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I. Introduction
A real (resp., complex) Lindenstrauss space is a real (resp., complex) Ban-

ach space V for which the dual V* is isometric to an Ll-space. The real
Lindenstrauss spaces were introduced by Grothendieck [13], and were first
investigated in depth by Lindenstrauss [20]. It has recently become appar-
ent that one can often gain new insights into the structure of a Banach space
V through the use of Choquet theory on the closed unit ball K of V*. In par-
ticular, Lazar has proved in [19] that the real Lindenstrauss spaces V are
characterized by a certain "simplex-like" condition on K. This theorem
has played an important role in the subsequent development of the theory of
real Lindenstrauss spaces (see [9], [10], [11], [24]).
In this paper we shall demonstrate that a complex analogue of Lazar’s

condition, that was proposed in [9], characterizes the complex Lindenstrauss
spaces (see Theorem 4.3). We have reason to believe that this result will
make the theory of complex Lindenstrauss spaces as accessible as that for the
real spaces.

I am indebted to Professor Robert Phelps for a suggestion that consider-
ably simplified the measure-theoretic arguments occurring in an earlier ver-
sion of this paper. Specifically, he contributed the present definition for the
measure (I I), which he had arrived at in his investigations of complex
function spaces.
Throughout this paper we shall use the following notation: If K is a com-

pact Hausdorff space, then C (K) is the Banach space of complex continuous
functions on K with the uniform norm. If (X, $, ) is a measure space with
X e $, L (X, S, ) is the Banach space of complex integrable functions on X
with the Ll-norm. If V is a complex Banach space, V* is the Banach dual
of V, i.e., the complex linear functions on V with the usual norm. If J is a
subspace of V, we let j0 denote the annihilator of J in V*.

2. Complex L-spaces
We will say that a complex Banach space W is a C-space if it is isometric

to C (K) for some compact Hausdorff space K. We will say that W is an L-
space if it is isometric to L (X, $, ) for some measure space (X, $, ) with
X e $. The real analogue of the following result first appeared in [13]. For
the complex case see [23, 1.13].
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LEMMA 2.1. Let W be a complex Banach space. Then W is an L-space if
and only if W* is a C-space.

If W is a C-space, then W* is an L-space. The converse is false, i.e., the
Lindenstrauss spaces constitute a wider class than do the C-spaces.
The real version of the following result is due to Goodner and Nachbin (see

[7, p. 95], [12], [22]). The complex case is a result of Hasumi [14].

LEMI 2.2. Suppose that W is a complex Banach space. Then the following
are equivalent:

(a) W has the property that if V1

_
V are complex Banach spaces, and

01 V1 W is a bounded linear map, then there is an extension V W of
01 lot which I102 H H Ol II.

(b) W is isometric to C (K), where K is a compact Stonean space.

I am obligated to J. Lindenstrauss and L. Tzafriri for the following ob-
servation"

COROLLARY 2.3. Suppose that W is an L-space and that r is a projection
of W into itself with II r 1. Then ’(W) is an L-space.

Proof. We have a natural isometry

(W)* .,__ W*/(W).
Letting r* be the adjoint projection, it is a simple matter to verify that
u A- ker r* induces an isometry

W*/ker r* r* (W*).
From Lemma 2.1, W* is isometric to C (K) for a compact space K, and since
C(K) is a dual space, K is hyperstonean (see [8]), and W* satisfies (a) of
Lemma 2.2. Since II * -< 1, it follows that the same is tree for r* (W*),
since one may first extend 1 to a map of V into W* with the same norm,
and then use r o .. Thus r (W)* -- r* (W*) is a C-space, and from Lemma
2.1, r(W) is an L-space.

Suppose that W LI(X, 3, ). The subspace of step functions is dense
in W. In the proof of Theorem 4.3, we will need a systematic procedure for
approximating general functions by step functions, which we will now ex-
plain.
Given p W, let

N(p) {x eZ p(x) 0}
(this is determined to within a -null set). We say that a countable subset
5 {B1, B., ...} of $ is a partition for p if

(a) 0 < (Bj) < oo

(b) Bj f) B
(c) N(p)

_
(J Bj.

for all j,
for j /,
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Given a family e (C, ., ...) satisfying (y) o and (c), a simple
nduction will provide one with a family B satisfying (a)-(c). Thus given a
sequence of functions p, p, the sets

will generate a common partition (B for all of the functions pl, p,.,
Given p e W and a partition {B:, B, for p, the conditional ex-

pectation of p with respect to d is the step function

E(P S) y I(By)-l fy
where x is the characteristic function

x(x) 1

0 xtB.
E (p (B) is determined to within null sets, and the following relations hold
for p, q W and c C almost everywhere:

(a) E(p 4- q l) E(p 6) 4- E
(b) E (cp S) cE (p ),
(c) IE(p]6)l <_
(d) ] (l(R)) d d.

In particular from (c) and (d), E (p 6) is itself a member of W, with

LEMMA 2.4. Given p,, p,,, e W and > O, there is a common partition
for pl, p,,, with

Proof. If we let
C,,. {x: l/n <_ Ink (x) <_ n},

then

f lP(x) ld/( 0

as n--* . From this it is apparent that there exists an integer no and a
Borel set So e $ such that for all k,

(a)
(b)
(c)
Let D

_
C be the closed disk of radius no and center 0, and let Dy, j

1, 2, r be closed disks of diameter less than e/3#(S0) with

D IdD.
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Taking intersections and differences of the sets

Sa.k p-l(Dj) n So, j 1, ..., r; / 1, ..., m,

we obtain disjoint B, B, in $ such that for all h, k,

IP(X) p(y) (e/3(S0) allx, yeBh,

and So U B. We select disjoint B,+, B,+, in $ with

and for which
B,+

_
X\S0, v (B+) < oo,

U N (p,)\So Uh B,+,.

Deleting null-sets, (B {B1, B., ...} is a partition for the pk.

Given k, and x e Bn, h _< s, we have

Pk (x) E (p 5) (x) P (x) (Bh)-I f p (y) d (y) ].

(B)-x [p(x) p(y)] d(y)

< /3 (Z0),
and ifxeBh,h > s,

IP(X) E(pl(B)(x) -< IPk(X) +u(Ba)-I/ IP(Y) Ida(Y).
Thus

3. Complex measure fields

In this section we shall summarize the Bourbaki theory of measure fields.
We will not need the sophisticated theory of "adequate" fields introduced in
the second edition of Integration [4], [5].

Let K be a compact Hausdorff space, and M (K) C (K)* be the Banach
space of complex regular Borel measures on K. We will use the notation:

Mx(K) {.eM(K) I[]] <- 1},

M+(K) {eM(K) " >_ 0},

P(K) {e M(K) >_ 0, 1},

i.e., P (K) consists of the probability measures on K. If p e K, we let (p)
be the unit mass at p.
Given v e M (K), let i] be the total variation of . We recall that for

f e C+ (K),

(see [4, III, 1.7]). There exists a I-essentially unique complex Borel
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function on K such that I (P) 1 for all p K, and t 1 t, (see [15,
p. 325]). The representation

Suppose that T and K are compact Hausdo spaces, and that is a meas-
ure on T. A field of complex K-measures on T is a map k of T into
M (K). We define

k sup{]] k 0e T}

and we 11 write k 0 if k 0 for all 0 e T. Given a field k, we define
the field k[ "pointse""

Prodding M (K) th the weak* topology,
and oy if 0 k) is continuous (resp. Bored for each f e C (K). Given
f e C+ (K),

[Xl(f) sup

Borel.
Let us assume i] X < . If X is Borel, we define a measure

on K by letting

(3.1) # (f) J X (f) d, (/9) for f C (K).

If is continuous and f e C+ (K), then given e C (K), I1 <- f,

hence we have

(3.2) f Xod(O> f lxoldlu I(0).

For continuous X one may use (3.1) to evaluate #(f) for seontinuous f.
We have"

LM 3.1. Suppose that X 0 is ctins and that y is a #-integrle
complex function on K. Then

(a) f is o-integrable for -almost all O,
(b) 0 X0) is u-mearable,

Proof. See [5, 3.3, Th. 1] and [5, 3.1, Prop. 2].

"Ige measures" are conveAently defined by mea of mee fields.
Suppose that m is a measure on K and that K T is a Borel map.
Then it is evident that p ( (p)) is a Bord field. The image are



ON A CLASS OF COMPLEX BANACH SPACES 53

(m) is defined by

(m) J ((p)) din(p).

4. Complex measures on a ball
Throughout this section, T will denote the unit circle, and da the unit Haar

measure on T.
Let V be a complex Banach space, V* the dual of V, and K the closed

unit ball at the origin in V*, with the weak* topology. K is a compact convex
set. Each e T determines an affine weak* homeomorphism of K by ar (p)
p. This in turn induces isomorphisms of C (K) and M (K) with the rele-
vant structures via (f) f o - and r () o ’ (this coincides with
the r-image of ).
We say that a function f on K is T-invariant (resp., T-homogeneous) if

f(p) f(p) (resp., f(p) f(p)) for all e T, p e K. Similarly, we say
that a measure e M (K) is T-invariant (resp., T-homogeneous) if r u
(resp., r ) for all e T. We let Cinv(K) (resp., Chore(K)) and
Miv(K) (resp., Mhom (K)) denote the corresponding linear spaces of func-
tions and measures. If f e C(K), then the function

(invr f) (P f f(ap) da

is continuous and T.invariant. It is readily verified that invr is a norm-
decreasing projection of C (K) onto Cin(K). Similarly, if we let

(homr f) (p) f a-lf(ap) da,

then homr is a norm-decreasing projection of C (K) onto Co (K). Taking
the adjoints of these projections on M (K),

invr o invr, homr o homr,

we have norm-decreasing, weak* continuous projections of M(K)onto
Miv(K) and Mo(K), respectively.
Given e M (K), the measure fields on T defined by

--1
a--*a and a--a a

are continuous. If f e C (K), then

(invr ) (f) (invrf)

ff f(ap) da d(p)

ff f(ap) d(p) da
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hence

inv /
A similar rgument shows that

In particular from (3.2),

(4.1) [homr ! inv .
A simple calcation ves the important relation

(4.2) homr homr .
Given e M (K), let 1 ] be a polar decomposition for (see 3).

Since is Borel, it is edent that the same is true for the map K K
defined by

(4.3) (p) (p)p.

If f e C (K) is T-homogeneous, then

( ) (f) ff()p) d] )

f (p)f(p) d

hence

(4.4) homr (] ]) homr .
On the other hand, if ] C (K) is T-invariant,

hence

(4.5) invr (] ) invr] .
Regarng the elements of V as the weak* hnear functions on V*, the re-

stction map v vK is a complex linear isometry of V into C (K) (it can
be shown that the image consists of the affine T-homogeneous functions in
C (K).) If e M(K),, (v) is a bounded linear functional on V, and the

V*reltant of defined to be the uque point r () e satisfying

r (,) ,
If e P (K), we claim that p r() coincides th the "barycenter" of ,
i.e. if a is a real affine continuous function on K, then (a) a(p). To
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prove this, note that a a q- t, where a 1t and is a real weak* continuous
linear function on K (see [1, Cor. 1.1.5]). On the other hand, Re v where
v e V (let v(p) $(p) -it(in)). Thus

We have

(Re v) -t- i (Im v) (v) v (p) Re v (p) -t- i Im v (p),
hence

(a) a -t- Re v(p) a(p).

It is readily verified that r: M (K) - V* is a weak* continuous, norm-
decreasing, linear surjection. Furthermore, we have the relations

r(r t) r(), r(homr) r(),
hence from (4.4),

r((i t [) r(homr(] t I)) r(t).

We let P (K) have the usual dilation order <, and we say that M (K)
is maximal if t 0, or 0 and the probability measure I ]/[i ]] is <-
maximal. If f C (K) is real, we recall that the upper envelope ] is defined by

](p) sup {,(f) :,,P(g), r(,) p}.
If we let

S (.f) {p g ](p) f(p)},

then u M (K) is maximal if and only if

(4.6) I(K\B(f)) 0

for all realf C (K), and it suffices to verify (4.6) for all real convex f C (K).
We shall denote the maximal measures on K by Mm(K), and let M(K)
be the corresponding subspace of maximal T-homogeneous measures.

LEMt 4.1. Iff e C (K) is real and convex, then

B (invr f) B (f).

Proof. If p B (f), then ](p) > f(p). Choose t P (K) with r (u) p
and (f) > f(p). For all a T, r (a, ) ap, and since f is convex,

Noting that a -- a:lf is norm-continuous, the function

(f) f
is continuous, non-negative, and strictly positive when a 1. Thus since
da has support T,

0 < f ((r. t) (f) f (an) da
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invr (f) inv,f(p)

(inv..f)

_< (invrf)’ (p) inv,f),
and p B (invr f).
LE 4.2. If M(K) is xil, then so are the asures homr

and ( ).

Proof. Given f C (K) real and convex, let F invrf. It is easily seen
that the set B(F) is invafiant under the maps ,, a T. Since

is continuous, we hve from Lemm 3.1,

da. [(KB(F))
=0

nd from (4.1), homr is mximl. On the other hnd, from (4.5),

( ) (KB (F)) invr] ](gkB (F)) O,

hence (] I) is so miml.
TEoE 4.3. Suppose tha V is a complex Banach spa with dual V*,
a let K be the closed uni ball of V*. Then She folling are euivan"

() V is a Lindensrauss space.
(b) If and are maximal probability measures on K wih r () r (),

then homr homr

Proof. () (b). Let us suppose that V is Lindetruss spce,
nd identify V* th complex L spce L (X, $, ) th X e $. Given mxi-
ml measures , e P (K) th r() r (), let

Then is mximl probability measure th r() 0, nd it suffices to
prove that homr 0.

We my select a net of tomic measures

l, 0
th

0 r() cp
(see [1, Prop. 1.2.3]). Given e > 0 nd 7, we hve from Lemm 2.4,
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common partition 6t B1, B, ...} for p, p() such that for all k

Letting p E(p (B), the probability measures

also converge weak* to as and e 0, and

(4.7) r() E(p ) E(cp ) O.

It suffices to show that for each and e > 0, there is a e P (K) th
> , and homr 0, since if ts is the case, let be a weak* conver-

gent subnet of . Letting lim , it is evident that > , hence. Thus
homr lim homr h 0.

We have

(4.8)

where from (2.1),
P*k j--1 aj XB

_j a Itt(B) II P I1 <- P < 1.

Letting a 1 a I, ’J e T, and q x, (B)-, the probability meas-
ure

h a g(B)( q) + (1 1P ])(0)
has resultant p. It follows that

is a dilation of r. On the other hand, from (4.7),

0,

hence if we multiply by x, (see (4.8))

c, a 0.

We have from (4.2) with g (q) and a ,
homh c, hom, cl a g(B) hom(q)

[ c, a]g(S) homr(q)

0,

(K) by lettg S (p)(b) (a). We define a map H K
homr r, where r is any mimal measure in P (K) th r() p (due to b,
ts is well defined.) We begin by shong that H extends to a linear iso-
merry of V* onto ro (K).
H is affine since given p, q e K and 0 a 1, let g, r e P (K) be mimal
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with resultants p, q respectively. Then a -t- (1 a) is maximal in P (K),
and it has resultant ap -’l- (1 a)q, hence

H(ap -t-- (1 a)q) homr(a -t- (1 ))

ahomr+ (1- a) homrv
all(p) + (I- a)H

H is T-homogeneous, since if p e K and a e T, let be a maximal probability
measure with resultant p. Then , () is maximal with resultant ap, hence
from (4.2),

H (ap) hom a hom aH (p).

Since H is both affine and T-homogeneous, it is complex linear.
If I! P I! 1, let eP(K) be maximal with r(u) p. Then H (p)

homr , or since homr is norm-decreasing, I] H (p)]] _< 1. On the other
hand, if we regard V as a subspace of C (K), H (p) is an extension of the linear
function p to C (K), hence

1 IiPll <- IIH(P)II.
It follows that H is an isometry.

maxGiven e vo(K), I! II _< 1, choose q e E (K) (the extreme points of K)
and let

From Lemma 4.2 and (4.4), is a maximal measure in P (K) and

homrg homr .
Letting r (g) p, we have H (p) , and we have proved that H is onto.
We next show that M"=(K) is an L-space. Given f e C (K), let

Mr(K) {u,M(K) I {(K\B(f)) 0}.

We may define a projection e of M (K) onto Ms (K) by letting e() be the
restriction IB(f). Then

(1 e) u [/CS(f),
and we have

In the termin01ogy of [6], M (K) is the range of the "L-projection" e. It
follows from [6] or [3, Prop. 1.13] that

M (K) (K)

is the range of a real linear L-projection r. From the proof of the latter fact,
it is apparent that r is also complex linear (one may instead use the fact that
any real linear L-projection in a complex Banach space must be complex
linear--see [16].) Since I! r I! -< 1, we have from Corollary 2.3 that Mm(K)
is an L-space.
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From Lemma 4.2, homr is a norm-decreasing projection of M (K) onto
M(K). Thus from Corollary 2.3, M:(K) is an L-space. Since H
is an isometry of V* onto the latter space, V* is an L-space, and V is a Lin-
denstrauss space.
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