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Introduction

This work is a generalization of a paper by N. Blackburn Ill on the Schur
multiplier of the wreath product of two finite groups G and H. This wreath
product is the group called the complete or unrestricted wreath product by
H. Neumann [5], and the regular wreath product by Huppert [3]. We will
consider wreath products as defined by Kerber [4] and Huppert, and the
notation G "X, H will always be taken to mean a group defined in this way. The
regular wreath product of G and H will be denoted by G’X., H.
Our proofs sometimes follow closely along the lines of those of [1], and

where the argument is almost identical, we have omitted the details. To
show that our work is in fact a true generalization of Blackburn’s work, we note
that G’L, H G LH/, where H / is a permutation group on the elements of
H which is itself isomorphic to H; indeed, we are able to recover Blackburn’s
result as a corollary to our main theorem (Theorem 3). We also apply our
results to determine the multipliers of the groups C "L S,, C "X. A,, S "L S,,
S "X. A, A "L S, .4 "X. A, where Ct is the cyclic group of order l, and St
and .4 are respectively the symmetric and alternating groups on ! symbols.

Section

Let G be a finite group, H a permutation group on the set Z {l,..., n}.
We define G "k. H to be the set {(f, h) If: X - G, h H}, together with the
product (f, h)(f’, h’) (ff, hh’), where f(i) f’(h-1(0) for all X. This
makes G "X. H into a group with identity (e, ln), called the wreath product of
G with H, where e(i)- 1G for all iX. (See [4, p. 243.) Let G*
{(f, ln)If: X G}. Then

G* ) G< G"LH whereG {(f, ln)[f(j) lGforallj- i) -- G.
i=1

If H* {(e,h) lhH} H, thenG* cH* {(e, ln)}, and G "L H is the
semidirect product of G* and H*. Thus [G "X, H[ [GI"IH[. Henceforth, we
will identify H* with H.

Let {X 1,..., m} be the orbits of H on X, and for simplicity of nota-
tion, we assume that e X, 1,..., m. We define Wi(H) {h HI h(i)
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i}, 1,..., m. (We will merely write Wi when no confusion arises over the
group H in question.) Then for all 1,..., m, there exist {wj J Xi} such
that wj(j) if j Xi, and H= Ujx, Wiwj, 1,. m. From now on,
we will always assume that

{wj j Xi, 1,...,m}

is a fixed set satisfying these conditions with w for all 1,..., m, and
thus ifj X and h s H then

WiWh-l(j W(wjh) and Gj G’ w-j-lGiwj.
If G Xyx, Gj, then G* X ’= G<, and each x G* may be written
(uniquely) as a product x I-I’= x, x<o s G<o. Further, each x<0 e G<o,

1,..., m, may be expressed in the form x I-/yx, x’, where each x,
j e X is an uniquely defined element of Gi called the jth component of xti). At
this stage, it is convenient to introduce some standard notation which will often
be used without further reference, h, h’, h" will denote arbitrary elements of
H, hi an element of H\Wi, h’i, h elements of Wi, and gi, g’i, g elements of G,
i- 1,..., m.
We now derive a set of generators and relations for G "L H.

THEOREM 1. Let {v(h) h H}, {v(gi) gi Gi} be sets in 1-1 correspondence
with H and Gi, 1,..., m, respectively, and let F be the free group generated
by {v(h), v(gi)), with v(ln)--v(lo)= 1, 1,..., m. If R is the normal
closure in F of the elements

bi(gi, g’i) v(gig’i)- v(gi)v(g’i), c(h, h’) v(hh’)- v(h)v(h’)
d’(gi, g’i) [v(gi)v(h’), v(g’i)], ei(h’i, gi) [v(h’i), v(gi)]

fj(gi, gj) [v(gi)0), v(gi)J, j i, 1,..., m,

then FIR - G " H.

Proof From the above work, it is easy to see that G "MH is a homomorphic
image of F[R. For h e H, gi e Gi, j e X,, 1,..., m, we define

uj(gi) v(gi)V(WJ)R, u(h) v(h)R.

Then any element of FIR may be expressed as a product I-I= u(yi)u(h), where
h e H and gi Gi whenever j Xi, and thus [F/RI <_ [G["iH[.

Section 2

Let F, R be as above. We now consider the group R/IF, R]; the Schur multi-
plier of G %H (denoted by HZ(G "M H; C*)) is then isomorphic to the torsion
subgroup of R/IF, R]. (See [3, p. 631].)
We shall use ? to denote the left coset of l-R, F] containing r R. Thus

R/IF, R] is generated by 5i(gi, gi),’ (h, h’), ’(gi, g), .i(hi; gi), fi(gi, gj), j - i.
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THEOREM 2.

(1)

(2)

(3)

(4)

(5)

(6)

These elements satisfy the following relations:

,(gi, l)

(h, 1) (1, h) 1, (hh’, h")(h, h’) (h’, h")(h, h’h"),

’(gig,, g’i’) -h.d ,(g, 0)3’(g , g ), ) 3d ’(O, O ),(g, ,(g, g, -h.

d’(a,,

d,’h,,"(a,,

e,(h’.’.’,..,,

Yj(gi, jgj) Yi’(i, gj)Yj(gi, j),t Yj(gii,t gj) Yij(gi,h gj)Yij(i,h j)

hi’hhj’z -h

for all 1,..., m,j # i.

Proof (1), (2), (3) are proved in a similar manner to (7)-(10) in [1, p. 120].
For (4) we need the following result"

LEMMA 1. (V(yi)v(h’)) -lv(yi)v(h’’h’) R, 1,..., m.

Proof v(h’ihi) v(h’)v(hi)c(h’i, hi)-1, where c(h’i, hi) R, and thus,

(v(oy(,))-’v(g,)v(,’,

v(hi)- lv(gi)- Iv(hi)c(h’i, hi)v(hi)- v(h’i)- v(gi)v(h’i)v(hi)c(h’i, hi) -1

v(hi)- v(gi)- v(hi)c(h’i, hi)v(hi)- lrv(gi)v(hi)c(h’i, hi)-

where r e R, which gives the result.
Then we have

a’(o,, g;)ah,’h, -1(Oi, g’i) [V(Oi)v(h’), v(gi)’][v(gi), v(’oi)vO"h’)]EF, R]

[v(g’i), (v(gi)O’)) ’v(gi)v(h"h’)][F, R]

IF, R]

by Lemma 1, and thus, a "(gi, q’) h"h’(qi, g’i). Further,

g i, gi))-1 by (3),,gi, g’i) (ah’"-’h’-’(

(a,,-’(, 3)---hidi (Oi, Oi) by (3).
This proves (4).

(5) is proved as in [3], p. 650, and (6) is proved as (3) and (4) above.
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Section 3

Let A be the abelian group generated by

d, (,, ,), e_,(h,, 03, f,’(a,, ), m, j{_b(gi, a/), _c(h, h’), "’
with relations given by inserting _b, _c, _d, _ei, fj for/, C’, 3i, , fj respectively in
(1)-(6) of Theorem 2. The map O" A R/[F, R] given by O(_b) /, O(_c)
C, (_di) 3i, (_ei) C,i, (f) fii, 1,..., m, j :/: i, is an epimorphism.
We now show that is an isomorphism.

DEFINITION. Let z e G( for some 1,..., m, h e H. We define zh to be
the h-a(i)th component of z. In other words, if z I-[ix, x, x Gi, then
Zh Xh_t(i).

LEMMA 2. Let z e G(0, h, h’ H. Then (Zh)h, Zh,n-1.

wh- l(j)Proof Let z ]-[jx, x’. Then zh I-jx, x’fh I-Ijx, xj
w Thus (Zh)n Xh(n’) 1(0 Z, 1.jeXi Xh(j).... X(h’h- )- (i) ’h-

Letx, y, zG*, hH. Wedefine mappings , p, 2" G* x G* A, and
z, h" G* A as follows"

(x, y) H H b,(x’), y’)),
i=1 hH

i=l j, keXi,
j<k

x(, y)= H H I’ ,.., ,,,
<j k X,

leXj

.(z) H H df’"-’’(’)--wj Zwk)
j, k Xi,
j<k,

h-i(j)>h-t(k)

Kh(Z) H H gi(Wh (j)h- lw;1,
i=l jeXi

LEMMA 3.

a(x, y)a(xy, z) a(x, yz)a(y, z), a(xh, yh) a(x, y),

p(xy, z) p(x, z)p(y, z), p(x, yz) p(x, DO(X, z),

Zh(xY)Z,(X)- Z,(y)- p(x’, y’)p(x, y)- , zhh,(x) Z,(X)Zh,(X),
,(x) (x),(x),

2(x, yz) 2(x, y)(x, z), 2(xy, z) ,(x, z),.(y, z), ,(xh, yh) ,(x, y),

for all x, y, z e G*, h e H.
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Proof
proofs.

These results are mostly proved as in Lemma 2 of [1-1. We give two

t%h’(z) I-I l-I e_,(Wk(hh’)-1W; 1, Z(i)’ where k (hh’)- ’(j)
i=1 jeXi

I-I 1-1 e-i(Wk(h’)- lwi- 1Wlh-1w 1, Zw;l](i)3 where 1 h- l(j)
i=1 jeXi, H i(Wkh’-lw; ’, z) i(w,h-lw; ’,

jexi J

--1 H fi(Wkh’-I -1 (z(i))h H ei(wlh-lwWh’(k) ]Wh’(k) ZWh(i))
j jeXi

H H
i= j, k Xi,

j<k,
h’-l(j)>h’-l(k)

j, k Xi,
j<k,

h’- l(j) > h’- l(k)

d,jwk-((z(ihh (i) h
j, (z )wk)

d.twu-l(z(i) Z (i)
Wh(j) Wh(k)]

i= j, Xi,
h-l(j)<h-l(k),

(hh’) l(j) > (hh’) l(k)

1(7.(i) (i)d’.,w" ,_,., z,,)

Thus

(hh’) (j) > (hh’) l(k)

"hh,(Z)
(using Equation (3) of Theorem 2).
We now define a mapping " G ,-x., H x G "x., H A as follows"

(xh, x’h’) p(x, xth-1)((X, xth-1)2(X, x’h-)_c(h, h’)’Ch-X(X’)Kh-(X’),
where x, x’ G*, h, h’ e H. Lemma 3 implies that (r, s)(rs, t) (r, st)(s, t),
for all r, s, e G "%, H. Let K be the extension of A by G ",H with factor set .
Thus, there exists an injective mapping 0" G "x.. H K such that O(r)O(s)
O(rs)(r, s) for all r, s e G "H, and we may easily prove;

LEMMA 4.

O(g,g’)-lO(g,)O(g’) _b,(g,, g’), O(hh’)-O(h)O(h’) _c(h, h)’,
[0(gi)(h’), O( g’i)] h,d_, (gi, g,), [O(h,), O(o,)] _e,(h,, O,),

[o(a,) f
for all 1,..., m,j # i.
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Thus, K is generated by {0(#i), O(h) gi e Gi, h H}, and as F is free, there
exists an epimorphism 2: F K such that 2(v(gi))= 0(#i), # e G,
1,..., m, 2(v(h)) O(h), h H. Further, 2 maps R onto A and vanishes on
IF, R], and thus 2 gives rise to an epimorphism : R/[F, R] A such that

.(b,(g,, gi)) b_,(g,, (?(h, h’)) c_(h, h’),

di (g, gi), (i(h’i, gi)) e-i(h’i, gi).

for all 1,..., m,.j -# i. Hence ,0 is the identity map, and A - RI[F, R].

Section 4

In order to determine the torsion subgroup of A, we consider the following
groups"

Bi(G) (b_i(gi, g’i)>, 1,..., m, C(H) (c_(h, h’)),

Di(G, H) dh Ei(G H) (e_i(hi, gi)), 1,..., m,(_,,(g,g’)),i= 1,.. m,

F(G, H) <fij(gi, gj), 1,..., m,j i>.
Then A (X"=l (B(G) x Di(G, H) x E(G, H))) x C(H) x F(G, H).

If we denote the torsion subgroup of a group J by Tor (J), then Tor (B(G)) -HZ(G; C*), i= 1,..., m, and Tor (C(H)) HZ(H; C*). (See [3, p. 652.])
E(G, H) - G (R) Wi(H) (see [3, p. 650]) where (R) denotes the tensor product
of groups, and is a finite group. Thus Tor (Ei(G, H)) G (R) Wi(It). Let
Fj (fj(g, g2)[i - j). Then Fjz F2 (j i), and if pij is the number
of (Wi, W) double cosets in H, Fo - X p’ (G (R) G) (see [3, p. 650]) and hence,
F(G, H) - X (G (R) G), where q <p2. Finally we consider D(G, H).
Let as be the number of nontrivial, self inverse (Wi, Wi) double cosets in H, and
let 2b be the number of (W, Wi) double cosets which are not self-inverse. If
T(G) is the subgroup of G (R) G generated by elements of the form

( (R) ’)(’ (R) ), , ’ 6,

then D(G, H) X a’ (G (R) G)/T(G) X (G (R) G) (argument as in [1, p. 119]).
The following result enables us to determine D(G, H) more explicitly.

LEMMA 5. Let G/G’ (derived factor) C,, x C,,_ x x Cr, where Crj is
the cyclic group of order r generated by xj, j 1,..., t. (r1, r2,..., rt are
called the &variants of G/G’.) Then:

(i) G (R) G X,= c(,,,,j) where C(,,,,) is generated by x (R) x.
(ii) (G (R) G)/T(G) - Xi< C(r,,r) X C2 where s is the number of even ri,

i-- 1,...,t.

Proof (i) See [3, p. 649].
(ii) Let Ji (i < j) be the subgroup of C(,,,r)x C(,,,,) generated by
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(x (R) xi, x1 (R) xi), and let J be the subgroup of C(,,,,,) generated by (x, (R) x32,
1,..., t. Then

T(6)-- X X
i=1 j<k

and the result now follows since (C(,,,,) C(,,,,))/Ji C(,,,,,), and
Co.,,,.o/J - {1} it" ri is odd, and C2 it" rz is even.

Since G (R) G is a finite group, F(G, tt) and X’= D(G, H) are both torsion
groups and we have our main result"

THEOREM 3. Let the notation be as above. Then

H2(G’%, H; C*) - H2(H; C*)

x ((= (H2(G; C*)x Di(G H)x (G (R) W(H)))) (G (R) G))
Applications

(i) The regular or complete wreath product G H (G, H arbitrary finite
groups), is defined to be the set {(f, h) If: H --. G, h e H}, together with the
product

(f, h)(f’, h’) (ff, hh’), wheref(h") f’(h"h)

for all h,h"eH. (See [3, p. 95].) Let hell. We define h+:HH by
(h/)(h’) h’h -1 for all h’ H. Then h/ permutes the elements of H, and
-I-" H Symn is a monomorphism. Routine checking gives the following
result.

LEMMA 6. G’X., H - G"H+ where H+ is now thought of as a subgroup
of SymH.

We can now derive Blackburn’s result [1, Theorem 1]. H/ is a transitive
subgroup of Symn, and thus m 1. WI(H +) {h+ [h+(1) 1} {1}.
Hence G (R) WI(H /) {1 }, and Dx(G, H) reduces to Blackburn’s group
C(H; G).

(ii) G " { } - X" G, where { } represents the identity subgroup of S,. In
this case, m n, and

D,(G,{1}) G(R) W,({1})- {1}, i= 1,...,n,

and thus Hz(X G; C*) - X H2(G; C*) X’(__ni-)/2 (G (R) G), which is a
simple generalization of the well-known result on the Schur multiplier of a
direct product. (See [3, p. 650].)

(iii) Before proceeding further, we list some well-known properties of the
groups C, S, and A,. Proofs of those results which are not immediate may be
found in [6-1, [7], and [8].
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LEMMA 7.

(i) S,/S " C2 if n >_ 2,

{1} /fn 1.

(ii) A,/A - C3 ifn 3, 4,- {1} /fn # 3, 4.

(iii) H2(S,,; C*) g C2 /fn > 4
{1} /fn < 3.

(iv) H2(A,;C*) C2 ifn > 4, n # 6, 7,- C6 /fn=6,7,- {1} ifn <_ 3.

(v) H2(C,; C*) { } for all n.

LEMMA 8. Let n > 1.

(i) S, is transitive on {1,..., n}, and WI(S,) is the symmetric 9roup on
{2,..., n}.

(ii) G (R) WI(S,) - X C2 if n > 2 where s is the number of even invariants

of GIG’ and G (R) WI($2) - { }.
(iii) There is precisely one nontrivial, and thus self inverse, (Wa(S,), W(S,))

double coset in S,.

LEMMA9. Let n > 2.

(i) A, is transitive on {1,..., n} and Wa(A.) is the alternating group on
{2,..., n}.

(ii) G(R) Wx(A.) - X C3 if n 4, 5,

{1} /fn 4,5

where is the number of invariants of G/G’ =- 0 (mod 3).
(iii) If n >_ 4, there is one nontrivial, and thus self inverse, (WI(A,), W(A,))

double coset in A,. lf n 3, there are two nontrivial (Wx(Aa), W(A3)) double
cosets in A 3 which are inverses of each other.

Write
q

U(G, H) X D,(G, H) X G(R) W(H) X G (R) G.
i=1 i=1

We may now determine H2(G "X.,,H; C*) (G S,,, C,,, A,,, H S,,, A,,) by
determining U(G, H) in each case, and then applying Theorem 3 and Lemma 7.
We firstly consider the trivial cases.
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LEMMA 10.

(i) U(G, S,) - U(G, A,) - U(S,, H) U(A,, H) - U(A2, H) - {1).
(ii) U(G, A2) G(R) G.

Proof S, A, A2 {1), and (i) follows from Lemma 5 and the fact
that { } (R) J J (R) { 1) { ) for all finite groups J. To prove (ii), we simply
note that A2 has two orbits on {1, 2).

Henceforth, we will only consider S, for n _> 2, and A. for n _> 3.

THEOREM 4. U(C, S,) g X c2 where

r 2 ifliseven, n >_ 2,

if l is even, n 2,

0 otherw&e.

D(tCt, S.) - C (R) Ct/T(Ct) (by Lemma 8 (iii)) g C2
{1)

If n > 2,

Ct (R) W,(S,,) C2 if I is even

{1} iflisodd

Note.

(by Lemma 8 (ii)).

C, (R) W(S2) {1).

See [2] for an alternative derivation of H2(Ct % Sn; C*).

Proof

THEOREM 6.

Proof.

U(St, S.) X c2 where r 2 ifn > 2, and r ifn 2.

D (S, S) - St (R) S/T (St)- C2
St(R) W S.) - C2 ifn > 2,- {1) ifn 2

u(, s.) {}.

(by Lemma 8 (iii)).

(by Lemmas 5 (ii) and 7 (i)).

(by Lemmas 8 (ii) and 7 (i)).

Dx(At, S,,) A (R) AI/T(At)

{1} (by Lemmas 7 (ii) and 5 (ii)).

A (R) Wx(S,,) {1} (by Lemmas 7 (ii) and 8 (ii)).

if I is even,

if I is odd
(by Lemma 5 (ii))

THEOREM 5.
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THEOREM 7.

U(C, A3) - Ct.
U(C, A) - U(Ct, As) - Cz x C3 /f I 0 (mod 6),- C3 if I 3 (mod 6),- C2 /f I --= 2, 4 (mod 6),

{1} ifl 1, 5 (mod 6).

U(C, An) - C2 ifn > 5, I even,

g {1} /fn > 5,1odd.

Proof.
Ifn > 3,

DI(CI, Aa) C (R) Ct (by Lemma 9 (iii) - Ct (by Lemma 5 (i)).

DI(Cz, An) " Ct (R) C/T(C) (by Lemma 9 (iii)) - C2

{1}

if I is even,

if3 l,n 4, 5,

if is odd
(by Lemma 5 (ii)).

otherwise (by Lemma 9 (ii)).

THEOREM 8. U(SI, An) -- C2.

Proof D1(S1, A3) Sl () Sl (by Lemmas 9 (iii) and 5 (i)) C2 (by Lemma
7 (i)). If n > 3, D(S, An) - St (R) St/T(SI)(by Lemmas 9 (iii) and 5 (ii))
C2 (by Lemma 7 (i)). St (R) Wl(An) { } for all 1, n (by Lemma 9 (ii)).

THEOREM 9.

/’roof.

U(At, An) ’ C3

{1}

ifl= 3, 4, n 3, 4, 5,

otherwise.

Da(Ax, .43) .41 () A (by Lemma 9 (iii)) C3
{1}

if/= 3,4,

if/q: 3,4
(by Lemma 7 (ii)).

If n > 3, Dx(A, .4n) ’ .4t ( .4dT(At) { } (by Lemmas 5 (ii) and 7 (ii)).

ifl= 3, 4, n 4, 5,

otherwise (by Lemmas 9 (ii) and 7 (ii)).
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