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Let G be a finite group and N a subgroup of G. Let S be a set of irreducible
characters of N and V the Z-module generated by S. Let Vo be the submodule
of V consisting of all generalized characters of degree 0. Suppose that there is a
Z-linear isometry z (i.e., preserving the usual inner product) from Vo into the
Z-module of generalized characters of G of degree 0. Following W. Feit [3] we
say that the pair (S, z) is coherent if Vo (0) and there is an extension of z to
V which is also a Z-linear isometry into the Z-module of generalized characters
of G. When z is understood from the context, we will simply say S is coherent.
An example of this situation of particular interest occurs under the following

hypothesis.

HYPOTHESIS (*). Thefinite group G contains a subgroup of theform M x H,
M ( }, satisfying the following conditions:

(i) Ifyisinm x H- H, then C(y)
_
M x H.

(ii) For every x in G N(M x H), (M x H) c x(M x H)x-X c_ H.
(iii) N,(M x H) M x H, and both H and M are normal subgroups of

N(M x H).
(iv) M and H have coprime ordera.
Let N N6(M x H) and C-- M x H. Let e IN: C], whence e # 1.

Let 20, ,... be the irreducible characters of (M x H)/H, where o is the
principal character. Let be any irreducible character of (M H)]M. Set
S {(fl) # 0}. Let I denote the inertial group of fl in N.

Groups satisfying Hypothesis (*) except for condition (iv) have been studied
by W. Feit [2] and H. S. Leonard, Jr. [9]. Feit showed that N]H is a Frobenius
group with Frobenius kernel C/H - M, that S is a set of irreducible characters
of N (each arising from ]I: C] distinct 23, and that the usual inducing map z
is a Z-linear isometry on the Z-module Vo described above, unless Vo {0}.
Furthermore, he showed that unless M is a nonabelian p-group with [M: M’I <
4e2, S is coherent. The question of whether S is coherent in all circumstances
was left open. Of course, when G is a Suzuki group, M a Sylow 2-group and
H {1}, we do not have coherence [12]. However, if G is any group satisfying
Hypothesis (*) and M is a 2-group, then M is a Sylow 2-group of G and a trivial
intersection set in G. Such groups have been described by Suzuki [13]. Our
main theorem settles all other cases.
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THEOREM 1. Suppose G satisfies Hypothesis (*) andM is not a 2-group. Then
either S is coherent or ISI 1.

This theorem has several applications. Notably, as Feit I-2] has observed, the
theorem of N. Ito I-8] and G. Glauberman [6-1 can now be deduced by Feit’s
original methods. Also, Theorem 2 of P. Ferguson [5-1 may be proved by the
methods used earlier by M. Herzog [7]. Theorem also allows the character-
theoretic techniques from the classification of CA-groups of odd order [11-I to
be used in the classification of CN-groups of odd order [4]. All of the above
are applications of the theorem when H { }, so that N itself is a Frobenius
group.
We will apply Theorem and a recent result of the author [-10] to obtain

information about the values of certain irreducible characters of G.

THEOREM 2. Suppose G satisfies Hypothesis (*) and M is not a 2-group.
Assume 2e < IMI 1. Let z be the isometry for S guaranteed by Theorem
and let d? T. Let y M x H- H. ThenCe(y) (y).

Of course, either or -’ is an irreducible character of G. Theorem 2 is an
improvement of Corollary 2.4 of Feit [2].

1. Preliminaries

In this section we give a brief exposition of several results concerning the
character theory of groups satisfying Hypothesis (.). The first is a crucial part
of the proof of Theorem 1. It is implicit in Feit’s original work [2-], as Leonard
[9-1 has pointed out.

LEMA 1. (Feit [3-1, Lemma 31.2). Suppose G is a finite group and N is a
subgroup of G. Suppose U is a set of irreducible characters of N and V is the
Z-module generated by U. Let Vo be the submodule of V consisting ofall general-
ized characters of degree O. Assume there is a Z-linear isometry z mapping Vo
into the Z-module of all generalized characters of G of degree O. Suppose all of
the following hold.

(i) U Uki=l ui, a disjoint union, where Ui {Xs Is 1,..., n), and
for each either U is coherent or all the characters in U have the same degree.

(ii) There are integers ais such that Xi(1)= aXll(1) and all ai for
1 < i_< kand < s < n.

(iii) n >_ 2. For any integer m with < m < k,
m-1 ni

2

i=l s=l

Then U is coherent. If U contains more than two characters the extension of z
to V is uniquely deterrnined. Otherwise there are exactly two such extensions.

The next lemma is probably not crucial in our arguments, but it makes
several calculations neater.
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LEMMA 2. Suppose E is a Frobenius complement ofodd order, andp is a prime
not dividin9 IEI. Then all GF(p)[E]-modules on which E has faithful irreducible
Frobenius action have the same GF(p)-dimension.

Proof E is metacyclic. Let A be a maximal normal cyclic subgroup of E.
Since any abelian subgroup of E is cyclic, we have C(A) A. It follows from
Clifford’s theorem that the faithful irreducible complex representations of E are
exactly those induced from faithful linear characters of A. Thus the faithful
irreducible complex representations ofE are algebraic conjugates of one another.
In particular they all have the same degree. If F is the algebraic closure of
GF(p), all faithful irreducible FrE]-modules have the same F-dimension, and
their traces generate the same finite extension of GF(p), Now the lemma
follows from Theorems 24.10 and 24.14 of [1].

2. Coherence of subsets of S

We begin the proof of Theorem 1. Assume that G satisfies Hypothesis (*).
As we remarked earlier, in view of Feit’s work [2], we may assume M is a non-
abelian p-group for some odd prime p. Thus, e is odd. The main results of this
section are implicit in Feit [2].

Fix an N-chief series

M Mo 29 M1 29""29 Mm 29 Mm+
for M. Since M is nonabelian, m _> 1, and since e is odd Lemma 2 shows
IM/M/11 q is independent of i. Thus IM/MI q. Let S be that subset
of S whose kernels contain M+ but not M. We will show that each S is
coherent.

LEMMA 3. Let Uj U/=o Sifor j o, 1,..., m. Then for each j we have

efl(1)2lN" II + b(1)2 eq j+IN" lift(l) 2.
4e Uj

Proof. Say U. Then b (2fl)N for some irreducible character 2 of M,
2 # 1M. Each such b arises in this way from exactly II: CI such 2. The degree
of tk is e2(1)fl(1). Hence,

E b(1)2 e2fl(1)2 E’ ’(1)2 elN" Ilfl(1)2(q J+l --1),

where the sum .’ is over all non-1 irreducible characters of MIMe+ j. The
lemma follows.

LEMMA 4. For each 0, 1,..., m, the set S & coherent.

Proof Let fl(1)epkl < fl(1)epk2... be the distinct degrees of the characters
in Sv (The lemma is automatic if all members of S have the same degree.) Let
nj denote the number of characters in Si of degree eft(1)pkj.
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The sum of the squares of degrees of characters in Ui is that for Ui_ plus
that for S. Thus,

eq+llN 11fl(1)2 eqlN 11fl(1)2 + ] nje2fl(1)2p2k.
J

Cancelling eft(l)z, and noting that p2klqi (for Mi/M+I Z(M/M+ 1)) we
see that for each index s,

so that

Thus,

s=l

n.iep2k 0 (mod p2k)
j=l

s-1

E njp2k 0 (mod p2k).
j=l

s-1

E tljp2k . p2ks
j-1

Dividing by p2k,, this becomes

s-1

(2) n. p2k- 2k, >_. p2ks- 2k, > 2pk,-k,
j=l

since p > 2.
Writing Si as the disjoint union of sets of characters of the same degree, we

see that (2) is the inequality (1) of Lemma 1. All other hypotheses of Lemma
are easily verified, thus establishing the coherence of Si.
We let zi denote the extension of z to S. When I&! 2, z is not uniquely

determined. This will be important later. If tk S then either _+ b’ is irre-
ducible.

Let efl(1)f be the least degree among the members of Si. Thus, fi is a power
ofp. For each 0, l,..., m we define the character of N to be

, ef()

Because the next lemma is a standard application of coherence, we omit the
proof.

LEMMA 5. There are integers Ck, 0 <_ <_ m, 0 < k < m, such that for any
dp S and g M#,

Vi( g) (g) . (/)(1)
efifl(1------ k-=-o Cikak(O).

Now that we know the values of ’ on M #, we can obtain a congruence on
the degree of the’. This is only needed for b So.
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LEMMA 6. For any So and y M, we have

m+l

to(1) _--_ O(g) + Corn q
fl(l)

e
(mod qm+).

fm II: CI

Proof. Since e So, (1) eft(i). Let + EEo Co. By Lemma
5, tTM M vanishes on M #, and so is a multiple of the regular representa-
tion of M. Thus, ’(1) (1) (mod qm+,) now for g M we have (1)
t(g) Com{m(1) m(g)) since g is in the kernel of each member of S for
0 _< i_< m 1. We see that

and that

Hence,

()

1
g)

ef() %

(IMI IM: Mini)

e2
(0 IM: Mml)fl(1)2

efm(1) II: CI
(ill) e

fm II:CI

m+l

The lemma is proved.

()- (g)--" Corn q

3. Class multiplication constants

For any finite group K and any a, b, c e K define

A(a, b, c; K) {(x, y) xr~a, yr~b, and xy c}.
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Then (a, b, c; K) IA(a, b, c; K)I is the usual class multiplication constant.
We fix 9 e M. Note that 9 is not conjugate to 9-1.
LEMMA 7. Suppose c e M H. Then

(g, g, c; G) "/(g, g, c; N) (mod ICM(c)I).

Proof CM(C) acts on A(g, g, c; G) by conjugation. IfF is an orbit of length
less than IMI ICM(C)I, then some y M # centralizes both of a, b .q6 with
ab c. Since M is a T.I. set, a and b are both in M and are N-conjugate to 9.
Since N controls G-fusion in M, the lemma is proved.

COROLLARY. ]f C e C Mm, (g, g, c; G) 0 (mod IC(c)l).

Proof If cC- Mm we have ](g,g,c;N)= 0 as geM,. If c 1,
(g, g, G) 0 as g is not conjugate to g-1.

LEMMA 8. We have ,’ ,(g, g, c; N)= e, where the sum is over a set of
representatives c of the N-classes of Mm.

Proof Clearly [gN[2 , (g, g, c; N)IcN[. Since ,(g, g, 1;N) 0, this
is e2 ’ 7(g, g, c; N)e, for any element x Mm has Cu(x) M x H.

LEMMA 9. Let dp So and g e M as above. Then

b*(1) b*(g) (mod qm+ 1).

Proof Let co be the irreducible representation of the complex class algebra
of G associated with +__ ,o (whichever is irreducible). Since the sign cancels we
have

o(x)- IGI (x)
IC(x)l *(1)’

for all x G. Multiply the usual multiplication formula for co by b’(1) to get

(3) (1)co(g)/ (1) .,’ 7(9, g, x; G)co(x),

where the sum is over a set of representatives x for the conjugacy classes of G.
If x is not conjugate to an element of M H, then no conjugate of x cen-

tralizes any element of M #. Thus, co(x)(1) is an algebraic integer divisible
by qm+ 1. NOW applying Lemma 7 and its corollary, we see that (.2) becomes

(1)co(g)2 -= O(1) ..," ](g, g, x; N)co(x) (mod qm+ 1),
where the sum is over a set of representatives x of the N-classes of Ms. Since
g e M and rn- 0, we find that co(x) is independent of x e M. Also
(g, g, 1; N) 0. Using this fact and Lemma 8, we have

’(1)co(g)Z (1)co(g)e (mod qm+l).
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Now (p, to(y)) 1, since the same is true in the associated p-block of N, so
we may cancel to(y) without disturbing the modulus. Hence,

IGI b’(g) - e’(1) (mod qm+l).
IM HI

Since M is a T.I. set, IG" M x HI e (mod qm+l). Thus,

,o(g) _= ,o(1) (mod qm+,)
as required.

LEMMA 10. We havefm Com.

Proof Compare Lemmas 6 and 9.

4. Proof of Theorem 1

We first show SO w Sm is coherent. Fix tk e So and X e Sm with X(1)
efl(1)fm The generalized character # frock- X has support on M. It
suffices to show/zG fmdpTM XTM. Note that I111 I111 f, + 1.

Let @ be any character in So and define + "= o Cokak as before. Since

/ has support on M #, we have by Lemma 5,

(PG, O*) (P, * N) (/, ) fro(C, ) + fmCo0 COm.
Thus,

P fmqbTM + (fmCoo Com)a*o + O,

where 0 has no constituents in S. Now (aLo, ao)a (ao, o) (q 1)/11: CI.
We let (q 1)/1I: C[. Since II: CI is odd and q is odd, is even. We have

I1#11 =fm + 1 >_ (fro + fmCo0 Corn) + (fmCo0 Com)2(t 1).

First suppose > 2. Since fm divides Corn by Lemma 10, we must have
f,,Coo Corn 0. Thus, #G =fmTM + 0 where i10112 1. It is easy to show
that 0 -XTM, as required.
Now suppose 2. Here it is also possible that fmCo0- CO,, --fro"

However, in this case, there is a second isometry on So extending z. It is clear
that by changing o if necessary we again get #a fmbTM + 0 with II0112 1.
It may also be necessary to change Zm to show 0 -XTM.
We have now shown that So t3 Sm is coherent. The proof of Theorem is

now an easy application of Lemma 1. Take U1 So w Sm and for 2 <_ <_ rn
let U, S,_ 1.

5. Proof of Theorem 2

If Hypothesis (*) holds, M is not a 2-group, and 2e < IMI 1. If M
is an abelian p-group, Theorem 2 is true by Theorem 1 of [10]. Hence, we
assume M is not an abelian p-group.
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Because of coherence of S, we have an immediate improvement of Lemma 5.
Using Brauer’s second main theorem, we can also extend Lemma 5 to elements
of C H. (Compare Feit [3], Theorem 31.7). Here z denotes the extended
isometry on S.

LEMMA 11. There is an integer Co such that for g e C H and S,

() O(g) + ,() Co ’eft(l)

where the sum is over the N-conjugates fl’ of ft.

To prove Theorem 2, we must show Co 0. Say fl has k N-conjugates and
let c cok. We show c 0.

Let p be a prime dividing IMI. Let B be the union of all p-blocks represented
in S. From Leonard [9-1, we know that any character in B S is constant
on M a. Say these are X1, X2,. and X(g) d for g e M a. Let g, h e M a

with g and h in different p-sections. Then by block orthogonality

Thus,

0 X,(g)Xi(h) + (

d2+" s ((g) + (l__)e c)(+ (1----)C)e
() )i d2 + s (#)(h) + ((#) + (h))(1)e c + e2

c2

d eft2(1) 2cfl2(1) + l_ (IMI- 1)c2fl2(1).
e

(4) 0 > -e- 2c + I(IMI- 1)c2.
e

Now M has at least two N-chief factors, say of orders a and b. Then
e l(a 1) and e l(b 1). Hence, (e + l)2 < IMI, and if (e + 1)2 IMI,
M is a p-group. In the latter case p is odd so e is even, whence M is abelian,
contrary to our assumptions. Thus, (e + 1)2 < IM I.

Inequality (4) then implies that

0 > -e 2c + (e2 d- 2e)c2
e

so that e + 21cl > (e + 2)c2 > (e + 21cl)1cl, whence 1 > Icl so c 0 as
required. This proves Theorem 2.
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