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Fundamentals

Let G be a group under multiplication, and let Z(G) be its group ring over the
ring of integers. Z(G) may be viewed as the set of formal (finite) linear com-
binations of the elements of G using integer coefficients. The augmentation
mapping e: Z(G) Z then takes each element of Z(G) to the sum of its co-
efficients Note that e is a ring homomorphism. The kernel of e is called the
augmentation ideal, and is denoted f. Let (R),(G) f/fa"+ 1. (R),(fa) is a nil-
potent ring, and may be viewed merely as an abelian group under addition. The
aim of this paper is to give a method for determining the additive structure of
On(G), where G is any finitely presented group. Specifically, a presentation for
the abelian group (R)n(G) is derived from the given presentation of G. This may
be used to obtain information about the original group G. An example is given
where G is the fundamental group of the complement of a simple link.

Recall that, by definition, (# is the set of all formal linear combinations in
Z(G) whose coefficients add up to 0. Hence, for any x 6 G, x is an element
of fa. So it makes sense to define a mapping d: G fa by d(x) x for
all x G. Let qn ( On(G) denote the ring homomorphism which takes each
element of (9 to its equivalence class in On(G). And call the composite qnd On.
The mapping On: G On(G) will play an important role in our study of On(G).

There are two special cases in which On(G) and the mapping On: G On(G)
are easy to describe; namely, when n 0 and when n 1. It is obvious that"

For any group G, (R)0(G) 0, and Oo(x) 0 for all x G.

Next, we will describe (R) I(G) and 01.

LEMMA 1. For any x, y G, d(x)d(y) d(xy) d(x) d(y).

d(x)d(y) (x 1)(y 1)
=xy-x-y+l
(xy- 1)- (x- 1)- (y- 1)
a(xy) d(x) a(y).
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THEOREM 2. For any group G, (R) I(G) is isomorphic (as an abelian group) to G
made abelian, and 01 corresponds to the canonical epimorphismfrom G to G made
abelian.

Proof. Note that f# is the free abelian group generated by

{d(x) x G {1}} (d(1) 0).

So if2 is the subgroup of ff generated by all d(x)d(y), where x, y G. Thus, by
Lemma 1, fg2 is generated by all d(xy) d(x) d(y), where x, y e G. So
(R)I(G) is the free abelian group generated by {d(x) lx G- {1}} mod the
subgroup generated by all d(xy) d(x) d(y). [-1

The multiplicative structure of OI(G) is not interesting, since the product of
any two elements equals 0.
We will now consider another important mapping associated with (R),(G).

Let G" be the product of n copies of G. Then we define d": G" # by d(v)
d(vl)d(v2)"" d(v,) for all v G".

Hereafter we will use the word "morphism" to mean"grouphomomorphism".

THEOREM 3. Let A be an abelian group under addition, and let h" (9 --, A be a
morphism which annihilates (9"+ 1. Then the mapping hd"" G" A is a morphism
in each variable when the other variables are heMfixed.

Proof We will prove the assertion for the first variable.

hd"(xy, v2,..., v,)
h(d(xy)d(v2)’" "d(v,))
h((d(x)d(y) + d(x) + a(y))a(v)...a()) (y Lemma 1)
h(a(x)a(y)a(v)...a(v.)) + h(a(x)a(v)...a(v)) + h(a(y)a(v)...a(v))
hd"(x, v2,..., v,,) + hd"(y, v2,..., v,,)

since d(x)d(y)d(v2)" d(v) cn+ 1.

On of a free group

Let F be a free group on a finite set of generators X. And denote by " the
augmentation ideal of F.

THEOREM 4. (R),,(F) is generated under addition by

U (q.dY(v) v
l<jn

Proof Let A be an abelian group under addition, and let g" On(F) A be
a morphism which annihilates 131j, {q,dJ(v) v X} It suffices to prove
that # annihilates (R),(F).
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Observe that:

5. gqn" r A is a morphism which annihilates -n+ and

l<j<n

Now, by Theorem 3, yqndn: F A is a morphism in each variable when the
other variables are held fixed. And gqndn annihilates Xn. So gqndn annihilates
Fn (since X generates F). That is, gqn annihilates all elements of the form

d(v)d(v2)" d(vn) where (vl, v2, Vn) e Fn.
But these elements generate -n. So:

6. !Tqn" "-* A is a morphism which annihilates --n and
U (dJ(o) V XJ}.

lj<n

Since we proved 6 from 5 it follows by induction that #qn annihilates ’. And
since qn: " (R)n(F) is an epimorphism, it follows that # annihilates

Next we must determine the relations among the generators of (R),(F). We
will do this by means of the free differential calculus I-2]. Fox’s concept of a
derivative is defined as follows"
A derivative on Z(F) is a mapping : Z(F) Z(F) such that

(a) 5(p + q) di(p) + 5(q),
(b) 5(pq) 5(p)e(q) + p(q) for all p, q e Z(F).

Here e is the augmentation mapping. It is easy to show that"

If 5 is a derivative on Z(F), then (1) 0.

TI-mOPdM 7.
inteyers i.

Proof Given p e r and q e ’,

6(pq) 6(p)e(q) + p(q) p6(q)

And ’+ is generated under addition by {pq P r, q r}.

If is a derivative on Z(F), then 6(+ 1) c ’for all positive

THEOREM 8. If 6, 62,..., 6 are derivatives on Z(F), then the morphism
et162.. 6: Z(F) Z annihilates +1.

Proof. Applying Theorem 7 repeatedly, we find that

6162"’’6/(,"i+1) C
And e annihilates .
Fox has shown in 12] that for each generator x e X there exists a unique

derivative /x on Z(F) such that dx/Ox 1 and dy/x 0 for every other
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generator y X. In the theorems that follow, we will denote by ul, u2,. ui
the components of an element u Xi.

THEOREM 9. If u Xi, v Xj, and < j, then

3 3 dJ(v) O.cu cu2 cu
Proof. Note that d(v) +. And, by Theorem 8,

e u du u
annihilates +.
THEOREM 10. IfU Xi, v X, and > j, then

__
...__dJ(v)_-- {loifU=vU (U2 (U tl V.

Proo We will proceed by induction on . Note that for any x, y ,
(/x)() /x. Hence the assertion is true when 1.
Now we may assume the assertion is true for a given i. Consider u X+

and v Xa, were . We have

dj(v)= ( dJ(v))du du2 du dui+ du u+
(1 or 0)

du
=0.

This agrees with the assertion.
Finally we must consider u Xi+ and v X+. Let v’ (v, v2,..., v).

Then

cli+(v)"U U2 Ui Ui+

__I (di(v’) d(vi+l))1c3u cu2 c3ui cui +--- a(v’) ed(v,+ ) + d(v’)
du+du 0u+

cu: c3u2 c3u cuz+
If u v, this expression is clearly equal to 1. Otherwise it is 0.

This completes the induction.
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TI-IEOREM 11. Under addition, (R),(F) is the free abelian group generated by

U
ljn

Proof. Consider any u X, where < < n. By Theorem 8, the morphism

e Z(F) --, Z
Ou Ou2 Ou

annihilates -i+ x. Hence the restriction

e " --. Z
Ul OU2 0Hi

can be written as nuq,, where nu" On(F) "- Z is a morphism. By 9 and 10 we
have

O0 O dj(v) {; if u=v
e gu Ou2 cu if u v.

So

10 ifu=vrc"(qndJ(v))
if u v.

Therefore there are no relations among the generators

O {qndJ(v) v XJ} [-’1
l<j<n

At this point it is convenient to adopt a new notation. Given u Xi, let
c,, q.di(u). (We assume n is known from context.) Let D. denote the mapping

0 0 ...0 d’FZ.
OU (U2 OU

And let " X 13 g gn Xi. Then Theorem 11 may be restated as follows"
Under addition, (R),(F) is the free abelian group generated by {c, u (.J" x}.
Looking at the proof of Theorem 11, we see that

And

O 0 O
d rCuqnd rcuOn.Du=e Ou Ou2 Ou

nu(Cv) ={10 ifu=v

ifu#v.

So D, is the u-coordinate of On. Therefore"

COROLLARY 12. On u o" x cuDu"
Note that Theorem 11 actually enables us to describe the structure of On(F)

as a ring. Given u X and v e Xj, define

uv (u, ui, v, vj) X+j.
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Since q. is a ring homomorphism, the generators of (R).(F) multiply by the rule

qndi(u)q,dJ(v) q,d +j(uv).

In other words, cuco cuo.
When + j > n, this product is 0. Hence O(F) is the truncated polynomial

ring (with height n + 1, with Z-coefficients, and with no constant terms) in
the noncommuting variables {cx x X}.

Computation of O.(G) from a presentation of G

Let Fbe a free group on a finite set of generators X. Let R be a finite subset of
F, and let E be the smallest normal subgroup of F containing R. Let G FIE.
Then G is a finitely presented group, with generators X and relations R. Our
aim is to compute the additive structure of (R),(G). We will approach the prob-
lem by way of (R).(F) and 0.: F --, (R).(F), which are already known.
Throughout this paper, the word "ideal" will always mean a two-sided ideal.

Call M(E) the ideal of " generated by {d(r) r R}.

TrIEOREM 13. d(y) M(E)for all y E.

Proof Note that M(E) is also an ideal of Z(F). So Z(F)/M(E) is a ring,
and we have a ring homomorphism

f: Z(F) Z(F)/M(E) withf(1) 1.

Now F sits in Z(F), andfacts as a group homomorphism on F. So

{x r If(x) 1}

is a normal subgroup of F. Andf(r) for all r R. Thusf(y) for all
y E. That is, d(y) M(E) for all y E. !’-1

Call # the ring homomorphism from onto induced by the canonical
morphism from F onto G.

THEOREM 14. M(E) is the kernel ofg.

Proof M(E) is clearly contained in the kernel of g. Moreover, given x F
and y E, we have

d(xy) d(x) d(x)d(y) + d(y)

by Lemma 1. Hence, by Theorem 13, d(xy) d(x) belongs to M(E). But

{d(xy) d(x) x F, y E}

generates the kernel of y under addition. So M(E) is the entire kernel. V1

The morphism from F onto G also induces a ring homomorphism from
o-+ onto #+ 1, and a ring homomorphism h from (R)n(F) onto (R)(G). Call
N(E) the kernel of h.
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TrmoeM 15. N.(E) is the ideal of O.(F) generated by {0.(r) r e R}.

Proof Consider the following diagram:

0 0

’n+l p .En’I’I 0

0 M(E) ff 0

0 , E) >On(F)O G)- ,0

0 0 0

The three rows and the second and third columns are exact. Hence, by a variation
of the Nine Lemma, the first column is exact. Thus q,: O,(F) takes
onto N,(E). And, since M(E) is generated by {d(r) r s R}, N,(E) is generated
by {q.d(r) r s R}.

COROLLARY 16. N.(E) is 9enerated under addition by
O) all O.(r), where r R,
0i) all c.O.(r), where r R and u 0n- X,
(iii) all O.(r)co, where r R and v 0"- X,
(iv) all c.O.(r)c, where r R, u X, v X, and + j < n.

Since O.(G) O.(F)/N.(E), Corollary 16 gives a presentation for O.(G).
The generators of O.(G) are the generators of O.(F); the relations of O.(G) are
the generators of N.(E). Since the presentation is finite, standard methods may
be used to determine the structure of O.(G) as an abelian group.

In principle, the ring structure of On(G) can also be found from this presenta-
tion. But less is known about the structure of nilpotent rings than is known
about abelian groups. This appears to be a more dicult problem.

Example 17. Let X {x} and let R {xg}. Then F is isomorphic to the
group of integers Z, and G is isomorphic to Zg. We will compute O,(Zg) as an
abelian group. It turns out that

D, ()(s entries) C(n, s).

Using Corollary 12, we obtain

0.(x9) 9c + 36c<, > + 84cx, , + 126c<x, , ,.
Since O.F) is a commutative ring in this case, the generators listed in 16 boil
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down to 04(x9), cxO#(x9), cx,)O,(x9), and c,,)O#(x9). Thus N,(E) is gener-
ated by

9cx + 36c,) + 84c,,x) + 126c,,x,),
9c, x) + 36c, , ) + 84c, x, , ),

9cx, x, ) + 36c, , x, ) and 9c,,, ).

To find the canonical form of (R),(Z9), form the matrix

9 36 84 126]
0 9 36 84/
0 0 9 3J0 0 0

By performing elementary row and column operations (using integer coefficients
only), we obtain

3 0 0 0
0 3 0 0
0 0 27 0
0 0 027

Thus (R),(Zg)g Z3 + Za + Z27 -.I- Z27.
Example 18.

-1r yzy

Let X {x, y, z} and let R (rl, r2}, where

xyz-ay-azx-Xz - and r2 zxz-Xyzx-Xz-Xxy-tx-.
Then F is a free group on three generators, and G is isomorphic to the funda-
mental group of the complement of the link in the figure. We will compute
(R)a(G). Using Corollary 12, we obtain

Oa(r) -c<x,r,z) + c<y,z,x)- c<z,y,x) + C<x,,y),

0(r2) C(z,x,y c(y,z,x C(x,,y + c(y,x,).

Note that the generators listed in parts (ii), (iii), and (iv) of 16 are 0. Hence
Na(E) is generated by 0a(r) and 0a(r2). Only six of the thirty-nine generators of
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O(F) occur in Oa(ri) or 0a(r2). So (R)a(G) is isomorphic to 33Z plus 6Z mod the
subgroup generated by 0a(rl) and 0a(r2). In matrix form, this is

which becomes
0 -1 0 -1

1 0 0 0

Thus (R)a(G)- 33Z + 4Z 37Z.

Remark on links. Suppose G is the fundamental group of the complement of
a link in Euclidean 3-space. Call Gn the nth lower central subgroup of G.
(G1 G, Gn [G, Gn-1] for all n > 1.) It is shown in [7] that G/Gn is an
isotopy invariant of the given link. Let G - F/E, where F, E, X, and R are as
before. We may then obtain a presentation for G/Gn by combining the relations
of G with all of the elements of Fn. It is shown in I-2] that Du(r) 0 for all
rFn, u(.Jn-lX. Hence, by 12, 0n-l(r) 0 for all rFn. So by 16,
(R)n- I(G/Gn) - (R)- I(G). Therefore (R)n- I(G) is an isotopy invariant of the link,
for all positive integers n.

In Example 18, we found that (R)(G) 37Z. But the fundamental group of
the complement of a trivial link with 3 components is a free group F on 3
generators. And (R)3(F) 39Z. So the link in this example is not isotopically
trivial. Moreover, deeper information about this link may be obtained by com-
puting (R),(G) for larger n. It is our hope that this approach will be fruitful in
studying the isotopy properties of more difficult links.
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