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1. Suppose that G, H, and H are groups with G nonAbelian and that
E: - G - H - H - is an extension of G by H. Then E induces a "semi-
action" of H on G, b: H - Out G (where Out G Aut G/In G). The classical
question is: given a b: II - Out G, is there an extension E which induces b ?
The classical answer by Eilenberg and MacLane [5] is: there is an extension if
and only if a certain group cohomology obstruction k Ha(H; C) is zero,
where C is the center of G.

This obstruction arises in a number of ways in topology: in classifying
homotopy equivalences, in classifying certain kinds of manifolds and actions
on them, and as the k-invariant of certain classifying spaces, [2], [3], [9]. In
this paper we study methods, other than the direct definition, of computing this
obstruction.

Consider the special case of above where H Out G and b id and call
the resulting obstruction U 6 Ha (Out G; C). Then U is the universal example
for this obstruction (see [-9, 4.8]). In the spirit that it is sufficient to compute the
universal example, we prove"

THEOREM 1. Let c H2 (In G; C) be the characteristic classfor the extension
0 C - G - In G - 1. Then c transgresses to U in the Lyndon spectral
sequence for the extension

lInG-AutGOutG 1.

The proof of the corresponding topological fact is given in Section 4. To
complete the proof of Theorem 1, in Section 5 we show:

PROPOSITION 2. Let F be a normal subgroup ofH and F - E - B be a Serre
fibration in which F, E, and B are Eilenberg-MacLane spaces of type (F, 1),
(H, 1), and (H/F, 1), respectively. Then under the natural isomorphism between
group cohomology and (singular) cohomology of K( 1)’s, the Lyndon spectral
sequence corresponds to the Serre spectral sequence.

This fact seems to be well known, but to the author’s knowledge it is not in
the literature.

There is a classical family of examples of Eilenberg and MacLane which lead
to some interesting consequences of Theorem 1. In [6], they ask: given a
group H, an Abelian group C which is a H-module, and an element 0 #
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k Ha(H; C), is there a group G with center C and for which k is the obstruc-
tion? They answer affirmatively by constructing a certain free group F and
showing G C x F works (when H Z2). For these groups we then have"

(a) The class U e H3 (Out G; C) is nonzero (since it pulls back to k - 0).

(b) The class c e H2 (In G; C) is zero, since C - G - F In G is the
trivial extension.

By Theorem 1, therefore, in these cases the zero class transgresses to a non-
zero class, so it must be that U is in the ideterminacy of transgression for these
groups, i.e., here transgression is a differential d3" E’ 2

_
E33 o, and it must

be that U image d2" E’ E23, o.
This does not only happen for trivial extensions. In Section 3 we give an

example of a group for which the classes c and U are both nonzero, but still
U image d2.
There are two interesting consequences to U being in the image of d2. First,

U is then in the image of a homomorphism which we potentially can compute
and thus find U directly. To demonstrate computability for the above cases
(trivial and nontrivial), in Section 3 we find an element e E’ and show
d2(e) U, giving sufficient (definitely not necessary) conditions for this.

Second, if U e image d2, then d3(c) 0 so c lives to Eoo. Hence, there is a
class c’ H2 (Aut G: C) which restricts to c. The class c’ represents an exten-
sion E’ which gives us the following"

COROLLARY 3. If U image d2, then we can complete the following diagram

E"0 C AutG

E’O-CG InG 1

where the extension E’ induces the natural action of Aut G on C.

Not surprisingly, this does not always happen. For example, let Z5 be gener-
ated by a, let Z8 be generated by r which acts on a by a a-1, and let G
Z5 x Za be the resulting semidirect product. Then C - Z4 generated by
c r 2. Let b’G Gby dp(air) a2ir -. Easily, b AutG, b(c) c-1,
and b2 O(r), the innerautomorphism determined by r. Suppose there were a
group H which satisfied the conclusion of Corollary 3. Then there would be
s, tp H such that tp under H Aut G and r - s under G H. Note
that s2 c. Since s O(r) under H - Aut G, W2s- b20(r)- 1 e Aut G.
So tg2 c,s, for some i. Hence tp4 c2,s2 c,j odd. Therefore c commutes
with tp, as c W or tpa. However, since b(c) c- and E’ induces the
natural action of Aut G on C, we must have WcW- c- # c. Therefore c
cannot commute with tp; hence no such H exists. This example developed from
a discussion with George Bergman.



32 RICHARD O. HILL, JR.

Since it is not always true that U im d2, it would be very interesting to
determine for which groups it is or is not. Hopefully, this would lead to a
method for computing U given G.

Finally, if U 0, then Corollary 3 applies, but it is easy to find the extension
E’ directly. For U 0 implies there is an extension

E,,. G
_._
H

__
Out G

which induces the identity on Out G. In other words, E" induces a homo-
morphism W: H Aut G (by W(h)(x) y if hi(x)h- i(y)) and j’q j
(where j" Aut G Out G is the quotient homomorphism). If i" C H is
the composite

C--- G ---, H,
then it is easy to check that

E’" C i-- H Aut G
works.

I would like to thank Professor Leonard Evens for his helpful discussions.

2. We first develop some basic algebra we need.
Let G be a group and C be its center. Then restriction Aut G Aut C

naturally induces a homomorphism p" Out G Aut C. Thus p makes C into
an Out G-module.

Recall the bar construction on H, B B(H) {B,}. For n < 0, B, 0;
for n > 0, B, is the free Abelian group generated by all symbols of the form
Xo[Xl [’"ix.I, where x, eH, xi if i>_ 1. Set Xo[Xl ["’[x.] 0 if
some xi 1, xi > 1. The Z(II) (= group ring) module structure is

Z(Xo[Xa I"" x.1) ZXo[Xx I"’1 x.1.
For n > 1, define O.: B. B._ by

a.Xo[X,l Ix.] XoX,[Xl Ix.] + (- )"Xo[X,l Ix.]
n-I

+ Y (- )’Xo[X, I’" "Ix,x,+, I’" "Ix.].
i=1

For b: H - Aut C making the Abelian group C into a H-module, define

H(II; C) ker a.*+,/im a.*,
where

t3.*" Homz(n)(B._ 1, C) Homz(n)(B., C).

Consider the diagram

(2.1)

0CGAutGOutG 1

In G
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where and il are the inclusions, j and Jl are the projections, and v ilj so
that the row is exact. For every y Out G, pick u0,) Aut G such thatjlu 1,
but pick u(1) 1. (u is just a function.) Since Jl(u(y)u(Yl)) Jl(u(YYl)), by
exactness there are elements fl(Y, Y) G such that

(2.2) u()u(yx) vfa(y, y)u(yy), y, Out G.

By the associative law in Aut G, it follows that

[(A(,, ))L(, , )] via(, )L(, )]
so that there are elements k(y, y, 2) C such that

(2.3) YA(Y,, 2)A(, YaY2) ik(y, , Y2)A(Y, Y)L(, 2), , , 2 Out G.

PROPOSITION 2.4. The cochain B3 (Out G) C by

is a coeyele. Bs cohomoloyy class U H (Out G, C) is independent of the
choices made in the construction of k. There is an extension of G by Out G which
induces 1: Out G Out G if and only if U O.

Proof. This is a direct consequence of Eilenberg and MacLane [6] (or see
MacLane [10, pp. 12128]). Define

(2.5) f(7, 7t) jf(y, ) In G, , s Out G.

Then

(2.6) u()u(y) ill(Y, y)u(y, Yl), , Yl Out G,

and

(2.7) Yf(Y, Y2)f(Y, 72) f(Y, Y)f(YY, Y2), Y, Y, Y2 s Out G.

Compare with (2.2) and (2.3).
Of course there is a "semi-action" of Out G on In G given by

(2.8) y(x) u(y)(x) u(y)xu(y)-, Out G, x s In G.

Then

(2.9) (y(x)) Of(, y,)(yyl(X)), y, 1 Out G, x In G,

where O(y)(x) yxy-, x, y In G. (Compare with [10, p. 125, 8.6].)
For every x In G, pick v(x) G such that jv 1, but pick v(1) 1. (v is

just a function.) Since j(v(x)v(y)) jv(xy), by exactness there are elements
9(x, y) s C such that

(2.10) v(x)v(y) i9(x, y)v(xy), x, y In G.

Of course y is the factor set of the extension

c6 In 6,
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it determines the characteristic class e H2 (In G; C), and it is thought of as
the obstruction to v being a homomorphism.

Let Aut G act on G naturally and let Aut G act on In G by innerauto-
morphisms (in Aut G). Note thatj commutes with these actions. Thusjv(x)
jv(x) so that again by exactness there are elements M(, x) e C such that

(2.11) zv(x) iM(, x)v(x), e Aut G, x e In G.

It is easy to verify

(2.12) M(, xy) M(o, x)M(z, y)g(ax, oy)zg(x, y)- 1,
e e Aut G, x, y e In G

(2.13) M(fl, x) aM(B, x)M(z, fix), , fl e Aut G, x e In G.

Suppose a, b, x, y e In G and ab xy. Then v(ab) v(xy) so

g(a, b)- v(a)v(b) g(x, y)- v(x)v(y).

If e e Aut G and (a)b xy, we get

g(cza, b)- v(a)v(a)- uv(a)v(b) g(x, y)- v(x)v(y)
or

(2.14) zv(a)v(b) M(u, a)g(a, b)g(x, y)-v(x)v(y).

Now redefine f and f by:

DINTION 2.15. Let f be given by (2.6) and let f vf. Then all other
equations hold, in particular (2.3).

PROPOSITION 2.16. For , ?1, 2 e Out G,
]((]), )1, ])2) M(uv, f(v, V2))g(vf(v,, V2), f(v, ]tY2))g(f(v, ’t), f(Yv, ]2))-.

Proof. Use (2.7) to make the obvious substitution in (2.14) and compare
with (2.3).

Since j(u(v)z) ]j(a) by exactness there are elements F(V, a) e In G such
that

(2.17) u(v) iiF(V, cz)u(vjt()), y e Out G, a e Aut G.

It is easy to verify

(2.18) F(V, zfl) F(V, z)F(?jto, fl), e Out G, a, fle Aut G,

using the associative law for u(v)czfl, and

(2.19) f(y, ,)F(y?t, a) ?F(Vt, a)f(y, yjz), V, ] e Out G, a e hut G,

using the associative law for u(V)u(v)a, and

(2.20) F(V, ix) y(x), y e Out G, x e In G

by (2.8) and (2.17).
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3. We give sufficient conditions that U e im d2" E’ E23, o and identify
d2 in these cases.
Assume that

(3.1) g(x, y) g(x, y), Aut G, x, y In G,

where g was given in (2.10).

LEMMA 3.2. If g satisfies (3.1), then for fixed Aut G, M" In G C is a
homomorphism, where M(x) M(, x).

Proof. This is immediate from (2.12).
We abuse notation and define M(7, x) M(u(7), x), 7 Out G, x In G

and similarly for M

LEMMA 3.3. Ifg satisfies (3.1), then the function
T: Out G - Horn (In G; C)

by T(7) Marl- is a crossed homomorphism.

Proof. Recall the action of Out G on Hom is

(fl f)(x) fl(f(fl- ’x))
(see [10, p. 348]). Then

Ml((czfl)- ’(x)) aflv(fl- ’a- Xx)v(x)

M#(fl- lz- lx)ov(z- lx)v(x)-

x(Mo fl- ’)(x)(Mo a)(x).

Let {Ep’q} be the Lyndon Spectral sequence for the extension In G
Aut G Out G with coefficients in C and all actions are natural. By [10,
p. 351], E" Hi(Out G; H’ (In G; C)). By [10, p. 106], H’(FI; A)
crossed homomorphisms/principal crossed homomorphisms. Since In G acts
trivially on C, H (In G; C) Horn (In G; C). Thus, elements of E’ are
represented by elements of

Hom (Out G; Hom (In G, C))

(where Home denotes crossed homomorphisms).
Assume

(3.4) g(7f(7, 72),f(7, 772)) 0 g(f(7, 7),f(77, 72)), 7, 71, 72 e Out G.

Assume that M(7, x) satisfies (2.13) for 7 Out G, x In G.

PROPOSITION 3.5. Suppose 9 satisfies (3.1) so that IT] E’ 1. If G satisfies
Lemma 3.3 and (3.4), d2[T] U E23’ o.

Before proving (3.4) we discuss (3.1) and Lemma 3.3. If C - G In G is
the trivial extension, then we can choose h 0 so that easily it satisfies (3.1)
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andLemma3.3. ForG C x H, whereH= In G so the center of H 1,
Aut G Aut C x Hom (H, C) x Aut H as a set, and multiplication is given
by

(a, b, c)’(al, bl, ci) (aai, ab + bc, ccl).

Similarly for Out G Aut C x Hom (H, C) x Out H. Using this, it is not
hard to see (3.4) is satisfied.
We give a nontrivial example with details left to the reader. Let Z5 be gen-

erated by a, Z4 be generated by r, and let Z4 act on Z by tar- a-1 (which
is not the natural action). Let G Z5 x, Z4, the semidirect product. Then
C Z2 generated by c, where c r 2, In G Z5 x, Z2 generated by and P
and the extension C - G --. In G is easily nontrivial.

Let v(iPj) ar. Then g(P, gP) c and g(x, y) 0 for all other (x, y).
To compute Aut G, observe both Zs and C are characteristic in G. Let

cz, fl e Aut G by (r) r, cz(a) a2, fl(r) r -, fl(a) a. Then () "= Z,,
2 p, (fl) Z2, and (, , fl) Aut G (where ( ) denotes "subgroup
generated by"). In fact, Aut G Zs x, (Z, x Z2).

Finally, by above it follows that Out G - Z2 x Z2 generated by , ft. Let
u(ifl) czifl. Then f(fli, flg) P and f(x, y) 0 otherwise. By using
these definitions it is not hard to see that this g satisfies (3.1) and Lemma 3.3,
that the corresponding M satisfies (3.4), and that the universal example for this
G is not zero by identifying it in H3(Z2 Z2; Z2).
We note in passing that for the dihedral group of order 8, no g satisfies (3.1)

(but that its U 0).

Proof of Proposition 3.5. Following MacLane [10, p. 351] let

Kp’ q HOmA, (Bp (Out G) (R) B (Aut G); C)

(which is essentially the Eo term of the Lyndon spectral sequence).

b(6’f)(b’ (R) b") (- 1)+q+ af(db’ (R) b"), b’ B,+ , B
(5"f)(b’ @ b") (- 1)q+ f(b’ db"), b’ B, b" Bq+ .

Note that to define elements of Kp’q it is sufficient, by using the action of
Aut G, to give their values on elements of the form

[Tx I"’1 T] (R) o[x I’"1 a], T e Out G, e Aut G.

Recall the functions f and F were defined by (2.5) and (2.14). Define A e Ka’ o,
B, C e K2’, D e K1’ by

(3.6)

(3.7)

(3.8)

(3.9)
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It is not hard to verify the following"

(3.10) 6’B A, by the relation 6k 0 (see [10, IV.8.4-]),

(3.11) B C, by Lemma 3.3 and by Proposition 2.16,

(3.12) 6"C 6’D, by Lemma 3.2, (2.7), (2.19), and (3.4),

(3.13) 6"D 0, by (2.18).

D([y] (R) o[]) M(y, F(y- 1, (1))

(3.14) M(yl, y-

T(y)(I) for So, In G,

by (2.20) and Lemma 3.3.

Therefore, [A] represents U in E’ o by (3.6) and Proposition 2.4; I-D,]
by (3.13) and represents T by (3.14) and by MacLane [10, pp. 348, 352]; and
d2([O-]) I-A-I by (3.10)-(3.12). This completes the proof.

4. Under the natural isomorphism H*(H, C) H*(K(H, 1); {C}), (where
{C } denotes local coefficients if necessary when C is not a trivial H-module), we
abuse notation and let c H2(K (In G, 1); C) correspond to the characteristic
class of the (central)extension C G In G andlet UH3(K(OutG, 1); {C))
correspond to the universal obstruction in H3 (Out G; C). In this section we
prove:

PROPOSITION 4.1. In the Serre spectral sequence for thefibration

K (in G, 1)--. K (Aut G, 1) K (Out G, 1),

c trans#resses to U.

First, construct the space B which has U as its only (twisted) k-invariant, so
we obtain a fibration

K(C, 2) B-q K(OutG, 1).

Let H2(K(C, 2); C) be the fundamental class.

PROPOSITION 4.2. (i) In the fibration q, transgresses to U. Also, rcl(B)
Out G, 7z2(B) C, and rc(B) O, otherwise.

(ii) There is afibration lying over B

K(G, 1)-- K (Aut G, 1) B

which is the universalfibration for K(G, 1)fibrations. The homotopy sequencefor
zc is all zero except for 7r2(B) - -+ -- 7z(B) and this is the natural sequence
C - G - Aut G - Out G (of (2.1)).
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Part (i) follows immediately from the construction of B. Part (ii) is one of the
main results of [9]. (That z of the classifying space for K(G, 1) bundles is as
described in (i) is a result of Gottlieb [7].)

LEMMA 4.3. There is a map offibrations

K (in G, 1) K (Aut G, 1) K (Out G, 1)

K(C, 2) B K(OutG, 1)

such that h identity andf*(O c.

Proof of Proposition 4.1. Proposition 4.1 follows immediately from Lemma
4.3 by naturality, since transgression commutes with maps of fibrations and
since transgresses to U in q by Proposition 4.2 (i).

Proof of Lemma 4.3. Consider the following diagram:

K(G, 1)

K(G, 1) T ’’ K(C, 2)

K (Aut G, 1) B K (Out G, 1)

where q and r are the fibrations above and

K(G, 1) T ’------’ K(C, 2)

is the fibration pulled-back from n by i. By the usual argument,

T i.._...[ K (Aut G, 1) q---- K (Out G, 1)

is a fibration. Easily qt is (homotopic to)p so that T K (In G, 1), i j.
Letting g t and f n, we are done when we show ](t) c.

Since (i, i) is a map of fibrations, the induced maps commute with the
homotopy sequences of t and n. Hence, using Proposition 4.2 (ii) it follows
that the homotopy sequence for reduces to the natural C G In G.
Makingj into a fiber map, we then get the fibration

K(C, 1) K(G, 1) K (In G, 1) T

which is classified by t. But by [8, Theorem 1], z(t) which is the characteristic
class for this fibration corresponds to the characteristic class of the group
extension

c,(K(C, 1)) rc(K(G, 1)) t(K (In G, 1))

under the natural isomorphism H* (In G; C) H*(K(In G, 1); C), so we
are done.
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5. In this section we will prove Proposition 2. Let K {Kt"q}, 3’ and 6" be
as in the proof of Proposition 3.5. The filtration On K is the usual filtration for
bicomplexes, Fp Y’.=o Bh(I-I/F)(R) B(FI). (See [10, XI, Section 10-].) We
realize this geometrically.

Let W W(H) be the standard free acyclic CW complex corresponding to
the group Fl and let C, C,(W) be its CW chains. This can be constructed
by making the bar resolution into a semisimplicial complex and then using
Milnor’s geometric realization [11]. See for example [8, Section 3]. Denote
the n-cells of W by (ao,..., a,) and the corresponding generators of C, by
((ao,..., a,)), at Fl, no ai 1, > 0. There is a free cellular action of H
On W,

a(ao, a,..., a, (aao, a,...,

Denote by K K(H) the quotient space W(FI)/FI which is a K(FI, 1).

LEMMA 5.1. Let B, B,(FI) be the bar resolution of FI.
(a) There is an isomorphism B, C,(W) induced by

ao[al ]’"l a,,] --, (ao,...,

(b) This isomorphism induces the natural isomorphism

q): H*(FI: C) H*(K(FI, 1);

for the case K(FI, 1) is K(FI).

Proof. This is proven in [8, 3.4]. The isomorphism is just the composite
of the one induced by (a) and the isomorphism from equivariant cohomology
in the universal cover of a space X to the local cohomology of X given by
Eilenberg [4].
Now form the fibration

w(n) w(n/r) x w(n) w(n/r).

Let FI/F act on W(H/F) as above, with F 17, let F act on W(H) naturally,
and let 17 act on w(n/F) x W(H) diagonally. Then the maps and p are
equivariant, W(FI)/F K(F, 1), W(lq/F) x W(H)/H K(H, 1), and we
have induced a fibration

K(r,) K(n,) K(n/r),

where K(FI/F) is as above (and the homotopy sequence is F rI H/F).

Proof of Proposition 2. For any space X let S(X) denote the total singular
complex. For each of the following, we give a graded cohomology group, a
filtration on it, and the resulting spectral sequence in the sense of Serre [123
and argue as we go along that each is isomorphic to the preceding.

(1) Kp’q Hom, (Be(H/F) (R) Bq(H); A), F, Y’.=o Hom, (Bh (R) B; A),
Ep’ q. This is the Lyndon spectral sequence for the extension F 17 1-I/F as
defined by MacLane [10, XI. 10].
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(2) 2K, 2F, 2E are obtained from (1) by substituting CpW(I-I/F) for Bn(H/F)
and CW(FI) for B(FI). Note that these are equivariant CW cochains. The
isomorphisms result easily from Lemma 5.1 (a).

(3) 3K, 3F, and 3E are obtained from (2) by substituting equivariant singular
cochains for equivariant CW cochains. The isomorphisms result from the usual
(and easy for this case) chain equivalence from CW chains to singular. (See the
of Eilenberg and MacLane in [4, Section 7].)
(4) 4K Horn (SK(H/F) (R) SK(F, 1), (A)) the (local) cochains on the

twisted tensor product, constructed from the fibration q. See Brown [1, p. 236,
229-]. 4E arises from the filtration 4F which we use to correspond to the above
filtrations, and is the same as given by Brown 1-1, Section 3, p. 229]. Eilenberg
has shown that the equivariant cochains on the universal cover of" X is iso-
morphic, induced by projection, to the local (or twisted) cochains of X I-4,
Section 25, p. 212"[. Hence, comparing p and q, the cochains and filtrations
correspond, so the resulting spectral sequences are isomorphic.

(5) Let 5E be the usual spectral sequence of q, so that 5K SK(H, 1) and
F is defined by real dimension (as in Brown [1, Section 7, p. 236]). By Brown
[-1, Corollary 7.2, p. 237], ,E is isomorphic to 5E. We are now done.
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