuous and f e C* (K), then given ¢ e C(K), |¢| < f,

186) 1 < [ M) 1dlv1®) < [ 12l () dl 5 1(0),

hence we have
62) |[nao|< [idaio.

For continuous A one may use (3.1) to evaluate 8(f) for discontinuous f.
We have:

LemMa 3.1.  Suppose that A > 0 is continous and that f is a B-iniegrable
complex function on K. Then

(a) f 7s Ng-tntegrable for v-almost all 6,

(®) 6 — N (f) ts v-measurable,

© B = N0 dv(0).

Proof. See [5, §3.3, Th. 1] and [5, §3.1, Prop. 2].

“Image measures” are conveniently defined by means of measure fields.
Suppose that m is a measure on K and that ¢ : K — T is a Borel map.
Then it is evident that p — d(¢(p)) is a Borel field. The image measure
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¢ (m) is defined by
em) = [ 36®)) dn®).

4, Complex measures on a ball

Throughout this section, T will denote the unit circle, and da the unit Haar
measure on T'.

Let V be a complex Banach space, V* the dual of V, and K the closed
unit ball at the origin in V*, with the weak™ topology. K isa compact convex
set. Each ¢ ¢ T determines an affine weak® homeomorphism of K by o; (p) =
¢p. This in turn induces isomorphisms of C' (K) and M (K) with the rele-
vant structures via o; (f) = foo;" and o;(u) = wpoo;- (this coincides with
the o;-image of u).

We say that a function f on K is T-tnvariant (resp., T-homogeneous) if
f@p) = f(p) (resp., f(¢p) = ¢f(p)) for all { e T, p e K. Similarly, we say
that a measure e M (K) is T-invariant (resp., T-homogeneous) if oy = u
(vesp., app = ¢u) for all {eT. We let Ciny(K) (resp., Chom(K)) and
Miny(K) (resp., Muom (K)) denote the corresponding linear spaces of func-
tions and measures. If fe C(K), then the function

(nve ) @) = [ f(ep) da

is continuous and T-invariant. It is readily verified that inv, is a norm-
decreasing projection of C(K) onto Ciny(K). Similarly, if we let

(home £) () = [ o7 (ap) dey
then homr is a norm-decreasing projection of C (K) onto Cnom (K). Taking
the adjoints of these projections on M (K),
invyu = poinvy, homsu = pohomy,

we have norm-decreasing, weak® continuous projections of M (K) onto
Miw(K) and Muem(K), respectively.
Given p e M (K), the measure fields on T defined by

a—oap and o— o gan

are continuous. If f ¢ C(K), then
(inve p) (f) = w(nvef)

[[ () deau @)

= [[ 1ep) au (@) de
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= [0 ) da,

hence
invep = fo'a(u) de.
A similar argument shows that
homy pu = f o 0e(u) da.

In particular from (3.2),
(4.1) | homru| < invel ul.

A simple calculation gives the important relation
4.2) homr o, p = a homy u.

Given ue M (K), let u = ¢| u| be a polar decomposition for u (see §3).
Since ¢ is Borel, it is evident that the same is true for the map v : K - K
defined by

(4.3) w(p) = ¢(@)p
If f e C(K) is T-homogeneous, then

o(uD () = [7e@Pp) dlul @)

[ ew@) dl i)
s (),

hence
(4.4) homzw(| u|) = homyz u.
On the other hand, if f ¢ C(K) is T-invariant,

o(wD)) =1ull)),

hence
4.5) invrw((ul|) = invye| ul.

Regarding the elements of V as the weak™ linear functions on V*, the re-
striction map v — v | K is a complex linear isometry of V into C'(K) (it can
be shown that the image consists of the affine T-homogeneous functions in
C(K).) If ue M(K), v — u(®) is a bounded linear functional on V, and the
resultant of u is defined to be the unique point r(u) ¢ V* satisfying

r(u) @) = w(@).

If ue P(K), we claim that p = r(u) coincides with the ‘“barycenter” of u,
i.e. if a is a real affine continuous function on K, then u(a) = a(p). To
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prove this, note that @ = a + ¢, where « ¢ R and ¢ is a real weak™ continuous
linear function on K (see [1, Cor. 1.1.5]). On the other hand, { = Re v where
veV (let v(p) = t(p) — it(ép)). Thus

p@) = a+pult) = a+ u(Rev).
We have

p(Rev) +iu(m o) = u(@®) = v(p) = Rev(p) + iImo(p),

hence
u(@) = a + Rev(p) = a(p).

It is readily verified that r : M (K) — V* is a weak® continuous, norm-
decreasing, linear surjection. Furthermore, we have the relations

’l‘(o‘;/.&) = {T(ﬂ), T(homrﬂ) = r(ﬂ)r
hence from (4.4),

r(u]) = r@omra(lul])) = r).

We let P(K) have the usual dilation order <, and we say that u ¢ M (K)
is maximal if u = 0, or u 5 0 and the probability measure | u |/|| u | is <-
maximal. If f e C (K) is real, we recall that the upper envelope f is defined by

f®) =sup {»(f) : ve P(K), r(») = p}.

B(f) = {peK :f(p) = f®)},
then p ¢ M (K) is maximal if and only if
(4.6) || (BE\B(f)) =0

for all real f € C (K), and it suffices to verify (4.6) for all real convex f ¢ C (K).
We shall denote the maximal measures on K by M™*(K), and let Miom (K)

om

be the corresponding subspace of maximal T-homogeneous measures.
Lemma 4.1. If f e C(K) is real and convex, then
B(inVTf) _C_ B(f)

Proof. 1f p ¢ B(f), then f(p) > f(p). Choose ueP(K) with r(u) = p
and u(f) > f(®). For all «eT, r(ocapn) = ap, and since f is convex,

(0ap) (f) 2 flep).
Noting that & — ¢5f is norm-continuous, the function

a— (cap)(f) — flap)

is continuous, non-negative, and strictly positive when a = 1. Thus since
do has support T,

If we let

0< [ Guw) () = f(op) de
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= invy u(f) — invzf(p)
= u(invzf) — inve f(p)

< (nvrf) " (p) — inve f(p),
and p¢ B(invr f).

Lemma 4.2. If pe M(K) is maximal, then so are the measures homyr p
and (| u|).

Proof. Given f e C(K) real and convex, let F = invyf. It is easily seen
that the set K\B(F) is invariant under the maps ¢, a ¢ 7. Since

a—oallnl)

is continuous, we have from Lemma 3.1,

invel 4| BE\B(F)) = [ ou(ln]) K\B(F)) de

= [1x1®@B@E) o

= | u [ (E\B(F))
=0

and from (4.1), homr u is maximal. On the other hand, from (4.5),
o(|u|) (K\B(F)) = invq u [(K\B(F)) = 0,
hence w (| u |) is also maximal.

THEOREM 4.3. Suppose that V is a complex Banach space with dual V*,
and let K be the closed unit ball of V*. Then the following are equivalent:

(a) V is a Lindenstrauss space.

®) If v and vy are maximal probability measures on K with v () = r(vs),
then homr vy = hOlIlT Ve .

Proof. (a) = (b). Let us suppose that V is a Lindenstrauss space,
and identify V* with a complex L' space L' (X, 8, u) with X ¢S. Given maxi-
mal measures » , » € P(K) with r(s1) = (), let

v =%+ oam).

Then » is a maximal probability measure with r(») = 0, and it suffices to
prove that homr» = 0.

We may select a net of atomic measures
Vy = Zl?-(in Cote 8 (Dyi) s Z ey =1, 0L ¢y,
with
0=1r(r) = Zl?-('in Cok Pk
(see [1, Prop. 1.2.3]). Given ¢ > 0 and v, we have from Lemma 2.4, a
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common partition ®; = {Bi, Bz, -} for py1, * -+ , Pyn(y such that for all k
| pye — By | @) || < e.
Letting pyx = E (pyw | ®%), the probability measures
vy = 2ok Op 8 (D)
also converge weak® to » as ¥y — « and &£ — 0, and
4.7) r(5) = 22 E(p | ®%) = E(2s e | ®5) = 0.

It suffices to show that for eachy and ¢ > 0, there is a \} ¢ P(K) with
A% > »5, and homs N\, = 0, since if this is the case, let \; be a weak™ conver-
gent subnet of \,. Letting A = lim; )\;, it is evident that A > », hence
N = ». Thus

homs v = lim; homr A; = 0.
We have

(4-8) pf/k
where from (2.1),
2ilanlu®B) = o5l < llpwll < 1.

Letting ajx = ¢l @ |, S e T, and ¢; = xs; u(B;)”", the probability meas-
ure

It

27
5=1 Qjk XB; »

Nog = 25l an wB)oCna) + A — || P )8(0)
has resultant p5: . It follows that
Ny = 2k cm Nk
is a dilation of »; . On the other hand, from (4.7),
2k Cp Pyx = 0,
hence if we multiply by xs, (see (4.8))
Zk Cyx e = 0.
We have from (4.2) with ¢ = 8(¢;) and & = {4,
homz N\ = D & €y homz A5y
= D ik ol @z 1 (B;) homy 8 (¢ q5)
= 2 [2ok ey azxlu (B;) homr 3(g;)
= 0.

(b) = (a). We define a map H : K — Muom (K) by letting H(p) =
homr », where » is any maximal measure in P (K) with 7(») = p (due to b,
this is well defined.) We begin by showing that H extends to a linear iso-
metry of V* onto Miem (K).

H is affine since given p, g e K and 0 < a < 1, let p, » ¢ P(K) be maximal
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with resultants p, ¢ respectively. Then au + (1 — a)v is maximal in P (K),
and it has resultant ap + (1 — a)g, hence
H(ap + (1 — a)g) = homr(ap + (1 — a)»)
ahomru + (1 — @) homzr
oeH(p) + 1 — a)H (9).

H is T-homogeneous, since if p ¢ K and « ¢ T, let 4 be a maximal probability
measure with resultant p. Then o.(u) is maximal with resultant ap, hence
from (4.2),

H(ap) = homroap = o homru = aH (p).

Since H is both affine and T-homogeneous, it is complex linear.

If [p] =1, let p,eP(K) be maximal with r(u) = p. Then H (p) =
homr u, or since homs is norm-decreasing, | H(p) || < 1. On the other
hand, if we regard V as a subspace of C (K), H (p) is an extension of the linear
function p to C'(K), hence

=[pll < H®) .

It follows that H is an isometry.
Given v ¢ Miom (K), || v || < 1, choose q ¢ E(K) (the extreme points of K)

and let
p=ow(r])+3Q = JelsDI)6@ +8(-9).
From Lemma 4.2 and (4.4), u is a maximal measure in P (K) and
homyu = homrv = ».

Letting r (u) = p, we have H (p) = », and we have proved that H is onto.
We next show that M=e=(K) is an L-space. Given feC(K), let

M(K) = {pe M(K) : | n|(K\B()) = 0}.

We may define a projection ¢ of M (K) onto M’ (K) by letting e(x) be the
restriction u | B(f). Then

(I — e)u = u| K\B(f),

lewll +1 Q@ —eull =1 ul.

In the terminology of [6], M’ (K) is the range of the “L-projection” e. It
follows from [6] or [3, Prop. 1.13] that

Mmex(K) = Npeowy M’ (K)

is the range of a real linear L-projection w. From the proof of the latter fact,
it is apparent that = is also complex linear (one may instead use the fact that
any real linear L-projection in a complex Banach space must be complex
linear—see [16].) Since || 7 || < 1, we have from Corollary 2.3 that M=s=(K)
is an L-space.

and we have
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From Lemma 4.2, homr is a norm-decreasing projection of M==x(K) onto
bom (K). Thus from Corollary 2.3, Mpom (K) is an L-space. Since H
an isometry of V* onto the latter space, V* is an L-space, and V is a Lin-

denstrauss space.
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