FINITE GROUPS HAVING AN INVOLUTION
CENTRALIZER WITH A 2-COMPONENT OF
DIHEDRAL TYPE, 1l

BY
MoRrTON E. HARRIS!

1. Introduction and statement of results

All groups considered in this paper are finite.

In current standard terminology, a group L such that L = L and L/O(L) is
quasisimple is said to be 2-quasisimple. Also any subnormal 2-quasisimple
subgroup of a group G is called a 2-component of G.

Recently, a great deal of progress has been made on the fundamental problem
of classifying all finite groups G such that O(G) = 1 and such that G contains
an involution # such that H = Cg(t) has a 2-component L (cf. [ 1, Theorem 1],
[2], [3], and [13]). These results suggest the importance of investigating such
groups G in which Cyx(L/O(L)) has 2-rank 1. Of particular interest is the case
where L is of dihedral type.

In [9], R. Solomon and the author obtained some results on groups G with
O(G) = 1 and containing an involution z € G — Z(G) such that H = Cg(z)
contains a 2-component L such that a Sylow 2-subgroup of L is dihedral,
m,(Cy(L/O(L))) = 1 and such that Ny(L)/(LCy(L/O(L))) is cyclic. In this
paper, the methods of [9] are applied to the case in which Ny(L)/(LCy(L/O(L)))
is not cyclic.

The first main result of this paper is the following.

THEOREM 1. Let G be a finite group with O(G) = 1. Suppose the involution
te G — Z(G) is such that H = Cg(t) contains a 2-component L such that a
Sylow 2-subgroup of L is dihedral, m,(Cy(L/O(L))) = 1 and such that
Ny(L)/(LCx(L/O(L))) is not cyclic. Let S € Syl,(Ng(L)) be such that t € S and
let D = S n L. Then the following conditions hold:

(i) L/O(L) is isomorphic to PSL(2, q?) for some odd prime power g, Ng(L) =
O(N4(L))H and S € Syl,(H).
(i) 0,(G) = F(G) = C4(E(G)) = 1 and F¥G) = E(G).
(i) If F*(G) is not simple, then F*(G) = R x R' where R is simple and
L=<.{r'|reR) =R
(iv) If F*(G) is simple and r,(F*(G)) < 4, then the possibilities for F*(G) and
G can be obtained from [6, Main Theorem].
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) If F*(G) is simple and r,(F*(G)) > 4, then {t) € Syl,(C4(L/O(L))),
H® =L,

Co(LIOL))) = ONg(L)X1),  Cu(L/O(L)) = O(H) x (t3,

H/(O(H) x {t)) is isomorphic to a subgroup of Aut (L/O(L)) containing
Inn (L/O(L)) properly with ((O(H) x <{t))L)/(O(H) x {t>) corresponding to
Inn (L/O(L)) and such that H/((O(H) x <t))L) is not cyclic. Also S — ({t)> x
D) contains an involution that acts as a “‘field automorphism> of order 2 on
L/O(L).

The second main result of this paper treats the open case of Theorem 1(v) in
which |D| is minimal:

THEOREM 2. Let G,t, H, L, S, and D be as in Theorem 1. Assume that
F*(G) is simple, r,(F*(G)) > 4, and |D| = 2. Then L =~ PSL(2,9) and G is
isomorphic to HS (the Higman-Sims sporadic simple group).

Before presenting a corollary of our results and its proof, we give some
definitions.

A subgroup K of G is tightly embedded in G if |K| is even and K intersects its
distinct conjugates in subgroups of odd order. A standard subgroup of G is a
quasisimple subgroup A of G such that K = Cg(4) is tightly embedded in
G, Ng(A) = N4(K), and 4 commutes with none of its conjugates. (The im-
portance of these concepts for the classification of simple groups is described in
[1, Section 1].)

COROLLARY. Let G be a finite group with O(G) = 1 and assume that A is a
standard subgroup of G such that \Z(A)| is odd and a Sylow 2-subgroup of A is of
type Dg. Set X = {(A®). Then exactly one of the following holds:

(1) X=A4AandZ(4) = 1.

2) X=FYG)x A x Aand Z(4) = 1.

B) Ax A, and X = A4 forn = 6o0r7.

4) X = F*(G) is simple, ry(X) < 4, and the possibilities for X can be
determined from [6, Main Theorem].

(5) A is isomorphic to the 3-fold cover of £4, X = G’, and G = Aut (He).

6) A= oA = PSL(2,9), X = G', and G is isomorphic to Aut (Sp(4, 4)),
Aut (SL(5, 2)), or Aut (PSU(5, 2)).

(7)) A= oAg =~ PSL2,9and X = G = HS.

Proof. Clearly [7, Theorem 1] implies that 4/Z(A) is isomorphic to &/, or
PSL(2, r) for some odd prime power > 3. Assume that (1) does not hold and
set K = Cg(A). If my(K) = 2, then [3, Theorem] yields (3) since |4]|, = 23.
Suppose then that m,(K) = 1 and let z € I(K). Then H = C4(t) < Ng(K) =
Ng(A) and hence 4 <« H. Thus H # G, t ¢ Z(G), and m,(Cy(4/0(A4))) = 1.
Applying [9, Theorem 1] and Theorem 1 we conclude that F*(G) = E(G) and
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0,(G) = 1. Also, if F*(G) is not simple, then F*(G) = R x R' where R is
simple and R = A = {rr'| re R). Clearly X = F*(G) in this case and (2)
holds in this case. Thus we may assume that F*(G) is simple. If r,(F*(G)) < 4,
then clearly (4) holds. Suppose then that r,(F*(G)) > 4. If A/Z(A4) =~ o,
then (5) holds by [9, Corollary]. Finally suppose that 4/Z(4) =~ PSL(2, r) for
some odd prime power r > 3. Then Theorem 2 and [9, Corollary] imply that
(6) or (7) hold and we are done.

The outline of this paper is as follows.

Section 2 consists of some 2-group lemmas which are utilized at various points
in the later sections. In Section 3, we prove Theorem 1. In the remainder of the
paper (Sections 4-11), we prove Theorem 2.

Our notation is fairly standard and tends to follow the notation of [5] and
[6]. In particular, if n is a positive integer, then <, and X, respectively denote
the alternating and symmetric groups of degree n. Moreover, for any finite
group J and any 2-power n, &,(J) denotes the set of elementary abelian sub-
groups of J of order n and E, denotes an elementary abelian subgroup of order
n. Also for any finite group J, m,(J) denotes the 2-rank of J, r,(J) denotes the
sectional 2-rank of J, and I(J) denotes the set of involutions of J.

2. Preliminary results

In this section, we present two auxiliary lemmas. It is straightforward to
verify the first of these.

LemMA 2.1. Let S = (e, p, 1)yl =t =2, [y1t] =1, |x] = 2" > 4,
x’ = x" Y and x* = xt where t = x*"~"). Then the following conditions hold:

G Z(S) = ), Q,(S) = S, and |S| = 2"*2,
(i) S’ = UOXS) = O(S) = (x*) and exp (S) = 2".
(iii) S — Z(S) contains four S-conjugacy classes of involutions represented by
¥, yx, T, and yt where Cg(y) = {y, t, 1) = Eg,

Cs(yx) = <t yx, x*"™") = Z, x Z,,

Cs(1) = {x?%, ) x <) is a maximal subgroup of S and Cs(y7) = <{t, y, 1) =
Eq.

(iv) <, t) is the unique normal subgroup of & ,(S) and SCN;(S) = 0.

(v) All elements of &¢(S) are conjugate in S to {t, y, 1), {A | A € &4(S)) =
(X2, ) x 1), and my(S) = 3.

(vi) S has seven maximal subgroups: one of type Z, x D,., one of type
Z, % Dy, two 0f type Dynss, two of type SDyns 1, and one of type Mod (2"*1).

The final result of this section is:

LEMMA 2.2. Let S be a 2-group such that Q,(S) = S. Assume that z € I(Z(S))
is such that S = S/{z) is dihedral of order 2" for some integer n > 2. Then
either S is dihedral or z ¢ ®(S).
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Proof. Assume that z € ®(S). Then S/®(S) = E, and S is nonabelian. If
@(S) = S’, then the result follows from [5, Theorem 5.4.5]. Assume that
S’ < ®(S). Since §' = § = ®(S), we conclude that ®(S) = S’ x (z).
Setting S = S/S’, we conclude that § = E, since Q,(8) = §. Then z ¢ ®(S)
and we have a contradiction. This concludes the proof of the lemma.

3. The proof of Theorem 1

In this section, we present our proof of Theorem 1. Thus, throughout this
section, we assume that G, t, H = C4(¢), L, S and D = S n L are as in the
hypotheses of Theorem 1 and we commence our proof of Theorem 1.

Since Ny(L)/(LCyx(L/O(L))) is not cyclic, it follows from [7, Theorem 1] that

L/O(L) = PSL(2, ¢%)

for some odd prime power g. Moreover, [9, Proposition 3.1] and [6, Main
Theorem] imply that conditions (i)-(iv) of Theorem 1 hold. Thus we assume
that F*(G) is simple and that r,(F*(G)) > 4 for the remainder of this section.

Let Q = Cyx(L/O(L)) n S. Then Q e Syl,(Cx(L/O(L))) and Q is cyclic
or generalized quaternion. But Cg(L/O(L)) = O(N4(L))Cyr(L/O(L)) and
Cs(L/O(L)) is tightly embedded in G by [9, Proposition 3.1(1)]. Thus Q e
Syl,(Ce(L/O(L))).

Suppose that Q is generalized quaternion. Then [2, Theorem] implies that
F*(G) @ PSL(4, q) with ¢ = 1 (mod 8) or F*(G) =~ PSU(4, q) with ¢ = 7
(mod 8) and our result follows. Thus we may assume that Q is cyclic and
) = Q(0).

Note that 8 < [D|, Q< S, D< S,and Qn D =[Q,D] = 1. Set § =
S/Q and note that § ¢, Aut (L/O(L)). Since r, (Aut (L/O(L))) = 3, it follows
that r,(S) < 4 and hence S ¢ Syl,(G).

Since S/D is not cyclic, there is a unique subgroup U of Ssuchthat Q x D <
U< S and such that U/(Q x D) = Q,(S/(Q x D)). Then U=a S and
U/(Q x D) =~ E,. Also there is a maximal subgroup T of U containing Q x D
such that T < S and T is dihedral of order 2|D|. Also there is a subgroup W
of S containing Q such that W is cyclic W n T = 1, W acts faithfully like a
group of “field automorphisms” on L/O(L)), S = TW, and U = TQ,(W).
Let w e W be such that <w) = Q (W), let Z(D) = {z), and let V = W n
Cs(D). Noting that Cg(D) = Cy(D) = (Z, W), we have Cg(D) = V x (z)
where V = (Q, w) and w? € Q.

On the other hand, Cy(w) = D, Z(S) = <{Z), and {t,z) < Z(T) < Q X
{z). Since S ¢ Syl,(G), {t)> is not characteristic in Z(S). Thus Z(S) = ¢, z)
and |Ng(S)|, = 2|S|. Let S < & where & € Syl,(G). Then |N,(S)/S| = 2
and N4(S) € Syl,(Ng(S)). Let t € Ny(S) — S.



CLASSIFYING FINITE GROUPS, II 625

LemMMA 3.1.  Suppose that {t) char Cg(D) = V x {z). Then the following
conditions hold:

i) S=UandW =V;
(i) Z(N(S)) = <tz);
(iii) <z, t) is the unique normal element of & ,(N 4(S));
(iv) & = Ny(S);
v) || =28

Proof. Assuming that {¢) char Cg(D), it follows that D, = D* # D,
D, < S, and z* = t. Hence Z(D,) = {t), [D,D,]=Dn D, =1, D x
D; <« Ny(S) and D, x {(z) < Cg¢(D) = V x (z). Thus, as Q is a cyclic
maximal subgroup of V, we conclude that V is dihedral or semidihedral and
QO > 4. AlsoV = Q,(W)and Q = W and hence (i) holds. Clearly (ii) holds
also since Z(S) = t, z). Next, let Y € §,(N4(S)) be such that ¥ <o N,(S).
Hence 1z € Y. Suppose that Y £ Sand let ye Y — S. Choosing d € D such
that |d| = 4 and noting that D” = D, it follows that |[d, y]| = 4 which is
impossible. Thus Y < S. Supposethatt¢ Y. ThenY < Sand Y = E,. Then
Lemma 2.1 implies that Y = {Z, Wy andhence Y < V x (z). But Y n (z) =
land Y~ V = 1since ¢t ¢ Y and V is dihedral or semidihedral. As Y = E,,
this is impossible. Hence ¢ e Y and (iii)—(iv) follow. Since r,(&¥) > 4, [11,
Four Generator Theorem] implies that & contains a normal subgroup Y e
E3(F). Then Cy(r) <« S and |Cy(f)] = 4. Hence (t,z) < Yand Y < V X
(z).. Since E, = Y n V< V, it follows that V =~ Dg, |D,| = |D| = 8 and
(v) holds.

We can now conclude the proof of Theorem 1. If {¢) char Cy(D) = V x
{z), then |G|, = 2% and [4, Theorem] implies that r,(F*(G)) < 4. Thus {¢)>
is not characteristic in Cg(D). Hence V =~ E, and Q = {¢). Then we may
assume that w € I(W): hence (v) of Theorem 1 holds and we are done.

4. Beginning the proof of Theorem 2

We now commence our proof of Theorem 2.

Let G, ¢t, H, L, S, and D be as in Theorem 2 and assume that F*(G) is simple,
that r,(F*(G)) > 4, and that |D| = 23.

Observe that if |F*(G)|, < 2'°, then [4] determines the structure of F*(G)
and the conclusion of Theorem 2 follows. Consequently we may assume that
|F*(G)|, > 2!° and we shall obtain a contradiction by showing that |0%(G)|, <
210,

Since D = Dy, there is an involution z € D such that D' = Z(D) = (z).
Also, by Theorem 1(v), there is an involution u € S — ({¢> x D) thatactsasa
“field automorphism” on L/O(L). Thus [u, D] = land U = {t,u) x Disa
maximal subgroup of S since |S| = 2%. Moreover S/({t) x D) = E, and
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S = §/{t) is isomorphic to the group given in Lemma 2.1 with n = 3. Hence
we have:

4.1) Z(S) = <, z) and there is an element § € S — U such that 6% € (¢,
D{8y = D, and o’ € {uz, uzt}.

(4.2) There is an involution x € D x {u) such that ¥ ~ x ~ xz in L{u)
and there is an involution y € D such that D = {y, xu), |yxu| = |yx| = 4,
z~y~yz~xun~ xuzinL,and uz ~ yu ~ yuz in L{u).

@.3) ®(S) = {yxu) or D(S) = {t> x {yxu), VYD) = {z), and
exp (S) = 8.

@.4) r,S) = 3, ry(S) = 4, and S ¢ Syl,(G).

Also by replacing y by yz, if necessary, it follows that we may assume:

4.5) 6:y e xu.

Let A = {t,u, z, y) and B = {¢, u, z, x). Then we also have:

(4.6) &,4(S) = {4, B}, Ny(4) = Ngy(B) = U, Cg(4) = A,and 6: A — B.
Also Lemma 2.1(iv) applied to S = §/{¢) yields:

4.7 X = {t, u, z) is the unique normal element of &4(S) and Cg(X) = U.

Since L/O(L) = PSL(2, q*) for some odd prime power g and Cy o)) =
PGL(2, q), we conclude:

(4.8) There is a 3-element p € Cy(u) N N (A4) such that x inverts p, C,(p) =
{t, uy, and [A’ P] = {z, .

Moreover setting H = H/O(H) we have:

(4.9) Ng(A) = <, a) x {3, z, p, Xy with {7, Z, p, X) = Z,.
Hence:

(4.10) Cg4(A) = O(Cg(A)) x A and p? € O(C4(A)).

Set # = H/{i). Then L < H, L =~ L/O(L) = L, and H/L is abelian. Thus
L < 0%#), |0%(A)/L| is odd, and D e Syl,(0O*(H)). Then Cp:y(Z) has a
normal 2-complement by [7, Theorem 1] and we have:

(4.11) C4(t, z) = O(C4lt, 2))S.

Let z be anelementin S — U. Thus % € (¢t} x D. If 72 € {t), then Lemma
2.1(iii) implies that (2> € SyL,(Coz(g)(v)). If 7% ¢ {t), then Lemma 2.1(ii)
implies that Q,((t>) = {z) or Q,({z)) = {tz). Thus we have:

(4.12) Ifte S — (t), then Cg(t, 7) has a normal 2-complement if and only
if t is not conjugate in H to u or tu.
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Also, as is well known, we have:

4.13) Cy() = (&, i) x o for some subgroup &/ of H with 0¥ (&) =
C,(i) = PGL(2, q), Cqlily = &' = Cy(iiy, and with <3, z, 5> < 7.

(4.14) <y, z) € SyL,(0*(C(t, w))).

Let S < & € Syl,(G). Then S # & by (44)and S < N4(S). Since Z(S) =
{t, z) @« N4(S)and {(z) <« Ny(S) by (4.3), we have:

(4.15) [Ny(S)/S| = 2, Z(Ng(S)) = (z) = Z(¥), t"*® = {1, 1z}, and
t ~ zin G.

Also (4.3) and (4.11) imply that O*(Ng(S)) < Ce(S) = Cy(S). Also {t,z) €
Syl,(Cg(S)) and hence:

(4.16) Ng(S) = O(NG(S)Ny(S).

Suppose that Y @ & and Y € &5,(&). Then |Cy(?)] = 2% and Cy(t) < S.
Thus Cy(¢) = {t, u, z) by (4.7). Hence ¢ € Y, which is impossible. Thus:

(4.17) SCN4(¥) = 0.

Since r,(&) > 4, [11, Four Generator Theorem] implies that there is an
E e &3(¥) such that E < &. Clearly z € E. Suppose that 1 N E # 0. Then
[#] < 28, which is false. Also, if [t, E] = 1, then E< S and hence E =
{t, u; z which is impossible. Thus:

4.18) t°*NE=0,zeE and E £ S = Cu(?).

Setting E, = Cg(¢), we have ze E; ~ E, and t¢ E; < S. Thus E, x
() =< t,u,zy)and E; = {z,u) or E; = {z, tu). Replacing u by ut and x by
xt, if necessary, in the above, we obtain:

(4.19) Cg(t) = <z, u), E < Ny(S) n Ny(A) N Ny(B), tt = {t, tz}, and
Ng(S) = ES.

Let M = Ny(4)and M = M/O(M). Then Co(M) = O(M) x A,<U, p> <
M, and p3e O(M). Also Ny(M) = (O(M) x AXp, x> and Ny(M) =
Cu(t) = Cy) = A{(p, X). Let F = {y, z). Then

A=FUtFUuFu wF, t°"(FUuF)=9, and tF < t°n 4.

Since M = Ng(A) controls G-fusion among the elements of t¢ N 4 by (4.6),
we have:

(4.20) Either t™ = tn 4 = tFand |[M/A] = 24dortM = N4 =tF U
tuF and |M/A| = 48.
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This concludes our investigation of the consequences of the hypotheses of
Theorem 2.

5. The case |M/A| = 24

Throughout this section, we will assume that tM = t° " 4 = ¢tF and
[M/A| = 24 and we shall prove that the conclusion of Theorem 2 holds in this
case.

Since C4(p) = (i, iy ¢ M, we conclude that M/4 =~ X,,M = 0,(M){p, x>
and |0,(M)| = 2%. Note that (tMtM> = F< M. Let U= Ns(4d) < U e
Syl,(M). Then |%| = 2" and % = O,(M){X). Let W = O,,,,(M)and V =
O(M)[W, p]. Clearly O(M) x F= V.

LEMMA 5.1. W/F = E;gandV =~ EgorV = Z, x Z,.

Proof. Clearly |W/F| =2* and Cyr(p) = A/F = E,. Suppose that
WIF = Z, x Qg. Then |Cp(p)] = 2 and Cyp(p) < Cy(p) = (i, éi). Letting
g eV be such that |gF| = 4 and @ € V be such that Cp(p) = (@). Then
g*>e®F and Z(V) = (@, §,Z) since F < V and p acts on V. But (@) <
i,y and W = Vi, a); thus Z(W) = (@, 7,Z) and @ € Z(%) since U =
W(X). Hence @ € {i, tii}. Since {t, Fy <« M, we conclude that M/{i, F) =~
GL(2, 3). Suppose that E;q = X <o %. Then

X<, FY[L,Fy < UG F) = SDye.

Hence X = A4 and 4 char #%. This implies that % e Syl,(G). As|%| = 27, this
is impossible. Applying [9, Lemma 2.1], the result follows.

LemMA 5.2. IfV =~ Z, x Z,, then |G|, < 2°.

Proof. AssumethatV =~ Z, x Z,andnotethatV <« MandF = (y,z)=
Q,(V). Also(i, i) x {p, Xyactson V. Thus?inverts V and there is an element
u, € {t, u) — {t) such that [ii;, V] = 1. Hence

M = Gy x VKE) x <p, X)) and % = <d;)y x (V<i, %))
where V{i, x> isof type M,,. Let #" = U W, ¥ =%V, and E =

() x ¥'. Then W < U, V" <9 U, E= Cy(¥V)<a U, and # = E{¢t).
Also let X = (u,, F) = Q,(E), so that X <« %. Since

M = OMINy(W') = O(MYW (Nu(#) N Cu(2)),

it follows that there is a 3-element # € Ny (#") n Cy(t) inverted by x such that
1 =pand 77°e Ce(#). Set L = Ng(#') and L = L/O(L) and observe that
Ce(#) = O(L) x Xwhere X = Z(#')< L. Since J, (#) = E<a L, we also
have F< L. Moreover L/X ¢ Aut (#") implies that |L|,, =3, L =
0,(L)#, Xy, and F < Z(0,. ,(L)). Clearly C,(1) = {t, u) and {%, n) < L.
Let % < J € Syl,(L) and observe that X char # implies that Cu(X) =
W char %. Thus % <  and = O,(L)X).
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Let v, € ¥ be such that v? = y and setv, = v}. Then v} = yzand Cy(x) =
{vyv,). Alsot® N E = 0,tE = tF, and

IGE) = t& U (tuy)® U (t0,))F U (tu,0,)E U (10,)F U (tu0,)F U (t0,0,)F
U (tuv,v,)E.
This implies that L/# = X, and hence |7| = 2°.

Suppose that O(L) x #" < Ci(X) = O, ,(L). Then {u;> < Z(L). Setting
L= L/<ii;), we have COz(i)(;’) = <) and Coz(Z)(iL= (Coyp(®)™ = 4= Eg
since 1% N (¢, u,> = {t}. Also Z, x Z, @ E= L and 0,(L) = 27. By [9,
Lemmas 2.7 and 2.8] there is a subgroup J of L such that O(L)E < J < L,
J < 0y, 5(L), t¢J, |J| =27, Cy(71) = iiy), O,(L) = J<%), and such that
J > Zg x Zg or J is of type Ly;(4). Let # = nJ. Then £ <«  and
T = FLx,t). Letting x; = x if u; = w and x; = xt if u;, = ut, we have
xu; = xu and tx; ~ t ~ txu; in G. But Cj(iX,ii,) = Cj;(iX,) has order 23
in either case by [9, Lemma 2.9]. As (Cy(iX,))” = Cj(i%,), we conclude that
|C5(ix)] = 2*. But Cy(tx,) = C,(tx,)<t, x) and hence |C,(tx,)| = 2°. Since
{uy, 2y < Z(Cy(tx,)), we obtain a contradiction from (4.1). Thus O(L) x
W = C(X),Cy(X) = W,and T, = L/W o GL(3, 2).

Assume that Y € 65(7), Y = J,and Y # X. Since Z(J) = {z), we have
ze Y. Suppose that Y n (xE U xtE) # 0. Then [Y, ¥"] contains an element
of order 4 which is impossible. Thus Y n (xE U xtE) = 0. Alsot°nY =0
since | 7| = 2°. Note also that U = C,(¢) since X <« . Thus Cy(t) < U
and |Cy(¢)] = 4. Since I(U) € A U B, we must have Cy(t) < 4 = {t, X).
Thus Y < Ny(A) = % = E{(x,tyand Y < E{¢t). Since Y £ E, there is an
involution t€ (tu; F) n'Y. Thus [t, E]=F <Y and tu; €Y. Also 2 =
0,.,,(L) n 7 is transitive on

{tX, . X, t,X, tv,v,X}

and hence C,(tu;,) = Cy(tu;) = A. Thus |(tu,)?| = 2* which is impossible.
Hence X char 7, C4(X) = # char 7, 7 e Syl,(G), and the lemma follows.

LEMMA 5.3. IfV = E,, then |G|, < 2'°.

Proof. Assume that V =~ E;¢. Since V< M, F = Cy(i, 1) = Cy(f), and
{t, @iy acts on Cyp(X) = E,, it follows that there is an involution u; € {t, u) —
{t> such that [ii;, V] =1. Set ¥ =V n% and E = {uy» x ¥ = Es,.
Then &5,(%) = {E}, #4 = E{x, t), and, as in Lemma 5.2, there is a 3-element
n € Ny(E) N Cp(t) inverted by x such that 7 = p and 77° € C4(E). Also
I(tE) = tF U tu;F, Cy(t) = U = A{x), and t° N tE = tF = tE. Let L =
Ng(E), L = L/O(L), and let % < I € Syl,(L). Then % # J since E char %
and |%| = 2" and 7 ¢ Syl,(G) by (4.17). Since Cyx(t) = UEJE, it follows that
C4(E) = O(L) x E, LIE o Aut (E) = GL(5, 2) and, since UE/E & E,, that
J|E is dihedral or semidihedral of order at most 16. Also |7 /E| > 8 and
|Ce(x)] = |Cg(xt)] = 8. Let I < & € Syl,(G). Then I # & and there is
an element 7€ N (J) — J such that > € . Letting E; = E°, we have
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E # E, < 7. Hence Z(J|E) < (E,E)/E and |En E,| = 8. Thus J/E >~
Eq.

Note that I(xE) = xF U (xu,)? and I(xtE) = (xt)f U (xtu,)E. Also x ~
t ~ xuin Gand xt ~ t ~ xtuin G. If u; = u, set x; = x and if u; = wut, set
x; = xt. Then xu; = xu ~ t ~ x, in G, Z(T|E) = {x,E) and ¢t ~ txu,
in . Since (E,E)/E = (E<{x,, t))/E, it follows that we may assume that
7 € Cy(t) also. Note that U = Cy(¢), 7> € U, © normalizes U = {t, u;» x D
and (U, 1) € Syl,(H). Thus A° = B, t normalizes {t,u, z) = Z(U) and
ZKU, 1)) =<1, z).

Let Eg @ Y < &. Thent® n Y = 0 and Z(&) = {z) since Z{U, 1)) =
{t,z). Hence E, = Cy(t) < AnB=<t,u z) and Cy(t) = {z,u) or
{z,tu). Thus ¥ < Ny(4) = U = E<{x,t). f Y £ E, then Y nx E # 0
and hence [E, x;] = Cy(x;) < Y. Since {Cy(t), Cy(x))> < Y n E and
[<Cy(t), Cy(x)D| = 23,itfollowsthat Y < E. ThusY = En E; = Cg(x,) =
{uy, z, vy where Cy(x,) = <z, v) for some v € ¥'#. Hence Y is unique, EE, <
Cy(Y)<a &L and x, € E,. Since I = (EE|)Xt),Cy(Y) = EE|,I(7 — (EE))) =
I(E U tx E), and Cu(t) = (U, 1), it follows that N,(7) = (7, 7). Hence
Cy,(Y) = EE, < &.

On the other hand, L/E is of type Dg, Crg(f) = ((i) x i, X))E)/E, and
iE ~ x,E in L. Hence O,(L/E) = 1.

Suppose that O(L/E) = 1. Since L/E < GL(5, 2), it follows that (L/E)" =~
osand L/E =~ X,.

Since (C4(E), T, n) < Ci(u,), it follows that (u,> < Z(L). Let K be the
subgroup of index 2 in L such that C4(E) = O(L) x E < K. ThenK/E =~ o/,
J n K = EE,, and there is a 3-element A € K such that 1 acts transitively on
((E,E)/E)*. Noting that Y = Z(EE,), it follows that if e, € E;, — E, then
Cg(e,) = Y. Let Re &3,(EE,) with R # E. Then Y = R E and hence
x; € R and R < Cgg (x,) = E,. Thus R = E, and &,,(EE,) = {E, E|}. But
J = N4(E) has order 2% and hence |#| = 2° and we are done in this case.
Hence we may assume that O(L/E) # 1.

Since L/E ¢ GL(5, 2), we conclude that O(L/E) =~ Z; x Z; and L/E
237U Z,. Let Pe Syl;(L). Then, clearly Cx(P) = <u;> <« L and [P, E]
¥ < L.

Now Q,(9) = J and I /E = Ds.

Assume that u, ¥ € ®(J/¥"). Then I /¥ =~ D,, by Lemma 2.2. But
E{x> <1 J and E, & (E{x;))/?"; this contradiction shows that u, ¢ ®(J).
Since {u;) < Z(L), [10, I, 17.4] implies that L contains a normal subgroup L,
such that L = <u;> x L,. Hence O*(L) = (O(L)¥")P < L, where O,(L,) =
¥ and L,/ = ;7\ Z,. Then [6, II, Lemma 2.2(vii)] implies that L, is of
type & 0. Since I = {u;) x (7 n L,), it follows that |#3,(J)| = 4. Thus
we may assume that

I 1

€3,(7) = {E, Ey, E,, E3}.
AlSO |<E, El’ Ez, E3>| = 27 = |EE1|. Hence &32(-7’) = é”sz(EEl). Since
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Ny(E) = T, |7| = 28 and EE, <« &, we conclude that |#| < 2!° and we
have proved Lemma 5.3. Then [4, Theorem] implies:

LEMMA 5.4. If |M/A| = 24, then the conclusion of Theorem 2 holds.

6. The case |M/A| = 48

As a result of Lemma 5.4 and (4.20), it suffices to assume that |M/4| = 48
and tM = t¢ N A = tF U tuF throughout the remainder of the paper.

Thus |M|, = 28, M = 0,(M){p, %>, |0,(M)| = 27, and C4(p) = M. Set
X =<u, y,z) = {u, F), so that t¥ = tX. Clearly C4(p) = M implies that
05(MJA) = 1. Since M/4 ¢ Aut (A) = GL(4, 2) and GL(4, 2) has no sub-
group isomorphic to GL(2, 3), we also have M/4 =~ Z, x X,. Since tM =
t° n A = tX, we conclude from (4.1) that 4’ = uz and X < M.

Let U = Ny(A) < % € Syl,(M), W = 0, (M), and V = O(M)[W, p].
Alsolet W = U Wand ¥ =% nV. Clearly M = W{p, x>, V<a M,
% = 28, % = W{x), W max U, C,(t) = A, t¥ = tX. W|A = E; and
W'|A acts regularly on tX. Clearly M = O(M)Ny(#") = OMYW Ny (W) N
H). Hence there is a 3-element # € Ny (#") n H such that n* € O(M), 7 = p,
n* =0~ [4,n] = F, Cyn) = {t,u),and ¥ = [#, y].

Set # = C,(n). Then clearly Cy(t) = {t,ud, ¥ = Dg, t¥ = {t,tu}, ¥ =
Z(#) = Ku)p, {U, 1) < Ng(A%), and A¥ < Nyu(U). Also F< ¥V a W =
VY, n3 e Co(W), VA|A = E,, and {%, n) < Ng(¥"). Moreover the argu-
ments in [9, Section 7] yield:

LemMA 6.1. (i) [F, #] = 1.

(i) Theorbitsof W ont™ = tM = t° N A = tX are t{u), tz{u), ty{u), and
tyz{u); vA[A acts regularly on these four orbits and O,(Z(M)) = {u).

(i) #' =oW)=0'MW) =X

vy F={,z)<¥ nAd<X

Vv «[%, x], [¥, xt]> = {u), and x or xt centralizes ¥ .

Since t¥ = tX and C,4(t) = A, it follows that no element of ¢X is a square
in 74 and hence the proof of [9, Lemma 7.4] yields:

LeMMA 6.2. ¥ satisfies one of the following five conditions:

(i) ¥ =~ E,gand Cy(t) = F.
G) v =2 Z, x Z,, F = Q(), and t inverts ¥".
(iii) There is a {n, x) invariant subgroup 2 of ¥~ such that ¥ = F x 2,
2 = Qg, 2 = (u), and (2, x))/<{n°) = GL(2, 3).
V) V" =u < X=Z)=0")=Q(¥),exp(¥) =4, V|V’ =~
Zy X Zy, V|F = Qg, t inverts V[V, and (V" {n, x))/({n*) x F)) = GL(2, 3).
Also if o e ¥ — Z(V"), then |a| = 4, Cy(@) = {a, Z(¥)), and a® ¢ {u) U F.
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™) ¥ = Z) = Lu), ¥ contains subgroups Q, and Q, with Q, and Q,
quaternion of order 8 such that ¥~ = Q * Q,, ¥ char ¥4 = ¥{t>, Q| = Q,,
and VA is of type L g.

Our analysis of each of these five possibilities of Lemma 7.4 is presented in
one of the remaining five sections of the paper. These investigations are similar
to those of [9, Sections 8-12].

7. The case of Lemma 6.2(i)

In this section, we shall prove:
Lemma 7.1. If ¥ satisfies (i) of Lemma 6.2, then |0*(G)|, < 2'°.

Thus, throughout this section, we assume that ¥ =~ E;, Cy(¢) = F, and
that 2!'° < |0*(G)|, and we shall proceed to a contradiction.
Asin [9, Section 8], we have & N ¥ = 1, Cop(¥") = P max ¥, u € 2, and

U, > < Ng(¥) 0 Ne(2).

Set 2=2 x ¥. Then W = 2>, 2< U = Kx, 15, Z(U) = <u, z),
[2,t] = (), and |Cy(x)| = |Cy(xt)| = 4.

LemmA 7.2. 2 =~ Z,.

Proof. Assume that 2 = (u, w) where w?> = 1. Then &¢4(%) = {2} and
I(t2) = t* = tX. If [2, xt] = 1, then Cu(xt) = (2 x Cy(xt)){x, t> has
order 2° and 2 x C,(xt) <« C,(xt), which is impossible. Thus o™ = wu
and w* = 0. Let N = Ng(2) and N = N/O(N) and let % < 7 e Syl,(N).
Then% # 7,t° N 2 = 0,and X = C,o(t) < Cy(t), so that Cy(t) < Ng(A) =
M and Cy(¢t) = U. As I(t2) = t* and {%, n) < N, it follows that C4(2) =
O(N) x 2, Cxg(2) = 3, Cx(i) = A{ij, X, and N/2 o Aut (2) = GL( 6,2).
Also we have C5,3(i12) = (X2, 12) and hence J /2 is dihedral or semidihedral
with 8 < |7/2| < 16. Thus 2° < || < 2'° and 2 is not characteristic in 7.
Also t2 ~ xt2in I [2,t ~ xtin 2,and Z(J/2) = {x2). Since |Cy(x)| = 2%,
itfollowsthat 7/2 ~ Dgand |7 | = 2°. LetT < & € SyL(G). ThenT # &
and we may choose an element t € Ny(7) — J such that 1 € 7. Set 2, =
2. Then 2, <« F, Cy(x) = {u, w, z, v) = 2, N 2 for some v € ¥ * such that
v' = vz, Cp(x) = {z,v), and 2, = {u, w, z, v, x, ) for some involution e.
Clearly 7: 2 « 2, and we may assume that 7 € C,(t) where U = C4(¢) is a
maximal subgroup of Cy(t). Then

Tt A B, 1:{u,zy)y < {u,z x),
Ny(T) = T Cyu(t), T normalizes <u,z>, [z,7] = 1, and u* = uz. Hence
Z(&) = <z).
Let Y= & with Y e 8(¥). Thus t°nY =0,ze Y, and E, = Cy(t) <
AN B =< tuz) HenceCy(t) = {u,zyand Y < Ny(4) = % = 2 {x,t).
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This implies that ¥ < 2¢x>. f Y £ 2, then [2,x] = {z,v) < Yand Y =
{u,z,v). Thus Y < 2,Y < 2n 2, = {w, u, z, v) and hence

Y € {{u, z, w), {u, z, v), {u, z, wvy} and 22, < Cy,(Y) < &.

But «* = uz implies that Cy,7(Y) = 22,. However Cy(t) < Ny (J) and
I1(t22,) = t7 since 7 = (22,){t>. This yields C,(Y) = 22,.

Suppose that all involutions j2 of 2,32/2 are such that |C5(j2)| = 2* and let
E € £¢4(22,) with E # 2. Then there is an element w e E n g2 for some
g1 €2, — 2. Then Cyw) = {u, w, z, vy and hence £ n 2 = {u, w, z, v).
Since 1(g,2) = q,{u, w, z, v), it follows that ¢, € E. But then £ = 2, and
£16(22,) = {2, 2,}. Thisimplies that |&| = 2'° and we have a contradiction.
It follows that some involution j2 of 2,2/32 is such that |C3(j2)| = 2°.

Let K = Ny(#). Then {C4(2),n, 7> < K, Ny(?) = Ny(?) and K/2 o
Aut (2). Since Z(7/2) = (X2) and X2 ¢ 0,(K/2) = 0,(K)/Z, it follows that
0,(K/32) = 1. Thus K/2 has a normal 2-complement. But P < K, 0, ,.(K)
acts completely reducibly on 2 and [2, ] = ¥, so that ¥ <« K. Let M/2
be a minimal normal subgroup of K/2 with M/2 < O(K/2) and assume that
IM/K| € {5, 7}. Then[X, M] < 2 and hence M acts on Cy(X) = (Z, vy. Since
this implies that [M, 2] = 1, we have F(O(K/2)) is an elementary abelian
3-group. Thus O(K/2) is an elementary abelian 3-group.

On the other hand, <2, 2, 1) < Cg(?) =2 K, 0,(Cx(?)) = 2 and
Cx(P)/Z & Aut (V) = GL(4, 2).

Moreover 22, € Syl,(Cg(?)) and (22,) = ®(23,) < ¥ ; hence Z n ®(23,)
= 1. Then [10, III, 4.4] and [10, I, 17.4] imply that Cg(?) = Z x L where
L < Cx(2?). Since O*(Cx(P)) < L, we have ¥ = L n 2 = O0,(L). Let L
denote the inverse image of L in Cx(#) and note that Cg(#) is I )-invariant,

7 < Cr(@P)i), P< Cr(PXi), and Cy(¥) n (Cr(P)KD)) = 2.

Thus 0,(Cr(P){i)) = 2 and (Cgx(P)<{i))/2 < Aut (¥) = GL(4, 2). Then [6,
11, Lemma 2.2(vii)] implies that 7 /Z ~ J /2 is of type o/ ,,. Recall that 7 =
(22){t>, 22, = P x ((22,) " L), and let Y € £¢4(J). Then YP/P <
(22,)/2? and hence 2 < Y. On the other hand, 2/? =~ 2,/? ~ E,; and
(22,)/? max T /P, so that (22,)/? =~ Dg x Dg and hence (22,) n L =
Dg x Dg. This implies that |6¢4(7)| = |6¢4(22,)| = 4and |#| < 2''. Thus
|#| = 2!, Zis transitive on §44(22,), and |£/(22,)| = 8. But Ny(7) max &
and 7 = (22,){t>, so that ¥/(22,) = Dgz and N,(7)/(22,) = E,. Also, as
2 <4 Ny (), it follows that /22, acts faithfully on £¢,(22,). Let &, denote
the inverse image of Z(%/22,)) in & and observe that t¢ N (22,) = 0,1 ¢ &,
and Ny(7) = &, withT n &, = 22,. Moreover, by [8, Corollary 2.1.2],
it follows that &, contains an extremal G-conjugate « of ¢ in & since S/(22,) =
Dg. Now

22, ~ E, x Dg x Dy
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and hence Z(22,) = 2 n 2, = ? x {z,v). Also there exist elements 2,, 2,
Of 6364(’@’@1) SuCh that .@2.@3 = ,@21, .@2 N .@3 = Z(-@gl), 664(231) =
{'Q’ -@1’ ‘QZ’ 93}’

0: 2o 2, and oa:2, o 25

Thus Cyy(0) < Z(22,). However u™”) = {u, uz} and hence a: u < uz.
Since |£/(22,)] = 8 and |Cy(a)| = 25, it follows that Ey = Cjy, (@) < Cy(a).
As o ¢ Cyy, (2), we obtain a contradiction from (4.7) and the proof of Lemma
7.2 is complete.

Thus, throughout the remainder of this section, we assume that Z = {(w)
where w? = u, Q,(2) = <u) x ¥, and U}(2) = <u). Set E = Q,(2), N =
Ng(2), N = NJO(N), C = C4(2), and D = Cy(E). Then C< D= N <
Cg(u), D/Cis a 2-group, O(N) = O(C) = O(D),{%, ny < N,and Cy(n) = 2.

Applying the proofs of [9, Lemmas 8.3-8.4], we obtain the following two
lemmas:

LemMa 7.3. (1)) C = Cg(ff) x ¥ where ¥ = [C, 7], Ce(#f) is a cyclic 2-
group and P = Q,(Cg(iD).

(ii) U normalizes Cg¢(if) and Ca(i)<t) is dihedral.

(i) 2 < C < D < Oy(N).

LEMMA 7.4. () D = Cp(n) x ¥ where = [D, 7].

(ii) U normalizes Cy(i#f) and Cp(i)<t) is dihedral or semidihedral.

(iii) Either Cp(7) = Cg(i7) (and C = D) or Cy(#)) is dihedral or generalized
quaternion and Cg(#) is the unique cyclic maximal subgroup of Cp(i7) when Cp(i)
is not isomorphic to Q.

Giv) t°n D =0.

(V) 2 = 2P x ¥ char D if Cy(#) is not isomorphic to Q.

(vi) Cy(i) = A, X>.

From the nature of the remainder of the proof of Lemma 7.1 and in order to
simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume that O(N) = 1.

Set Z = Cp(n). Then D = #Z x ¥, A t) is dihedral or semidihedral,
Z(R{t)) = (uy, # = Cyu(E) is cyclic, dihedral, or generalized quaternion,
E=<{uy x ¥ < Z(D)and t° n D = 0. Let y be a generator of the cyclic
maximal subgroup of #{t). Then 2 < (y), ye C if C = D and {(y?) =
Cc(n) if C # D. Also I(tD) = I(t®) x F and hence I(tD) = tP if #{t) is
semidihedral and I(tD) = tP U (ty)P if #{t) is dihedral. However, if Z{t) is
dihedral and C # D, then £ is dihedral and 1% N tD = ¢ since 1 n D # 0.

Now % = Kx,t) = (2 x V)Kx, 1), |Cy(xt)] = |Cy(x)| = 4, |Cg(xt)] =
23, and Cg(xt) <0 Cy(xt). Then (4.7) implies that [w, xt] = % and hence
[w, x] = 1. Similarly, since < D<{x, t), we conclude that Cu(xt) = {u)
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and hence #<{xt) is dihedral or semidihedral. Also, it is clear that < #<{xt)
and if © € I(xtD), then

Cpxey(®) = {1, u)> x Cy(xt) = Egq.
LeMMA 7.5. t% n (D{x)) = 0.
Proof. Suppose that ¢ n (D{x)) # 0.

Since D{x> = (R x V) x),t° n D = 0, and |C,(x)| = 4, it follows that
there is an involution 7 € ¢ N (#{(x)) — #. Now 2 x (x> < Caxy(x) and
hence #{x) is neither dihedral nor semidihedral. Thus |Cg,(1)| > 4. But

Cpixy() = Caxs(1) X Cy(x) and Ej¢ = {1, uy X Cp(x) < Z(Cpxy(7)),

so that we obtain a contradiction from (4.10). Thus Lemma 7.5 follows.

Let E = E/<u). Then E = E;4, N acts on E and D < Cy(E)= N =
Ne(2).

The proof of [9, Lemma 8.5] yields:

LEMMA 7.6. Cy(E) = D and N/D o Aut (E) = GL#4, 2).

Choose v, € ¥'# such that C,(x) = <{z, v;>. Then v, = v,z and Cy(xt) =
{z,vy>. Alsolet D{x,t> < T e Syl,(N).
The proofs of [9, Lemmas 8.6-8.7] yield:

LEMMA 7.7. (1) T # D<{x, t).

(i) Cy;p(tD) = {tD) x {nD, xD) = Cy(t)D/D.

(i) O,(N) = D.

(iv) J/D = Dg, Z(T|D) = {xD),and tD ~ xtD in T .

Next we prove:
LemmA 7.8. T e Syl,(G).

Proof. Assume that J is a maximal subgroup of the 2-group & and let
1€ —F. Thent*eJ and 2 # 2, = < 7. Let E, = Q,(2,) = E".
Note that U = Cy(1), 19" 2, =0, and Cg(¢) = {u,y,z> or Cg(t) =
{u, x, z). Asin the proof of [9, Lemma 8.8], it follows that

Cp(t) =<u,x,z) and Dn 2, =2n 2 =2 x {z,v).

Since & normalizes 2 N 2,, it follows that {u) < Z(¥). If * ~ tin J, then
we may assume that v € Cg(¢, u). Then t normalizes UC4(¢) and hence 7 €
Cs(t, u, z). Thus |Cy(2)| = 2% and Z(Cy(t)) = <t, u, z) which contradicts
(4.1). Hence t* ~ ¢ in J and, utilizing (4.14), the proof of [9, Lemma 8.8]
yields a contradiction. Thus Lemma 7.8 is established.

Finally the argument at the end of [9, Section 8] can now be applied to
establish Lemma 7.1.
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8. The case of Lemma 6.2(ii)

In this section, we shall prove:
Lemma 8.1. If ¥ satisfies (ii) of Lemma 6.2, then |0*(G)|, < 2'°.

Thus, throughout this section, we assume that ¥" =~ Z, x Z,, F = Q,(¥"),
t inverts ¥, and that 2!° < |0*(G)|, and we shall proceed to a contradiction.

As in [9, Section 9], let v; € " be such that v} = y and set v, = v} and
v = v0,. Then v3 = yz, vV¥ =z, ¥ = vy, 1,), and Cyu(x) = <(v). Also
P =Cy(¥V)max ¥, ue?, [P, V] =1, and (%, n) < Ng(¥) n Ng(P).
Set 2 =2 x ¥. Then# = 2it>, 2<1 U = 2x, ty,and Z(%) = u, z).
Note also that

Cy(xt) = Cvyd, ((Kup x {oyp)x, 1)) < Cylxt) and <u, z,vy) < Z(Cy(x1)).

Thus Cp(xt) = ((u)> x {opdXx, t), [P, x] = 1,and [2, xt] = (u). Clearly
19N 2 =0 and if tel(x2), then Cyr) = P x (1D, |Corxy(¥)| = 2°, and
Caxy() is abelian. Thus 7€ N (2{x)>) = 0 by Lemma 2.1(vi). We also clearly
have %' = (u) x vy x Ky), Co(¥%) = 2, QW) =X, CyX) =W,
V') = (z), and |%| = 28.

LeEmMA 8.2. 2 =~ Z,.

Proof. Assume that 2 = {u, w) where ®*> = 1. Let % be a maximal sub-
group of the 2-subgroup J of G and let L = Ng(%). Clearly 7 < L, 2 < L,
W =9ty L, Z(W)=uy,zy<a L, 9(xy<a L, and 2xt> < L as
t9 N (2(x)) = 0. Thus Cyu(x) = <w,u) x (vp)< L, {w,u,zy <1 L, and
{z> <a L. Since C,(#) < C(A) = O(C(4)) x A, it follows that C (%) =
O(L) x {u, z)y where Z(U) = <u, z). Hence L has a normal 2-complement.
As I(xt2) = (xt)% |Cy(xt)| = 2°, and Z(Cu(xt)) = {u, z, xt), it follows
that J € SylL,(L), L = O(L)T, I = UCgy4(xt), and u ¢ Z(Cs(xt)) since
(2> < Z(C4(xt)) and |Cs(xt)| = 2°.

Note that 2 = Jo(#") char #" and set N = Ng(#"), N = N/O(N), and
E=0Q,(2 =2 x F. Clearly X = Z(#) < N, Cg(t) = X = Cy2),

I1(t2) = t2 U (v,)? U (1v,)? U ()?

and {%,n> < N. Also Cy(t) = O(Cy(1))A{n, x> where O(Cy(2)) < Cx(#")
and C4(#) = O(N) x Z(#W'). Then Cy(#) = X, Cx(i) = A<i], X) where
7 =1 and N = O,(N)X#, x> as N/X ¢ Aut(#’) and |Aut (#)|, = 3.
Now 7 < N, Co,m(if) = ¥ since Co,m)(f) = Aand Cx(7)) = Z < Co,m)(M)-
Thus N/# =~ X, and O,(N)/# =~ E,. As F< N, we conclude that
[0,(N),F] = 1. Since 7 = (0,(N) n T)XX) and i ¢ Z(7), it follows that
Cx(X) = # and hence Cxg(E) = 2. Then N/2 ¢, Aut (E) = GL(4, 2). But
then N/2 =~ Z, x %, where {(2) <« (N/2). Hence [E, 1] = <) < N and
we have a contradiction since & ¢ Z(J). This completes the proof of Lemma
9.2.
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Let ? = {(w) where w* = u. Thustinverts2 = # x ¥ = Z, x Z, X Z,
and Q,(2) = X. Also I(t2) = 12, I(x2) = x(Ku) x {vy)) and I(xt2) =
xt(? x (v)). Note also that if 7, € I(t2), 1, € I(x2), 75 € I(xt2), then
<119 X> < <T?>’ <129 vy> < <T§>’ and <T3’ v> < <T§>'

LemMA 8.3. Let U < R where R is a 2-subgroup of G. Then X <« # and X
is the unique normal element of &g(%).

Proof. Since X = Q,(%') char %, it suffices, by induction on |£|, to assume
that X <« £ and to show that X is unique. Thuslet X # Y <« # where Y €
Eg(#). Assume that 1 N Y # 0. Then |#| < 2% and hence # = %. This
implies that Y < 2 and hence Y = X, which is impossible. Thus 1 n Y # 0.
Also, since X <0 Cul2), it follows that U = Cu(¢). Now the proof of [9,
Lemma 9.3] applies to yield Lemma 8.3.

Clearly 2 = Jo(#") char # = 9{t),

U, 1y < Ne(W) < Ng(D), Ce(W) = O(Ce(#)) x X, and n* € O(Co(#)).

LEMMA 8.4. (1) 2 < Nog(#) n C4(2) 2 Ng(#') and O(Ng(#")) is a normal
2-complement of Ng(#') n Cg(2).
(ii) Either 2 € Syl,(Ng(#) n C4(2)) and

(N 0 CcD) — 1y = 2

or 2 is a maximal subgroup of a Sylow 2-subgroup of No(#") n Cg(2) and

{Ne(#) n Ca(D)) - t(.@ X F),

Proof. Let N = Ng#),N = NJO(N),and J = Cy(2). Clearly 2 < Z(J),
J <1« N < Ng(2), O(N) = O(J) = O(Ce(#)), 0*(J) = O(J), and (i) holds.
Thus J = Cgx(2) is a 2-group and {X, i) normalizes J. Also

U < J(X, 1y and (i, Z, X)) < Z(Cyx, n(XD)).

Hence Cy(X1) = (i) x (BF))X, 1) € Syl,(Cy s, (X)) and the proof of [9,
Lemma 9.4] yields Lemma 8.4.

For the remainder of this section, let N = Ng(2), C = C4(2), and N =
N/O(N). Clearly {(%,n) < N. Let Y = C<{t) and let % = 2{x,t) < T €
Syl,(N). Clearly n* e C and Y <« N. Also let O(N) < # < C be such that
# = Ce(n).

Applying the proof of [9, Lemma 9.5], we obtain:

LemMa 85. (i) C=Z x ¥, v =[C,#], Z is a cyclic 2-group and
2 = Q,(R).

(ii) U normalizes # and A% is dihedral or semidihedral.

(i) Cy(t) = A<L7, X ).
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As in the previous section, without loss of generality, we assume that O(N) =
1. ThusC = # x ¥ and C{x, t) < T € Syl,(N). Since Cc(x) = 2 x {(v),
it follows that t¢ n (C{x)) = 0. Then, as in [9, Lemmas 9.6-9.7], we obtain:

LemMMma 8.6. (i) 2 = Q,(C) char C<{x, t>.
(i) T # C<x, t).
(iii)) N = O,(N)n, x) and T = O,(N)Xx).

Next we prove:
Lemma 8.7. Rt is dihedral and t inverts C.

Proof. Assume that #{t) is semidihedral. Then, as in [9, Lemma 9.8],
we conclude that N/C ~ Z, x X, where Z(N/C) = {tC), X char J, 2 char
T, T e Syl,(G), and N4g(J) = . Since C <a« I, we also have <u) < Z(9)
and hence Z(J) = <u) by (4.15), <uy) = Z(N), Co,ny(X) = Y char 7, and
Cchar . Since [y, x] = z, it follows that {u, z) is the unique element of
&,4(X) that is normal in .

Since u® = uz, it follows from the proof of [9, Lemma 9.8] that there is an

element g € N such that (uz)? = u. Since {u) = Z(N), we have a contradiction
and we are done.

Setting & = O,(N), we prove:

LemMa 8.8. (i) Z{t) = Cx(n).

(i) Z/C =~ E;.
(iii) 2 char I and T € Syl,(G).

Proof. Assume that {t) # Cq(n). Then, as Cg(n, t) = {1, u), it follows
that C,(n) is dihedral or semidihedral. Since Cy(1) = Z<t) <1 C4(1), we con-
clude that #{t) max Cq(n). Let o generate the cyclic maximal subgroup of
C,(m). Then Cu(n) = (a,t> and # = ®(Cx(n)) = U'({a)). Set & =
{C, t, a, xy. Then, as in [9, Lemma 9.9], it follows that ¥" < &, « inverts ¥,
t~ tain G, |C = Eg, C{x,tY) max &, {(u,z) < Z(¥), C<{x) <« &, and
C{xt)y<a &. Moreover, if #{xt ) is not dihedral, then it follows that |Cy(xt)| =
25 and (u, z, xt) < Z(Cy(xt)) which is impossible. Thus x¢ inverts £ and
[2, x] = 1. Suppose that & # J and let y € Ny(¥) — & be such that
7> € ¥ n Z. Then as in [9, Lemma 9.9], it follows that y acts trivially on &/C
and that [y, <, z>] = 1. But I(xtC) = (x¢)‘“® and hence |C , ,(xt)| =
2°. Since <u, z, xt) < Z(Cy,(xt)), this is impossible and we must have
& = . Then, asin[9, Lemma 9.9], we obtain a contradiction. Thus (i) holds.
Moreover, as in [9, Lemma 9.9], we conclude that (ii) holds and X char 7.
Suppose that (iii) is false. Then Cz(X) = & char I, Z(J) = {u, z), and
{u) = Z(N). Moreover, setting ¢ = [Z, n], as in [9, Lemma 9.9], we con-
clude that &' = (u) x ¥, #' =<Ku), &' < Z(¥), and Ny(4) = &'. Then
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it follows that {u, z, xt) < Cgq(xt) and |C,(xt)| = 2°, which is impossible.
Thus (iii) also holds.

Hence N4(7) = Ny(7) = T, || = 2!, and |#| = 2. Thus <{u) <
Z(N). Then the argument at the end of Lemma 8.7 yields a contradiction.
Hence the proof of Lemma 8.1 is complete.

9. The case of Lemma 6.2(iii)

In this section, we shall prove:
LEMMA 9.1. If ¥ satisfies (iii) of Lemma 6.2, then |0*(G)|, < 2'°.

Thus throughout this section, we assume that ¥~ contains a {#, x)-invariant
subgroup 2 such that ¥" = F x 2, 2 = Qg, 2' = {u), and

((2n, X))y = GL(2, 3).

We shall also assume that |O%(G)|, = 2'! and we shall proceed to obtain a
contradiction.

Clearly &% n ¥ = (u) and % acts on
Cix) = ve?V |v"  =vorv* = v !} = (2) x {q)

where g € 2is such that ¢* = ¢~ = qu. Alsot? = tFort® = tuF and hence
q' € {qz, quz}. Since 2 = {q, q", q"*), it follows that no element of % can
invert g. Then, as in [9, Section 10], Co(¥") = £ is a maximal subgroup of %
and <%, n> < Ng(¥) 0 Ng(P). Also (¥, 2,13, x> < Ne(2) and I(t¥") =
YU (). Set E= PV =P +¥. Then W = E{tD>, E< U = E{x, 1),
Z(@U) = {x,t>, Z(E) = ? x F,and [2, t] = {u).

Suppose that 2 = (u, w) where > = 1. Then E = {w, y, z) x 2 and
t n E = 0 by (4.6). But then the proof of [9, Lemma 10.2] implies that
U € Syl,(G). Since |%| = 28, we have:

LeEMMA 9.2. 2 ~ Z,.

Let # = (w) where w?> = u and @' = w~!. Thus I(tE) = tX U (to)X,
E=F x (P +2),|E| =25 and if je I(E) — Z(E), then Cg(j) is abelian of
order 2°. Then (4.1) and the fact that § = S§/{¢) is isomorphic to the group
given in Lemma 2.1 with n = 3, imply that 1S 1 E = 0. Also Ci(t) = Cx(tw)
X = Q(Z(E))and Z(E) = F x 2. Moreover %' = F x {q), Co(Q,(%")) =
C,(X) = E{t) char %, and hence Q(E) = E char %.

Set N = Ng(E), N = N/O(N), and C = C4(E). Thus %, n> < N, n* e C,
and Z(E) = F x ? < Z(C). Alsolet% < J e Syl,(N) andset Y = C{¢).
Note that £’ = {u) < Z(N)and X = Q,(Z(E))<a N. Let ON) < # < C
be such that # = Cg(#f). Since Cy(t) = X <« Cy(2), we have U e Syl,(Cy(2)).
The proof of [9, Lemma 10.3] yields:
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LeMMA 9.3. (i) C = % x F where [C,i1] =F, # = Ce(if) is a cyclic
2-group, Z = Q,(#), and X = Q,(C).

(i) U = AL(X) normalizes &, Cy(t) = (), and A1) is dihedral or semi-
dihedral.

(iii) Cy(®) = AL7, X.

From the nature of the remainder of the proof of Lemma 9.1 and in order to
simplify notation, it is clear that, without loss of generality, we may (and shall)
assume that O(N) = 1. Then C = # x F,

and 1% n (EC) = Osince Z(EC) = F x % has order at least 2*, Since X < N, .
we also have:

9.1) EC(x) ~ EC{t> ~ EC{xt)in N.

Since exp (S) = 23, the proof of [9, Lemma 10.4] yields:

LEMMA 9.4. A{t) is dihedral.

Let # = (y). Then I(tEC) = t¥¢ U (¢y)E€. Since U < EC{x, t) and t¢ n

(EC) = 0, we conclude that |[Ny(ECKt)): EC({t> x {n, x))| < 2. More-
over, the proof of [9, Lemma 10.5] yields:

LEMMA 9.5. Ny(EC{t)>) # EC({t> x {n, x).
Set J = Ny(EC{t>). Then J = O,(J){n, x>,

Also 0,(J) acts on X and |0,(J)/Cop,;(X)| < 2. It follows that [0,(J), X] =
1, F< J,and 0,(J) = ¥ Co,y) ). Then #{t> = Cpgc(,(n) is a maximal sub-
group of Co,;), Co,uM, t) = <t, uy, and Cop,(n) is {x)-invariant and
dihedral or semidihedral. Also, as in [9, Section 10], it follows that
Co,y(n, V') = R, is a maximal subgroup of Cy,;)(n) = #,{t>, &, is dihedral
or generalized quaternion, £ is the cyclic maximal subgroup of #,,

REC=Fx (Z %2 and & = (F x (#, * 2)){x, t) € Syl,(J).
Moreover, it also follows that X char &,
Cy(X) = (F x (&, * 2)){t) char &

and I(t(F x (&, * 2)) = tF*** M Ttiseasy to see that 1% N (F x (&, * 2)) =
0. Since X char & and % = Ny(A) € Syl,(Ng(A)), it follows that & € Syl,(G).

Then the last portion of [9, Section 10] applies and the proof of Lemma 9.1 is
complete.
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10. The case of Lemma 6.2(iv)

In this section, we shall prove:
LemMA 10.1.  If ¥ satisfies (iv) of Lemma 6.2, then |0*(G)|, < 2'°.

Thus, throughout this section, we assume that ¥ satisfies (iv) of Lemma 6.2
and that 2'° < |0*(G)|, and we shall proceed to a contradiction.

Asin [9, Section 117, we conclude thatifge ¥~ — X, thenq' = ¢ " 'u = q°u
and that 2 = Cp(¥) max ¥. Clearly u € 2, (¥, n) < Ng(¥") n Ng(2), and
ItV)y=1t" v (tw)’. Set 2 =2V =P +¥. Then W = 21D, 2< U =
W x, ty, Z(U) = u, z),and [P, t] = {u). Also, as in [9, Section 11], there
is an element v € ¥~ — X such that v> = uz and v* € v{u).

Suppose that [v, xt] = 1. Then since v* = vz, v normalizes B = {u, z, x, t).
Then B <1 B{(v) < Cg4(xt) and hence B{v) =~ U. Hence {z) = (B{v)) =
ONB{vY) = {uz), a contradiction. Thus v** = vu.

We shall now describe how the proof of [9, Lemma 11.2] can be adapted to
prove:

Lemma 102. 2 =~ E,.

Proof. Assume that # = (w) where w? = u. Clearly ®' = ™! and
Q.,(2) = X. Suppose that xt inverts #. Then B = (u, z, t, xt) is {wv)-
invariant, B < B{wv) < Cg(xt), (wv)® = z, and [wv, t] = {uz) and we have
a contradiction. Thus [, xt] = 1 and 0* = o~ L.

Set N = Ng(2), C = C4(2), and N = N/O(N)). Thus Z(2) = # x F <
Z(C), (U,n> <N, n°eC, Z@) =P xF=2nC=<N, and X <
Z(CLt)). Let % < T € Syl,(N). Then, as in the proof of [9, Lemma 11.2],
we conclude that C = Cq(7) x F where Cg(#) is cyclic, Z = Q,(Cq(7)), and
F = [C, if]. Moreover, without loss of generality and in order to simplify
notation, it follows that we may assume that O(N) = 1.

Set Z = Cc(n). Then C = # x F, #{xt) is abelian or modular, C{x, t) <
T, [xt, 0} (#)] = 1, and |%| < 2* by (4.3).

Suppose that Z < # and let Z = {(y). If #{xt) is abelian, then |%#| = 23
since xt ~ tin G and ((Z x (z) x <xtD){t)) < Cgx(xt). Now (4.7) yields a
contradiction. So suppose that Z{xt) is modular. Then vy € C,(xt), (vy)* =
v*y?> = uzy? and hence [vy| = |#]. Since (({vy) x <z, xtD){t)) < Cy(xt),
we again obtain a contradiction by (4.7). Thus #Z = Zand C = 2 x F. Also,
asin the proof of [9, Lemma 11.2], we have N = O,(N){n, x>, T = O,(N){x)
and 2{t> = (C2)t)> = (P = ¥)(t> < O,(N). Setting & = O,(N), we also
have Cy(t) = Aand t N 2 = Psince Q,(2) = X < Z(2).

Suppose that & = 2{t>. Then J = % e Syl,(G) as in [9, Lemma 11.2]
and we have a contradiction. Thus %" = 2{t) < Z. LetZ; = N4u(#"). Then
as in [9, Lemma 11.2], it follows that |Z,/(2{t))| = 2, [Z,n] =¥ < Z |,
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Y = P{tyisofindex2in ¥, = Cq4 (1), ¥, is dihedral or semidihedral, #; =
P.YU, Y = {uy, Ry = Cqy (¥)is a maximal subgroup of &, R, is dihedral
or quaternion of order 8, and %, = (%, = ¥){t)>. Suppose that 7€’ n
(#, * ¥). Then, since |#, * ¥'| = 27 and (%, * ¥")’ = {w), it follows that
Cg,+y(1) = (t) x ¥ which contradicts (4.3). Thus 19 N (%, *¥") = 0.
Also, it is easy to see that I(¢(#, » ¥")) = t%'. Since Q,(2) = X< N, we
have 4 =2 C,(¢) and hence ¥ = & and I = (%, * ¥ )Xt, x). Moreover
X =Q,(7), as in [9, Lemma 11.2] and hence X char 7 and C,(X) =
%, char . Assume that J is a maximal subgroup of the 2-subgroup & of G.
Then X <= &, &, <= &, and X =2 Cu(t). Thus 4 =1 Cy(t), we have a contra-
diction and the proof of Lemma 10.2 is complete.

Hence 2 = <{u, ) for some involution w, 2 = (w) x ¥, 2' = {w),
VY@ =X, " = 2t),and U = 2{x,t)>. Let E=Q,(2) = (o) x X =
Es. ThenE = Z(2)andt® n 2 = 0. Since X = Q,(%’) char %, we conclude
that #~ = C,(X) char %. Also, as in [9, Section 11], we have E char #" and
2 char ¥'.

Set N = Ng(#), C = C4(#"), and N = N/O(N). Clearly

{U,n> < N < Ng(2) < No(X) and #nC=X=% nC.

Let % < J € Syl,(N); thus % # J since # char %. Also Ny(4) = %.
Then X € Syl,(C), C = O(N) x X and C = X. Moreover, as in [9, Section
11],wehave N = O,(N)#j, X), 71> = land % < T = O,(N)<{X). Again, for
convenience, we assume that O(N) = 1.

Set Z = 0,(N). Note that N < Ng(X) and hence Cy(t) < Ng(4) = M, so
that Co(¢) = 4, Cx(n, t) = {t, u) and Cyx(n) = {t, w) = ¥. Then we con-
clude that & is transitive on 1(t2), |Z| = 2°, Q,(2) = E is strongly closed in
W with respectto G, E <« Nand N/# = I,. Also we always have |[E, 2x]| #
|[E, 2xt]| and, as in [9, Section 11], we have N/2 = Z, x X,, {t2) =
Coia), V" < [Z, 1], t ¢ [Z,n], T = Z(x), 1T | = 2% and T ¢ Syly(G).

LeEMMA 10.3. E char 9 and E char %.

Proof. Clearly E<a J. Let E; =~ Y <« J. Suppose that Y £ Z. Then
Y n(x2vuxt2) #0

and Y contains an element of order 4, which is impossible. Thus ¥ < Z.
Noting that if r € & — ¥, then |[¢, r]| = 4, it follows that Y < 2 and hence
Y = E and the lemma follows.

Clearly 2 < C4(E) = CyE) char 7.

Suppose that 2 = C,(E) and set J = NgE) and J = J/O(J). Let I <
& € Syl,(J) and suppose that there is an element 1€ & — J such that 7
normalizes 2 and 2{¢). Then, we may assume that 1€ Cy(t) — 7. But X =
Cg(t) @ Cy(t) and hence U = Cgu(t), so that we have a contradiction. Thus
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Cy4(E) = 2. Now 2/E =~ E, and any element of odd order in N,(2) n C4z(E)
must centralize 2. Thus C4(E) = 0()2, J = Ny(2) = N,(2), C5(2) = E,
and J/E o Aut(2). Then J = 0,(J){i, X), 0,(J) = Cy(2/E), and hence
0,(J) acts trivially on X = U'(2). But then |0,(J):3| divides 2% and hence
|&#| = || which contradicts Lemma 10.3.

Thus 2 < C4(E) = Cx(E). Setting & = C4o(C), we have & = Z,{¢)>
andt¢ &, = Cy(E)char I = &, {(x, t).

Also &, = 9[Z,n]< N, |Z,| =25 and 2 = C,,()) < N. Set N =
N/2. Asin [9, Section 11], we conclude that &, is of type L;(4) and <u) <
FI<VZ)<E=ZZ,) If ®Z)=X, then ¥ <[Z,n] < Z,,
[Z,n] < N, and [Z,n] n 2 = ¥ and we obtain a contradiction as above.
Thus E = ®(Z,) = Z(Z,) = E, exp (Z,) = 4, Cq,(tE) = 2/E, 1(t2)) =
t7,1 N 2, = 0, and (Z,{x))/2 = Dg. SetJ = NG(E),J = J/O(J), and let
T < L eSyl,(J). ThenT # FLand U = Cu(t)since Cg(t) = X < Cyl2).

LEmMA 10.4. E char &.

Proof. Let E; = Y <a &. Since 2!! < ||, we have t° n Y = 0. Note
that 4 < |Cy(¢)] and Cyu(t) = U = A<{x). Also, if 1 € x2 U xt2, then there
is an element v € ¥~ — X such that |[v, ]| = 4. Thus Cy(¢) < X = {u, y, z)
and hence [Y, t] < Cy(¥) < X. But 2 is transitive on zX. Hence Y <
9Cy4(t) = % and then Y < 2(¢t> = #". As usual, this implies that Y < 2.
Thus Y = E and Lemma 10.4 follows.

We can now conclude the proof of Lemma 10.1. Clearly Lemma 10.4 implies
that & e SyL,(G). Since &, < C4(E) and I(t%Z,) = t*!, we conclude that
%1 = Cy(FE) and hence &/%, o Aut (E). But Cy o (t%,) = /%, = E,,
so that #/%; =~ Dg. On the other hand, I(t%,) = t** and hence 1%, ~ xt%,
in&. Thus (xZ1) = (/%)) = Z(L|Z 1), |¥] = 21, |Ce(xt)| = |C(t)| =
8, * = wu, and w™ = w. But then I(xZ,) = x%* and t% N (Z{x)) = 0.
Now [12, Lemma 5.38] implies that |0*(G)|, < 2'°. This contradiction com-
pletes the proof of Lemma 10.1.

11. The case of Lemma 6.2(v)

In this section, we conclude the proof of Theorem 2 by proving:

LemMma 11.1. If ¥ satisfies (V) of Lemma 6.2, then |0*(G)|, < 2'°.

As usual, throughout this section, we assume that ¥~ satisfies (v) of Lemma
11.1 and that 2'° < |O*(G)|, and we shall proceed to a contradiction.

Thus ¥ = Z(¥") = {u), ¥ contains subgroups Q,, Q, quaternion of
order 8 such that ¥" = Q, x Q,, ¥ char ¥4 = ¥'(¢), Q] = Q,, and ¥4 is
of type /. Note also that 0,(M) = ¥ 4, M/O,(M) = X,, and Nxg(i)) =
{1, , Xy and hence the proof of [6, VI, Lemma 2.7(iii)] implies that % =
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Y A{x) is of type &f;o. Thus ¥ A(x) = Dg\_ Z,. Also we clearly have
W =VA=9y), [Wn]=[V,n]=7, W)= {4}, and every
element of "4 — ¥  interchanges O, and Q,. Moreover, as in [9, Section 12],
% contains a maximal subgroup £ such that [2, ¥7] = 1, (%, 1) < Ng(P) n
Ng¥), and 2 ¥ = uy. Set 2 =PV =P x¥. Then W = 2{¢),
2<a YU = XKx,ty, Z(U) = {u),and Z(2) = U.

LemMma 112, 2 =~ Z,.

Proof. Assume that # = {u, ) where w?> = 1. Then 2 = (@) x ¥,
I(t2) = tX = t? and % = %K x, ty € Syl,(G). As in [9, Lemma 12.2], we
conclude that 2 char % and Z = Z(92) char %. Set N = Ng(2), C = C4(2),
and N = NJO(N) and let # < J e Syl,(N). Then % # 7, Cy(t) = U since
Co(t) = X< Cy(t), I(tP) = t{uy = t? and hence “ " C =T n C = 2.
Thus C = O(N) x #,C = Z, and N/Z < Aut (2). Asin [9, Lemma 12.2],
it follows that 7/2 = D, | 7| = 2°, Z(T/2) = {x2),and t2 ~ xt2in T /2.
Let J be a maximal subgroup of the 2-subgroup & of G. Since 1(t2) = t? and
24 &, we also have [Cy(t)| = 2°. But Z(&) = <u), U = A{(x> <0 Cy(t),
U' = <{z) <9 Cyu(t), and hence <{t,u,z) < Z(Cy(t)). Thus (4.1) yields a
contradiction and the proof of Lemma 12.2 is complete.

Let 2 = (w) where w? = u. Then I(t2) = t? U (tw)?, 2 char %, and
& char % asin [9, Section 12]. Set N = Ng(2), C = C4(2),and N = N/O(N).
Then X = Cy(t) <« Cy(t), {%,n) < N, and n* € C. Let % < 7 e Syl,(N);
thus % # 7.

Applying the proof of [9, Lemma 12.3], we obtain:

LeMMA 11.3. (i) C = ON)(C n T) where C T is cyclic, CnT < T,
(C  T)t) is dihedral or semidihedral, and ? < (C n T) n Z(C).

@ (CnI2=(CnT)=Y.

(i) N/(CYV) o Z, x Zs.

(iv) Cy(®) = (O(Cy(1)) N C)ALn, x>, O(Cy(t) N C) < O(N), n* € O(N),
and Cx(1) = A<L#, X).

As in [9, Section 12], without loss of generality, we assume that O(N) = 1.
Then C=CnNnT,(Cx¥)Xx,t) =CU < T,and C2 = Cx ¥ < O,(N).
Let C = ¢y) and |C| = 2° for some integer a > 2. Clearly ? = {w) =
Q,(C) and the proof of [9, Lemma 12.4] yields:

LemMMA 114. Cx ¥ char CU = (C x ¥)x, t), 2 char C%, and T # CU.
Assume that Ny((C * ¥)t>) = (C * ¥)(t)> x {n, x)). Then, as in [9,
Lemma 12.5], we conclude that O,(N) = C* ¥, J/0,(N) = Dg, and
I ¢ Syl,(G). Let J be a maximal subgroup of the 2-subgroup & of G and
suppose that Cu(t) # Cy(t). Then C,(t) = U is a maximal subgroup of
Cy(t). Hence U’ = {z) <0 Cy(t). Since Z(¥) = {u), we have {t,u, z) <
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Z(Cy(t)) which contradicts (4.1). Thus C4(¢r) = Cy4(t) = U. But then the
proof of [9, Lemma 12.5] yields:

LeMMA 11.5. () |Ny((C * ¥)tD): ((C = ¥)Kt> x {n, xD))| = 2.
(ii) C¢) is dihedral.

Let Y = Ny((C * ¥){t>). Then
[0,(Y)/((C * ¥ )KtD) = 2 = |Co,y(n)/C<E),

Co,)(n) is dihedral or semidihedral, [0,(Y),n] = ¥ < Y, and there is a
maximal subgroup Z of Co,y(n) such that [%, ¥"] = 1, C max &, Co,y)(n) =
R{t), R is dihedral or generalized quaternion, #Y" = 22 = R+ ¥V, A NV =
{u), and

Y = (Z* 7)) x <, %))

LemMA 11.6. (i) tSn(Z+¥) = 0.

() I(t(R* V) = 1@,

(i) 2% < O,(N).

(iv) O,(N) = Z ¥ or O5(N) = (Z = V).

Proof. Let T = R +¥ and 1€t~ T. Then [9, Lemma 2.12] implies
that |Cr(7)] = 2° and if |Cr(7)] = 2°, then exp (Cr(tr)) = 4. Thus (i) follows
from (4.3). Noting that (ii) is clear and that (iii)~(iv) also hold as in [9, Section
12], the lemma is proved.

LEMMA 11.7. O,(N) = B+« ¥ and T # (R = ¥V )x, t).

Proof. 1f O,(N) # &+ ¥, then I = (Z » ¥){x, t). Thus assume that
T = (B = ¥V )x, t).

Clearly, Z(J) = {u) < O (F') = O}C) since I' = C* (¥ nT’). Also,
as in [9, Lemma 12.6], we have # * ¥~ char 7.

Assume that |%#| > 2*. Then, as in [9, Lemma 12.6], it follows that 7 e
Syl,(G). Hence || > 2!, |C| = 2*, and we obtain a contradiction as in [9,
Lemma 12.6]. Thus || = 23, C = 2, || = 2°, and & * ¥ is extra-special
of order 27.

LetJ = Ng(Z +« ¥)andlet 7 < & € Syl,(J). Thus 7 # & and Z(&) =
{u). Then, it follows that Cy(t) = C,(t) = U. Moreover, the argument at
the end of [9, Lemma 12.6] yields a contradiction and we are done.

As in [9, Section 12], we have J/O,(N) = Dg, tO,(N) ~ xtO,(N), and
t ~xtin I, Z(T|0,(N)) = {(xO,(N)), and x € I'. Also, when |%| = 23.
we obtain a contradiction as in [9, Section 12]. So, let |2| = 2° with a > 4,
Then 2 < O,(N) = R, P = Q,(0*(N)), Co,w)(?) = Cx¥",C = Z(Cx V),
and 2 = Q,(C*¥). ThusC< N,C«x¥ < N,[C, x] = 1, 0,(NXx> < T
and every involution of xO,(N) is conjugate via O,(N) to an involution of %x.
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Also t9 N O,(N) = 0, |Z(#{x))| = 4 by [9, Lemmas 2.2-2.3] and Cacxy(t) =
{u, x». Note that

Z(A{x)) < Ny(4) 0 (BL(x)) = <x) x {w).

Suppose that § € t% N #(x). Thus & € Zx. Assume that Z(%Z{x)) =
{x,u)y. Then #{x) = # x {x) and Z is dihedral. Let u, r,, r, be repre-
sentatives for the conjugacy classes of involutions of #. Then 6 € {xr,, xr,} and
Ej = <x,u,08,2) < Coymyxy(). Since {x,u,z} n % = 0, we have § ~ x6
in G by Lemma 6.1(ii). This is impossible since x5 € #*. Suppose that
Z(AL{x)) = {xw). Then (x> = & * {w, x) and & is generalized quaternion
and Z(¢) is semidihedral. Let w, g, g, be representatives for the conjugacy
classes of elements of order 4 or #. Then § € {xwq,xwq,} and {xw, 6, z) <
Co,inyxy(0)- If x: Q1 = Q,, then Cy(6) = Cy(x) = Eg and hence Co, )¢ 5(0)
is abelian of order 2°. Since this is impossible, x normalizes Q, and Q, and
there is an element B, € Q, such that 2 = u, 7 = By ' and x ~ xB; in Q,{xD.
Clearly <u, z) = {u, B;,>. Also, it is easy to see that §**' = §. Hence
Eis = (0, u, 2, XB1) < Coymyxy(®). Since 1€ N {u, x, zB,} = 0, as above,
we have § ~ dxf8,. However 6xf8, € O,(N) and we again have a contradiction.
Thus ¢ N (0,(N)){xD) = 0.

If 7 e Syl,(G), we obtain a contradiction as in [9, Section 12]. Suppose
that J is a maximal subgroup of the 2-subgroup & of G. Since Z(J) = {u) =
Z(&), we have Cyu(t) = C4(t) = U. But now the argument at the end of
[9, Section 12] yields a contradiction. Thus the proofs of Lemma 11.1 and
Theorem 2 are complete.
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