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We dedicate this paper to the memory of our friends H. Davenport, Ju.V.
Linnik, L. J. Mordell, L. Moser, A. Rnyi and W. Sierpiski, all of whom were
alive when we started our work in 1966 at the University of Illinois at Urbana.

0. Introduction

It was conjectured about 150 years ago that the product of consecutive
integers is never a power. That is, the equation

(n + 1)’" (n + k)-- x’ (1)

has no solution in integers with k > 2, l > 2 and n > 0. (These restrictions
on k, I and n will be implicit throughout this paper.) The early literature on this
subject can be found in Dickson’s history and the somewhat later literature in
the paper of Oblfith [5].

Rigge [-6-], and a few months later Erd6s [1 ], proved the conjecture for I 2.
Later these two authors ]-1] proved that for fixed l there are at most finitely
many solutions to (1). In 1940, Erd6s and Siegel jointly proved that there is
an absolute constant c such that (1) has no solutions with k > c, but this proof
was never published. Later Erd6s [2] found a different proof; by improving
the method used, we can now completely establish the old conjecture. Thus
we shall prove:

THEOREM 1. The product of two or more consecutive positive integers is
never a power.

In fact we shall prove a stronger result:

THEOREM 2. Let k, l, n be integers such that k > 3, > 2 and n + k > pt),
where pt) is the least prime satisfying pt) > k. Then there is a prime p > kfor
which v 0 (mod l), where is the power ofp dividing (n + 1)...(n + k).

Theorem 2 implies Theorem 1, since it is easy to see that (n + 1)(n + 2)is
never an/th power and if n < k then by Bertrand’s postulate the largest prime
factor of (n + 1)... (n + k) divides this product to exactly the first power.
Moreover, this shows that in proving Theorem 2 it will suffice to assume n > k.
One could conjecture the following strengthening of Theorem 2’ if k > 4

and n + k > pt), then there is at least one prime greater than k which divides
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(n + 1)... (n + k) to the first power. This conjecture, if true, seems very deep.
The requirement of k > 4 is motivated by

Now we start the proof of Theorem 2. We suppose that Theorem 2 is false
for some particular k, I and n, and show that in every case this leads to a con-
tradiction. As noted above, we assume n > k.

1. Basic lemmas

First observe that by the well-known theorem of Sylvester and Schur [3-[
there is always a prime greater than k which divides (n + 1)... (n + k), since
n > k. Such a prime divides only one of the k factors, so n + k > (k + 1) t,
whence

n > kt. (2)

Furthermore since we suppose Theorem 2 is false, for < < k we have

n + i= aixl, (3)

where at is lth-power free and all its prime factors are less than k.
In the proof [1-] for the case 1 2, it was shown that a q: a if # j. In

fact for 1 > 2 it is also known that the products aa are all distinct. In this
paper we need the stronger result:

LEMMA 1. For any 1’ < 1, the products a...a,, (i <.. "<it,) are all
distinct.

In fact we prove that the ratio of two such products cannot be an lth power.
First we show that (2) ensures

(n + i)...(n + it_) (n + j).’.(n + Jt-), (4)

provided the two products are not identical.
Cancel any equal factors. Since (n + i, n + j) < k and n > kt, it follows

that no factor of one member of (4) divides the product of the factors remaining
in the other member, so the nonequality in (4) is proved.
Now we prove the lemma. For some rational t, suppose that

ail ai,_l aj aj,_t t. (5)

We shall show that (5) implies the subscripts must all match. Assume without
loss of generality that (n + il)’"(n + it-) > (n + j)...(n + Jt-), and
put t u/v, with (u, v) 1. Then

X
(n + ia).." (n + l_ 1) ai ai,_ Ut

and

(n + j1)... (n + Ji-1)
yl

ajr-
I)
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where x uxil
we may put

h oil" "air-, aj, ajr_,
u V

so Ax > Ay and therefore x > y + 1. Thus

(n + i)... (n + i,_)

-(n + Jx)"" (n + Jl-1) >-- A((y + 1)

Note that (5) implies A is a positive integer.
(n + Jl-1) > nl-x, so with (6) we have

(n + il)...(n + il_l)- (n +jl)...(n +jl_l) > AI_)(l-)/l

"’’Nit_, and y vxj,...xjt_, in the notation of (3). By (5),

yl} > Alyl-X. (6)

Also Ay (n / jl)...

>_ ln(l- 1)z/l.
On the other hand,

(n + ix)...(n + it-x)

-(n + jl)..’(n + Jr-x) < (n + k)l-x nt- < kln- 2,

(7)

(8)

where the last inequality is obvious if 2 and for > 3 it may be seen as
follows. Clearly it suffices to show that

knl- 2

that is

Now

i=2

1 > tli=2 (l-1)i ()i-1.
I- 1) <]2i-x

also n > kl, k > 3 and > 3, so n > kl and moreover n > kl 2. Therefore

l (l --1) (!)i-1 2 (kli- kl 2 kl 2

<1 <<1.
i= 2 i= \2n] 2n kl n

The lemma now follows, since (7) and (8) require k > n1/, contrary to (2).
Now we prove"

LEMMA 2. By deletin9 a suitably chosen subset of rc(k 1) of the numbers
ai(1 <_ <_ k), we have

ail...ai, [(k 1)! (9)

where k’ k z(k 1).

For each prime p < k we omit an a for which n + m is divisible by p
to the highest power. If < < k and - m, the power ofp dividing n +
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is the same as the power of p dividing m. Thus Pllatl"" "ark, implies
PI (k m)!(m 1)!, so PI (k 1)! and our lemma is proved.

Change of notation. In the remainder of this paper it will be convenient to
have the a’s renumbered so that al < a2 <"" < ak. We shall employ this
new notation in Sections 2 and 3.
Note also that to prove Theorem 2 for any particular I it is enough to prove

it for some divisor of 1, so it suffices to consider only prime 1.

2. The case / > 2

2.1. The case k > 30000. Now we show that (9) leads to a contradiction
for k > 30000, using only the distinctness of the products ataj. It is known I-4]
that the number of positive integers bl < < br < x for which the products
btbj are all distinct satisfies

r < n(x) + cx/ (10)
(log x)a/2’

and this is best possible apart from the value of c. However, when r is small
this result is not adequate for our needs, so we shall now establish a bound
which is sharper for small r.

First we need a graph theoretic lemma. A subgraph of a graph is called a
rectangle if it comprises two pairs of vertices, with each member of one pair
joined to each member of the other. We prove"

LEMMA 3. Let G be a bipartite graph of s white and black vertices which
contains no rectangles. Then the number of edges of G is at most

Call a subgraph of G comprising one vertex joined to each of two others a
V-subgraph. Since G contains no rectangle, there can be at most one V-sub-
graph with any given pair of black vertices as its endpoints. Let st be the number
of white vertices of valence i, so ta st s. Counting the number of V-
subgraphs with black endpoints gives

If E is the number of edges of G, then by (11)

which proves Lemma 3.
Now let ul <... < us < x and v <...< vt < x be two sequences of

positive integers such that every positive integer up to x can be written in the
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form u,vj. If b < < b, < x are positive integers such that all the products
bsbj are distinct, form the bipartite graph G with s white vertices labelled
ul,..., us and black vertices labelled vl,..., vt and an edge between us and

v if usv b,,, for some m. Distinctness of the products bsb ensures that G has
no rectangles so by Lemma 3,

r<_s+ (t2). (12)

Lemma 1 shows in particular that the bound (12) applies to the sequence
a < < ak. Using (12) we next prove that the product of any k zr(k) of
the a’s exceeds k! provided k 30000. Because of Lemma 2 this implies
Theorem 2 for k >_ 30000 and l > 2. Evidently it suffices to prove

k-t(k)

l-I as > k! if k >_ 30000. (13)
i=1

We shall now obtain lower bounds on as (1 _< _< k). We deafly have

as >_ i, (14)

and using (12) we shall show two further inequalities:

as >- 3.5694(i- 304), (15)

as _> 4.3402(i 1492). (16)

Of these, (14) is sharpest for _< 422, (15) is sharpest for 422 < _< 6993, and
(16) is sharpest for > 6993. With these inequalities, a routine calculation using
Stirling’s formula suffices to verify (13) when k 30000, and (16) ensures that
(13) holds when k > 30000.
To prove (15), we take v <... < v to be the 25 positive integers up

to 36 which have no prime factor greater than 7 (so v and v25 36).
Next we obtain a suitable set of positive integers u <... < us < x so that
every positive integer m < x is expressible in the form usv. For convenience,
let V denote the set of v’s. Clearly any positive integer m < x with all prime
factors greater than 7 must be included in the u’s" let U1 denote the set of such
numbers. Next, suppose m < x is a positive multiple of 7 and m dd’, where
d is the largest divisor of m with no prime factor greater than 7. If d V then
d> 42, since 71d. Thus x > m dd’ > 42d’, so 7d’ < x/6. Hence we
include in the u’s all positive integers of the form 7d’ < x/6 with least prime
factor 7" let U2 denote this set of numbers. Similarly, if m < x is a positive
multiple of 5 and m =dd’, where d is the largest divisor of m with no prime
factor greater than 5, then d V requires d > 40 and 5d’ < x/8. Hence we
include in the u’s all positive integers of the form 5d’ < x/8 with least prime
factor 5, and let Ua denote this set. Likewise we include in the u’s all positive
integers of the form 3d’ < x/14 with least prime factor 3, and all positive
integers of the form 2d’ < x/20, denoting these sets by U and U respectively.
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Now every positive integer m < x is expressible in the form m uivj for some
us U and vj V, where U denotes the union of Ux,..., Us.
The number of u’s in each Us can readily be calculated. For example

IU2]
q(30) x 2x--+ ,,(x)=-- + ,z(x).
30 42 315

where the error term has the bound 2(X) 14/15. Likewise el(x) <_ 53/35,
ca(x) _< 2/3, e4(x) < 1/2 and es(x) < O. Thus the total number of u’s is

s=lUI- lUl ++
i= 315

5 353+ 2 ei(x) < x + 4.
i= 1260

120 84

Now (12) implies that the number of a’s up to x is less than 353x/1260 + 304,
whence (15).
To prove (16), we take the v’s to be the 55 positive integers up to 100

with no prime factor greater than 11, and the u’s to be all positive integers up
to x with all prime factors greater than 11, together with all those up to x/lO
with least prime factor 11, all those up to x/15 with least prime factor 7, all
those up to x/21 with least prime factor 5, all those up to x/35 with least prime
factor 3, and finally all even integers up to x/54. The first of these subsets of
u’s contains 16x/77 + Co(X) numbers, where Co(X) < 194/77. The error terms
in counting the other subsets of u’s are the same as before, so the total error is
less than 7. With (12), this leads to (16). Now we shall work upwards from
small k to resolve the cases with k < 30000.

2.2. The case k 3. It is easy to see that (1) has no solution when k 3,
for (n + 1)(n + 2)(n + 3) m(m2 1), where m n + 2, shows that the
product could only be an /th power if m and m2 are /th powers, but
m2 and m2 cannot both be/th powers. But for Theorem 2 we need to
show % 0 (mod l) for some prime p _> 3, where % is the power of p in
(n + 1)(n + 2)(n + 3). Suppose there is no suchp. Ifn is even, (n + 1,
n / 3) ensures a a2 1, contradicting Lemma 1. If n is odd, (n / 1,
n + 3) 2 ensures a 1, a2 2 and a3 2", with < g < l, and Lemma

is contradicted by ax-la3 az.
2.3. The case 4 < k < 1000, 1 3. Here we restrict attention to those

a’s with no prime factor greater than the mth prime, say f(k, m) in number. If
u and v are positive integers with prime factors similarly restricted, there are
3" rationals u/v no two of which differ by a factor which is the cube of a rational.
The number of formally distinct expressions a/a is f(k, m){f(k, m) }, so
there are two whose quotient yields a solution to (5), thus contradicting Lemma
1, if

f(k, m)(f(k, m)- 1} > 3". (17)
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Since the a’s arise as divisors ofk consecutive integers, and have all prime factors
less than k, it is straightforward to calculate a lower bound for f(k, m). Thus
we verify (17) for 4 < k < 10 with rn 2, for 10 < k < 28 with rn 3, for
28 < k < 77 withrn 4, for 77 < k < 143 withrn 5, for 143 < k < 340
with rn 6, for 340 < k < 646 with rn 7, and for 646 < k < 1000 with
m=8.

This method could be continued beyond k 1000, but certainly fails before
reaching k 10000. Fortunately we have an improvement available, and we
now proceed with it.

2.4. The caselO00 < k < 30000,1= 3. Let q <’"< qr be the r
largest primes satisfying q < k/2, where r is to be suitably chosen. We now
restrict attention to those a’s, say F(k, r) in number, which have no prime
factor greater than k/2, and at most one prime factor (counting multiplicity)
among the q’s. If u and v are positive integers with prime factors similarly
restricted, there are 3(ql)- R rationals u/v no two of which differ by a factor
which is the cube of a rational. In this count the factor R r2 + r + arises
from the fact that u and v each contain at most one of the q’s as a divisor. As
in (17), the number of formally distinct expressions a/aj is enough to ensure
that there are two whose quotient yields a solution to (5), and therefore con-
tradicts Lemma 1, if

F(k, r){F(k, r)- 1} > 3n(qt)-l(r2 + r + 1). (18)

To obtain a lower bound for F(k, r), note that for each prime p in (k/2, k)
we omit at most [k/p] + of the a’s; similarly for the products q2 and qiq, so

kl/2 <k <i<j<_r

For example, with k 1752 30625 and r 31 (so qt 29) this bound is
adequate to verify (18). Indeed, for 1000 < k < 30000 we can readily verify
(18), in eacl case taking q around k’a.

2.5. The case 4 < k < 30000, > 3. Here it is inconvenient to work with
ratios of products of a’s, so we work directly with the products themselves,
since we do not need the extra sharpness.
With the a’s selected as in Section 2.3, the inequality corresponding to (17) is

f(k, m) + l- 2) lm"> (19)
l-1

The left member of (19), derived by counting the number of nondecreasing
sequences of I a’s, is the number of formally distinct products of a’s,
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and the right member is the number of lth-power free positive integers with all
prime factors among the first m primes. When (19) holds, (5) has a solution,
contradicting Lemma 1. It is easy to verify by direct computation that (17)
implies (19) for 4 < k < 1000 and m chosen as in Section 2.3.

Similarly, with the a’s selected as in Section 2.4, the inequality corresponding
to (18) is

(F(k,r) + l- 2) (ql,_l(l+ r-1)>l (20)
1-1 1-1

The left member of (20) is the number of formally distinct products of 1 a’s,
and the right member is the number of/th-power free positive integers with no
prime factor greater than k/2 and at most l prime factors among the q’s
(counted by multiplicity). When (20) holds, (5) has a solution, contradicting
Lemma 1. For 1000 < k < 30000 and the values of r chosen as in Section 2.4,
(20) easily holds when (18) holds.

This completes the proof of Theorem 2 for > 2. It seems certain that one
could get a more general inequality than (19) and (20), leading to a more elegant
method valid for all k.

3. The case / 2

It remains to prove that (n + 1)... (n + k) always contains a prime p > k
to an odd exponent. (We already know that the product is not a square, by the
results of Rigge and Erdrs cited earlier.)
The a’s are now square-free and, by Lemma 1, all distinct. So, by Lemma 2,

k

I-I a, (k- 1)! I-I p (21)
i=1 p<k

We shall now show that for k _> 71 this leads to a contradiction.

3.1. The casek >_ 71. Since 12 of every 36 consecutive integers are
divisible by 4 or 9, at most 24 of any 36 consecutive integers are square-free.
Thus for k > 64 we have

a, > k! (22)
i=1

For any positive integer m and prime p, the power to which p divides p! is
(p 1)/(p 1). From this we can deduce that if the powers to which 2 and
3 divide (k 1)! are a and fl respectively, then

a > k log2k and fl > 1/2(k 1) log3k.

On the other hand, since the a’s arise from k consecutive integers and are square-
free, we calculate that if the powers to which 2 and 3 divide a ...ak are and
6 respectively, then

< 1/2{k + log2 (3k + 1)} and f < 1/4{k + + 2 loga (2k + 1)}.
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Since (21) implies that al...ak <_ (k 1)!2v-=3-a I-Ip<kP, we now deduce
from (22) that for k > 64,

() 14k (23)
k

22k/33k/4 < H P"
3 p<k

However Hp<k P < 3k, SO (23) fails for k _> 297. Indeed, 1-I<k P < e for
k < 108 by Theorem 18 of [7], so (23) fails for k _> 71.

3.2. The case k < 71. For k 3, it is impossible for the a’s to be distinct.
For k 4 the only possibility is a 1, a2 2, aa 3 and a 6. Then
ala2aaa4 62, so

(n + 1)(n + 2)(n + 3)(n + 4)

must be a square; but this product equals (n2 + 5n + 5)2 and we have a
contradiction.
For 5 < k < 20, we will count the number of a’s with no prime factor

greater than 3; if this is at least 5, it is impossible for the a’s to be distinct, and
we have a contradiction. This works unless k 6 and 5In + 1, or k 8,
7In + and 5In + 2. But in either of these cases we have four consecutive
integers whose product is a square, and this was shown above to be impossible.

Similarly we obtain a contradiction for 20 < k < 56 by noting that there
are at least 9 a’s with no prime factor greater than 5, and for 56 < k < 176,
where there are at least 21 a’s with no prime factor greater than 7. (This method
could be extended. For example, with 176 < k < 416 there are at least 42 a’s
with no prime factor greater than 11, and with 416 < k < 823 there are at
least 65 a’s with no prime factor greater than 13.)

This completes the proof of Theorem 2.

4. Remarks and further problems

No doubt our method would suffice to show that the product of consecutive
odd integers is never a power, in the sense of (1). In fact, the proof would
probably be simpler. More generally, for any positive integer d there must be
an integer t such that (n + d)(n + 2d). (n + td) is never a perfect power if
t > ta. Without ta this result fails since x(x + d)(x + 2d) y2 has infinitely
many solutions.
By our methods we can prove that for fixed t,

(n + dx)"’(n + dk) xt, dl <"’< dk < k + t (24)

has only a finite number of solutions. Our theorem shows that there is no
solution with 0. With we have the solutions 4!/3, 6!/5 and 10!/7;
perhaps there are no others. Suppose that is a function of k, or of k and 1.
How fast must grow to give an infinite number of solutions to (24)? The
Thue-Siegel theorem implies that (24) has only a finite number of solutions when
dk and I are fixed, with I > 2. For fixed k it seems probable that limz_.(R) dk oo.
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Another question which arises naturally from our method is the following.
Let a) be the largest divisor of n + which is lth-power free and has all prime
factors less than k. Our proof for 1 2 implies that for < < k, the a2)

are not all distinct when k 4= 4, 6, 8. An easy argument also shows that the
a2) cannot all be distinct when k 8. To what extent do these results extend
to 1 > 2? For how many consecutive values of can the at) be distinct?
We mention one final problem. Let a be the largest divisor of n + which

has all prime factors less than k. Our proof of Theorem 2 shows that for any
n > 0 and k > 30000, the products aaj cannot all be distinct. Very likely this
holds for much smaller values of k, perhaps as small as k > 16. To see that it
does not hold for 3 < k < 16, it suffices to check for k 3, 5, 7, 11, 13, 15.
We conclude with a table of examples for these cases.

3
5
7

11
13
15

al a2 a3 a4 as a6 a7 a8 a9 alo all a12 a13 a14

2 2
12 2 3x 2at2

60 2 3 2
90 7 2at2 3 2
90 11 2at2 3 14
104 11 18 72 20

52 2.33
53 12 14 34 40
53 12 2 34 40
3 2 3.23 5 14

7s 66
3at4 44 13s 6.5at6
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