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Introduction

Let S be a set, Z a a-algebra of subsets of S, X a Banach space having the
Radon-Nikodym property. Let by(S, Z, X) be the space of all countably
additive functions from Z into X which are of bounded variation. An integral
of a function W from Z into X* with respect a function g from Z into X is
defined by taking the limit over the net of Z-subdivisions of S. It is shown that
if cardinality of ca(S, Z) __< 2 and 2s Nx, then for each linear functional
Ton by(S, Z, X) there is a function W from X into X* such that T(#) s
for all g in by(S, Z, X). Also, a space of functions from Z in X* is constructed
which is linearly isometric to the dual of by(S, Z, X) via this representation.

2. Results

This paper may be considered as a generalization of [2].
Let S be a set, a a-algebra of subsets of S and let ca(S, ,) be the space of all

real-valued countably additive set functions on . Let H be a maximal subset
of ca(S, ) consisting of mutually singular positive measures.

Let X be a Banach space. Let by(S, ,, X) be the space of all countably addi-
tive functions from E into X which are of bounded variation. We consider
by(S, ,, X) as a Banach space under the variation norm.

THEOREM 1. The space by(S, , X) is isometrically isomorphic to the substitu-
tion space PI(n)N,, where for each bt in H, N is the subspace of by(S, ,, X)
consisting of all measures which are absolutely continuous with respect to lg

[1, p. 31].

Proof. Suppose o bv(S, , X). Then there is a positive measure 2 in
ca(S, Y) such that o << 2. It follows that there is a sequence (/)o__ from H
and a sequence (.2}o= of nonnegative measures such that (1) for each n,
2, << # and (2)I1 Y’--x ,11- 0.

Therefore, there is a sequence of disjoint sets (B)__ in 12 such that 2 is
concentrated on B and 2(B) 0 ifj i, for all and. For each and each
set E in 12, let o(E) w(E B). We have

(1)
(2)
(3)

o9 << 2 <</z, for each i,
IIo YL- oll --, 0, and
I1oll E= I111,
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Now, iff Ptl(H)N#, thenf is a function from H into by(S, E, X) such that
for each # in H, f(#) N and [[f(#)[[ < c. So, for each such f, let
b(f) Ef(#). The mapping b is linear and [lb(f)]l- [[fl[, and the
previous paragraph shows that b is onto.
As a consequence of Theorem and the theory of substitution spaces [1,

p. 31], we have:

THEOREM 2. The dual of by(S, E, X) is isometrically isomorphic to the
substitution space

One of the main objectives of this paper is to represent the dual of by(S, E, X)
by an integral. This will be done provided X has the Radon-Nikodym property.
However, even under this assumption, it seems that the problem of an integral
representation is tied up with some problems of general set theory.
For the remainder of this paper two types of integrals are used. First, let us

make the following conventions. If E E, then we say that D subdivides E
provided D is a finite collection of disjoint sets in E filling up E and we say that
D’ refines D provided D’ subdivides E and each set in D’ is a subset of some set
in D.

Let co map E into X, v map E into X*, and # map E into the nonnegative
numbers.

DEFINITION 1. The statement that the form (dv dco)/d# is Hellinger integrable
over a set E in I: means there is a number k such that if e > 0, then there is a
subdivision D of E such that if D’ refines D, then

v(BIt(B))co(B) k < e., (,)

where the sum is taken over all sets B in D’ with #(B) > O.
In case the form (dr dco)/d# is integrable, the number k of (,) may be denoted

by J’E (dv dco)/d#.

DEFINITION 2. The statement that the form v dco is integrable over a set E
in E means there is a number k such that if s > 0, then there is a subdivision
D of E such that if D’ refines D, then

E (v(B))co(B) k < < +)
D’

where the sum is taken over all sets B in D’.
In case the form v dco is integrable, the number k of (+) may be denoted

by J’E dco.
We note that both integrals are linear in v and in co. Also, the forms (dr dco)/d#

and v rico are integrable if and only if they satisfy a corresponding Cauchy type
condition.
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a o is a sequence offunctionsfrom Z into X whichTHEoP-aM 3. Suppose { ,},=
are ofbounded variation and there is a positive number such that v(A)II < #(A)
for every A in E with #(A) > 0. If [[o,, o911 0 andfor each n, (dr dco,)/d# is
integrable, then (dr dog)/d# is integrable. Moreover,

fs dV do, fs dv do

d# d
and fs dv dco

Proof If D is a subdivision of S, then

v v(n)o.(n)
(n)

ly(B)((Dn(B ) (D(B
(B)

(n)ll co,(B) co(B)II
D #(n)

Z og.(B) co(B)II

llco, coil.
Let e > 0. Let N be a positive integer so that if n

_
N, then Ilco coil < /3,

Let D’ be a subdivision of S such that if D’ refines D, then

(B) (B) 3

It can now be shown that

(B) o u(E)

Thus, the form (dv dco)/d# is integrable. Also, since each approximating sum
to $s (dr dco)/d# is bounded in absolute value by llcoll, we have

dV dco <_ allcoll.
d#

Thus, s (dv dco,)/d# converges to s (dv dco)/d#.
In a similar fashion, one can prove"

THEOREM 4. Suppose that for each n, the form v dco, is integrable and v is
bounded. 1ffor each n, co, is ofbounded variation and Ilco coil 0, then v dco
is intetTrable. Moreover,

fs V dO9 <_ sup {v(E) E in 2;}]]og]] and fs v fs v

DEFINITION 3. If # is a positive measure in ca(S, 2;), then let H(2;, #, X*),
be the space of all additive functions v from 2; into X* for which there is a
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number , such that liv(E)ll g(E), for every E in Z. Also, for each
v H(Z,/, X*), let

Ilvll suP{ IIv(E)II#(E) "#(E)>
The space H(Z, #, X*) is a Banaeh space [3].
We will need the following theorem of J. J. Uhl [3].

THEOREM 5. Suppose X has the Radon-Nikodym property and # is a positive
measure in ca(S, Z). Then for each T N*, there is only one function v in
H(Z,/, X*) such that

T(co) f ,dv dco
(U)

d#
for all co in NI. Moreover, if (U) holds, then TI IIll and the mapping of
into H(Z, #, X*) defined by (U) is onto.

We give an argument here for completeness.

Proof For each A in Z and x X, let co<,,a)(E)= x#(E A), for all
E Z. Of course, co,,a N. Let (v(A))(x)= T(co<,.a)). For each .4,
v(A) z X*, since v(A) is linear and

Iv(A)(x)l IT(c%,))l _< ITI IIc%,)11 < ITI Ilxll#(A).

It follows that v is an additive function from Z into X*, v is bounded by
TI#(S) and for each A, IIv(a)ll < TIg(A).
We now show that T(o,,a) Ss (dr do)/d#.
Let D’ be a refinement of the subdivision {A, A’}. Let {B}’= be all the

members of D’ which are subsets of A and having positive # measure. Then

o, /.t(B) = /(B)
Since

we have

f’O(x, A) O(x, B.9’

E v(B)co(.a)(B) (v(B))((= co(x, ag)(B,))
)’ #(a) =1 /(B)

(v(B))((x,n,)(B))

v(.4)(x)

T(og(x,a)).
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Thus, T(ro) f.s (dr dco)/d#, for all o in J, the span of the set of all
But, X has the Radon-Nikodym property means that J is dense in Nz. Thus, it
follows from Theorem 3 that v has the properties listed in the conclusion of
Theorem 5.

If v’ also has these properties, then for every x z X and A , (v(A))(x)
r(o.a) s (dv’ dr,,a)/d# (v’(A))(x). Thus, v is unique.
Now, suppose v z H(Z, #, X*). It follows from the earlier part of the argu-

ment for this theorem that for each x X and A e , the form (dv
is integrable. Again, since X has the Radon-Nikodym property, the space J, the
span of all the measures o. is dense in N. Therefore, by linearity of the form
and by Theorem 3, the form (dr dco)/d# is integrable for all r Nz and thus the
mapping of N,* into H(Z, #, X*) defined by (U) is onto.
From this point on, it is assumed that X has the Radon-Nikodym property.
The remainder of this paper is based upon the following idea. Given

T e by(S, Z, X), we will restrict T to the subspace N, for each # in Hand obtain
the corresponding function v. Then we will "paste together", the functions
v/g, u H to obtain q from to X* so that T may be represented by the form

&o, for all o in by(S, , X).
In order to describe how these functions are to be pasted together, let # be

some member of H and let F be an indexing set for H- {#). Thus,
n {} { I e r).

DEFINITION 4. A function b from {#y ’ e F} into Z will be said to be a
selector for the set {# Y F) provided

(1) for each e F, g is concentrated on Br (u) and/zt is concentrated
on B,

(2) if and V are in F and B
_

By c B, #y(B) > 0, and/(B) > 0, then
----o

THEOREM 6. If the cardinality of F is Nt, then there is a selector for the
set {#y e F}.

Proofi Let us assume that the set F consists of all ordinals , 2 < u < ox.
For each V and , 1 < V < < 0, let By be a set in such that #y(By) 0

and #(B) 0. For each , < < ox, let B y< By,. Since each
proper initial segment of F is countable, we have

#r(B) 0 and #(B;) 0.

So, for each V F, #y is concentrated on By and #x is concentrated on B’
Also, if and V are in F and B

_
By c B and #(B) > 0 and #y(B) > 0,

then r. Thus, if b is defined by setting b(#y) By, then b is a selector for

Question. If there is a selector for the set {g e r), does it follow that the
cardinality of F is

_
S ?
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DEFINITION 5. Let # be a positive measure in ca(S, E), and co a function
from I: into a normed linear space Y, and let B E. The function co is said to
be #-additive over B provided that if B1 and B2 are disjoint subsets of B,
u(B) > 0 and #(B2) > 0, then co(B) + co(B2) co(B w B2).

THEOREM 7. Suppose the set {,uv y F} has a selector dp, with dp(#) B,
and T bv*(S, , X). Then there is only one function from Y into X* such
that:

(1) #xW is #a-additive on S.
(2) #,F is #,-additive on B,, for each T.
(3) Ifl(B) 0 and there is no y F such that both #v(B) > 0 and B

_
Bv,

then P(B) O.
(4) (R): T(co) s P dco, for all co in by(S, Z,, X).
(5) Zl sup (II’(B)I:B

Proof Let vr be the unique function from Z into X* having the properties
listed in the conclusion of Theorem 5, for each y F and for 1.

It follows from the properties of a selector, the function W described below is
well defined:

Vl(B)
(n)

V(B) vr(B)
#r(B)
0

if tl(B) > 0

ifB Bvand #v(B) > 0

otherwise.

It is clear that the function P has properties (1), (2), and (3) stated in the
conclusion of Theorem 7.
We show that W represents T.
First, assume co Nr, for some F. Then T(co) s (dv dco)/d#r. Since

#r is concentrated on By, T(co) j’a (dv dco)/d#r and co is zero on all sets lying
in B. Let e > 0; there is a subdivision D ofB such that if D’ refines D, then

T(co) vr(B)CO(B ) < e,.
D’ #v(B)

If co(B) = 0, then #v(B) > 0 and therefore vv(B)/#v(B) W(B). So,

T(co) Y V(B)co(B) < e.
D’

Therefore, T(co)= J’s W dco, if co N, for some . A similar argument
shows that this representation holds if co N,I. And thus, this representation
holds for all co in J, the span of N,1 w (rr N). It follows from Theorem 1
that J is dense in by(S, , X) and therefore by Theorem 4, we have

(R) T(co) I V dco.

for all co in by(S, ,, X).
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Next, note that for all B X, we have [IW(B)[[ < IT[ and that for each
09 by(S, X, X),

IT(@l 1" W do < sup {IW(B)I’ B X}" Ilall..s
Therefore ITI sup {I ,(B)I: B

Finally, assume W’ is a function from Z into X* having the properties of P
listed in the conclusion of Theorem 7. Let F and define

and
v(E) 0 ifp(E) 0

v;(E) #(E c B)’W’(E c Br) if #(E) > 0.

The function vl H(E,/, X*). Also,

d# dt
for every o in Nr. Therefore, and if B Br and #(B) > 0, then

#B #(B)
There is a similar argument to show that ’(B) (B), if #t(B) > 0.

Therefore, the function is unique.
In view of Theorem 5, we are lead to the following definition.

DEFINITION 6. Suppose b is a selector for {#r ’ F}. The space
M(Z, b, X*) consists of all functions W from Z into X* which are bounded and
have properties (1), (2), and (3) of Theorem 7.

We note that M(Z, d, X*) is a linear space under the usual meaning of addi-
tion and scalar multiplication. Also, if we give this space the uniform norm,
then M(Z, b, X*) becomes a Banach space.

THEOREM 8. If {#rl 7 F} has a selector d, then each function W in
M(Z, dp, X*) defines a bounded linearfunctional on by(S, , X).

Proofi Let 7 F. Since # .W is /zr-additive and bounded, the function
/zr.W may be extended from the subsets of Br having positive/zr-measure to all
of E, as in the proof of Theorem 7, to be a function vr in H(t:, #r, X*). By
Theorem 5, for each co in Nz, the form (dvr dco)/d#r is integrable. Therefore,
for each co in N, the form W dco is integrable. By a similar argument each func-
tion co in Nz, is W-integrable. By linearity of the integral, the fact that the space
J, the span of NI u [3rr N is dense in by(S, Z, X) (Theorem 1), and
Theorem 4, we have that for each 09 in by(S, Z, X), the form F &o is integrable
and thus T(o) J’s W do defines a member of bv*(S, X, X).
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Theorems 7 and 8 are now combined to give"

TrmoPM 9. Suppose X has the Radon-Nikodym property and there is a
selector for the set {/ V e F}. Then the spaces bv*(S, ,, X) and M(Y, d?, X*)
are isometrically isomorphic by the representation

(R) T(o) fs tp do.

In connection with Theorem 6, we have

TrmORM 10. Suppose X has the Radon-Nikodym property, the cardinality
of ca(S, ) is <= 2 and the continuum hypothesis holds" 2 . Then the
conclusion of Theorem 9 holds.

For example if S is a separable metric space, is the a-algebra of all Borel
subsets of S, and the continuum hypothesis holds, then we have the representa-
tion given by Theorem 9.

Added in proof. It has been pointed out by Joe Diestel that if bv*(S, ,, X)
has a representation via (R), then X has the Radon-Nikodym property. Thus,
assuming the continuum hypothesis, a Banach space has the Radon-Nikodym
property if and only if the representation given by Theorem 9 holds.

The author would like to close with the following"

Question. Suppose that for each T bv*(S, Z, X), there is some function W
from into X* such that

T(o) s
for all 09 by(S, Y, X). Does it follow that there is a maximal set H of mutually
singular positive measures from ca(S, ), a measure/1 H and a selector for
the set H {#1}?
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