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1. Introduction and statement of results

All groups considered in this paper are finite.
In current standard terminology, a group L such that L E and L/O(L) is

quasisimple is said to be 2-quasisimple. Also any subnormal 2-quasisimple
subgroup of a group G is called a 2-component of G.

Recently, a great deal of progress has been made on the fundamental problem
of classifying all finite groups G such that O(G) and such that G contains
an involution such that H Co(t) has a 2-component L (cf. [1, Theorem 1],
[2-1, [3], and [13]). These results suggest the importance of investigating such
groups G in which Cu(L/O(L)) has 2-rank 1. Of particular interest is the case
where L is of dihedral type.

In [9], R. Solomon and the author obtained some results on groups G with
O(G) and containing an involution G Z(G) such that H Ca(t)
contains a 2-component L such that a Sylow 2-subgroup of L is dihedral,
m2(CH(L/O(L)))- and such that Nu(L)/(LCu(L/O(L))) is cyclic. In this
paper, the methods of [9] are applied to the case in which NH(L)/(LCu(L/O(L)))
is not cyclic.
The first main result of this paper is the following.

THEOREM 1. Let G be a finite group with O(G) 1. Suppose the involution
G- Z(G) is such that H Ca(t) contains a 2-component L such that a

Sylow 2-subgroup oJ’L is dihedral, m2(Cu(L/O(L)))= and such that
Nn(L)/(LCu(L/O(L))) is not cyclic. Let S Syl2(Na(L)) be such that S and
let D S L. Then thefollowing conditions hold:

(i) L/O(L) is isomorphic to PSL(2, q2)for some oddprimepower q, Na(L)
O(Na(L))H and S Sy/2(H).

(ii) O2(G)= F(G)= Ca(E(G))= land F*(G)- E(G).
(iii) If F*(G) is not simple, then F*(G) R x R where R is simple and

L <rrtlrR> R.
(iv) IfF*(G) is simple and r2(F*(G)) < 4, then the possibilitiesfor F*(G) and

G can be obtainedfrom [6, Main Theorem].
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(v) If F*(G) is simple and r2(F*(G))> 4, then (t) Syl2(Ca(L/O(L))),
H((R)) L,

C(L/O(L))) O(Na(L))(t), Cn(L/O(L)) O(H) x

H/(O(H) x (t)) is isomorphic to a subgroup of Aut (L/O(L)) containing
Inn (L/O(L)) properly with ((O(H) x (t))L)/(O(H) x (t)) corresponding to
Inn (L/O(L)) and such that H/((O(H) x (t))L) is not cyclic. Also S ((t) x
D) contains an involution that acts as a "fieM automorphism" of order 2 on
L/O(L).

The second main result of this paper treats the open case of Theorem l(v) in
which IDI is minimal"

THEOREM 2. Let G, t, H, L, S, and D be as in Theorem 1. Assume that
F*(G) is simple, r2(F*(G)) > 4, and [D[ 2. Then L - PSL(2, 9) and G is
isomorphic to HS (the Higman-Sims sporadic simple group).

Before presenting a corollary of our results and its proof, we give some
definitions.
A subgroup K of G is tightly embedded in G if [KI is even and K intersects its

distinct conjugates in subgroups of odd order. A standard subgroup of G is a
quasisimple subgroup A of G such that K C,(A) is tightly embedded in
G, N(A) N(K), and A commutes with none of its conjugates. (The im-
porta’nce of these concepts for the classification of simple groups is described in
[1, Section 1].)

COROLLARY. Let G be a finite group with O(G) and assume that A is a
standard subgroup ofG such that ]Z(A)] is odd and a Sylow 2-subgroup ofA is of
type Ds. Set X <A>. Then exactly one of thefollowing holds:

(1) X A and Z(A) 1.
(2) X F*(G) - A x A and Z(A) 1.
(3) A - , and X - 1,+ for n 6 or 7.
(4) X F*(G) is simple, r2(X) < 4, and the possibilities for X can be

determinedfrom [6, Main Theorem].
(5) A is isomorphic to the 3-foM cover of s7, X G’, and G - Aut (He).
(6) A ’6 - PSL(2, 9), X G’, and G is isomorphic to Aut (Sp(4, 4)),

Aut (SL(5, 2)), or Aut (PSU(5, 2)).
(7) A a’6 PSL(2, 9)andX G HS.

Proof Clearly [7, Theorem 1] implies that A/Z(A) is isomorphic to a’7 or
PSL(2, r) for some odd prime power r > 3. Assume that (1) does not hold and
set K C(A). If mz(K) > 2, then [3, Theorem] yields (3) since ]A]z 2.
Suppose then that m2(K) and let e I(K). Then H C(t) <_ Na(K)
N(A) and hence A <a H. Thus H G, Z(G), and m2(Cn(A/O(A))) 1.
Applying [9, Theorem 1] and Theorem 1 we conclude that F*(G) E(G) and
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O2(G) 1. Also, if F*(G) is not simple, then F*(G) R x R where R is
simple and R - A (rrt[ r R). Clearly X F*(G) in this case and (2)
holds in this case. Thus we may assume that F*(G) is simple. If r2(F*(G)) < 4,
then clearly (4) holds. Suppose then that r2(F*(G)) > 4. If A/Z(A) 7,
then (5) holds by [9, Corollary]. Finally suppose that A/Z(A) PSL(2, r) for
some odd prime power r > 3. Then Theorem 2 and [9, Corollary] imply that
(6) or (7) hold and we are done.

The outline of this paper is as follows.
Section 2 consists of some 2-group lemmas which are utilized at various points

in the later sections. In Section 3, we prove Theorem 1. In the remainder of the
paper (Sections 4-11), we prove Theorem 2.
Our notation is fairly standard and tends to follow the notation of 15] and

[6]. In particular, if n is a positive integer, then a’, and E, respectively denote
the alternating and symmetric groups of degree n. Moreover, for any finite
group J and any 2-power n, g,(J) denotes the set of elementary abelian sub-
groups of J of order n and E, denotes an elementary abelian subgroup of order
n. Also for any finite group J, m2(J) denotes the 2-rank of J, r2(J) denotes the
sectional 2-rank of J, and I(J) denotes the set of involutions of J.

2. Preliminary results

In this section, we present two auxiliary lemmas. It is straightforward to
verify the first of these.

LEMMA 2.1. Let S (x, y, llyl I1 2, [y, z] 1, Ixl 2" > 4,
x x- and x xt where x2"-’). Then the following conditions hoM:

(i) z(s) (t), f(S) s, and ISI 2+2.
(ii) S’= t3"(S) O(S) (x2) and exp (S) 2".
(iii) S Z(S) containsfour S-conjuyacy classes of involutions represented by

y, yx, z, and yz where Cs(y) (y, t, z) - Ea,

Cs(YX) (t, yx, zx2"-2) Z4 x Z2,

Cs(z) (x2, y) x (z) is a maximal subyroup of S and Cs(yz) (t, y, z) -E8.
(iv) (t, z) is the unique normal subyroup of d’4(S) and SCNa(S) O.
(v) All elements of8(S) are conjuyate in S to (t, y, z), (A A 6s(S))

(X2, y) x (z), and m2(S) 3.
(vi) S has seven maximal subgroups: one of type Z2 x D2. one of type

Z4 * D2. two of type D2./ , two of type SD2/, and one of type Mod (2"+ 1).

The final result of this section is"

LEMMA 2.2. Let S be a 2-group such that fl(S) S. Assume that z I(Z(S))
is such that S/(z) is dihedral of order 2" for some integer n > 2. Then
either S is dihedral or z O(S).
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Proof Assume that z (S). Then SlY(S) - E, and S is nonabelian. If
(S) S’, then the result follows from 1-5, Theorem 5.4.5]. Assume that

S’ < (S). Since $’ S-7= ($), we conclude that (S) S’ x (z).
Setting SIS’, we conclude that - E8 since fl() . Then z (S)
and we have a contradiction. This concludes the proof of the lemma.

3. The proof of Theorem 1

In this section, we present our proof of Theorem 1. Thus, throughout this
section, we assume that G, t, H Ca(t), L, S and D S c L are as in the
hypotheses of Theorem and we commence our proof of Theorem 1.

Since Nn(L)/(LCn(L/O(L))) is not cyclic, it follows from [7, Theorem 1-[ that

L/O(L) - PSL(2, q2)

for some odd prime power q. Moreover, [9, Proposition 3.1] and [6, Main
Theorem] imply that conditions (i)-(iv) of Theorem 1 hold. Thus we assume
that F*(G) is simple and that r2(F*(G)) > 4 for the remainder of this section.

Let O Cn(L/O(L)) S. Then Q Syl2(Cn(L/O(L))) and O is cyclic
or generalized quaternion. But CG(L/O(L)) O(NG(L))Cn(L/O(L))and
Ca(L/O(L)) is tightly embedded in G by i-9, Proposition 3.10)-I. Thus Q
Syl2(Ca(L/O(L))).
Suppose that Q is generalized quaternion. Then [2, Theorem] implies that

F*(G) - PSL(4, q) with q (mod 8) or F*(G) - PSU(4, q) with q 7
(mod 8) and our result follows. Thus we may assume that Q is cyclic and
<t > fl(Q).
Note that 8 < IDI, Q< S, D< S, and QcD [Q,D-I 1. Set

S/Q and note that Aut (L/O(L)). Since r2 (Aut (L/O(L))) 3, it follows
that r2(S) _< 4 and hence S Syl2(G).

Since S/D is not cyclic, there is a unique subgroup U of S such that Q x D <
U< S and such that U/(Q x D)= fl(S/(Q x D)). Then U S and
U/(Q x D) E,. Also there is a maximal subgroup T of U containing Q x D
such that T < S and is dihedral of order 2ID[. Also there is a subgroup W
of S containing Q such that W is cyclic W c 1, W acts faithfully like a
group of "field automorphisms" on L/O(L)), TW, and
Let w W be such that (V) fl(W), let Z(D) (z), and let V W
Cs(O). Noting that Cs(h) Cs(D) (, ), we have Cs(h)= V x
where V (Q, w) and w2 Q.
On the other hand, Cr() 3, Z() (), and (t, z) Z(T) < Q x

(z). Since S Syl2(G), (t) is not characteristic in Z(S). Thus Z(S) (t,
and [m(s)]2 21SI. Let S < S where 6a Syl2(G). Then INse(S)/SI 2
and mse(S) Syl2(N(S)). Let z N(S) S.



CLASSIFYING FINITE GROUPS, II 625

LEMMA 3.1.
conditions hoM:

Suppose that (t) char Cs(D) V x (z). Then the following

(i)
(ii)
(iii)
(iv)
(v)

S UandW V;
Z(Nee(S)) (tz)
(z, t) is the unique normal element of g4(Nee(S));
oq’ Nee(S);
I1 28,

Proof Assuming that (t) char Cs(D), it follows that D D’# D,
D1< S, and z’ t. Hence Z(D1) (t), [D, 31] DcD 1, D x

Dl < Nee(S) and D1 x (z) < Cs(D) V x (z). Thus, as Q is a cyclic
maximal subgroup of V, we conclude that V is dihedral or semidihedral and
Q > 4. Also fl(W) and Q < W and hence (i) holds. Clearly (ii) holds
also since Z(S) (t, z). Next, let Y 64(Nee(S)) be such that Y< Nee(S).
Hence tZ Y. Suppose that Y S and let y Y S. Choosing d D such
that Id[ 4 and noting that Dr D1, it follows that [[d, y][ 4 which is
impossible. Thus Y _< S. Suppose that Y. Then Y < S and Y E4. Then
Lemma 2.1 implies that (,, )and hence Y < V x (z). But Y (z)
and Y c V since Y and V is dihedral or semidihedral. As Y E4,

this is impossible. Hence Y and (iii)-(iv) follow. Since r2(,.’) > 4, [11,
Four Generator Theorem] implies that contains a normal subgroup Y
as(if’). Then Cr(t)- S and Ifr(t)l > 4. Hence (t, z) < Y and Y < V x
(z).. Since E Y c V< V, it follows that V D8, IDll IDI 8 and
(v) holds.
We can now conclude the proof of Theorem 1. If (t) char Cs(D) V x

(z), then IGI2 28 and [4, Theorem] implies that r2(F*(G)) _< 4. Thus (t)
is not characteristic in Cs(D). Hence V - E, and Q (t). Then we may
assume that w I(W)" hence (v) of Theorem holds and we are done.

4. Beginning the proof of Theorem 2

We now commence our proof of Theorem 2.
Let G, t, H, L, S, and D be as in Theorem 2 and assume that F*(G) is,simple,

that rz(F*(G)) > 4, and that IDI 23.
Observe that if IF*(G)I2 _< 21, then [4] determines the structure of F*(G)

and the conclusion of Theorem 2 follows. Consequently we may assume that
IF*(G)I2 > 2l and we shall obtain a contradiction by showing that IO2(G)12 <
2lo"

Since D D8, there is an involution z D such that D’ Z(D) (z).
Also, by Theorem (v), there is an involution u S ((t) x D) that acts as a
"field automorphism" on L/O(L). Thus [u, D] and U (t, u) x D is a
maximal subgroup of S since ISl 2. Moreover S/((t) x D) - E4 and



626 MORTON E. HARRIS

S/(t) is isomorphic to the group given in Lemma 2.1 with n 3. Hence
we have:

(4.1) Z(S) <t, z > and there is an element 6 S U such that 62 e (t >,
/3<g> Da6, and u {uz, uzt }.

(4.2) There is an involution x D x <u> such that u x xz in L<u>
and there is an involution y e D such that D <y, xu>, [yxu[ [yx[ 4,
z y yz xu xuz in L, and uz yu yuz in L(u>.

(4.3) (S)= <yxu> or (S)= <t> x <yxu>, r3((S))= <z>, and
exp (S) 8.

(4.4) r2(g) 3, r2(S) 4, and S Syl2(G).

Also by replacing y by yz, if necessary, it follows that we may assume"

(4.5) 6 y xu.

Let A (t, u, z, y) and B (t, u, z, x). Then we also have:

(4.6) t16(S) {A, B}, Ns(A) Ns(B) U, Cs(A) A, and 6: A B.

Also Lemma 2.1 (iv) applied to S!(t) yields:

(4.7) X (t, u, z) is the unique normal element of $’s(S) and Cs(X) U.

Since L/O(L) - PSL(2, q2) for some odd prime power q and CL/otr)(u) -PGL(2, q), we conclude:

(4.8) There is a 3-element p Cn(u) c N,(A) such that x inverts p, Ca(p)
<t, u>, and [A, p] <z, y>.

Moreover setting F/ H/O(H) we have:

(4.9) Nn(g) (i, ) (y, ,/5, 2) with

Hence:

(4.10) Co(A) O(Co(A)) A and p3 O(C(A)).

Set/ B/<t >. Then L < /, L L/O(L) E, and /L is abelian. Thus
E _< oz(), IOZ()/l is odd, and/3 e Syl2(O2(FI)). Then Co2ff)() has a
normal 2-complement by [7, Theorem 1] and we have:

(4.11) C(t, z) O(Co(t, z))S.

Let z be an element in S U. Thus ,2 <t > X D. If’/72 <t >, then Lemma
2.1(iii) implies that (> Syl2(Co2)(z)). If z2 <t>, then Lemma 2.1(ii)
implies that fl(<z>) <z> or fl(<z>) <tz>. Thus we have:

(4.12) If z S <t>, then C(t, ) has a normal 2-complement if and only
if z is not conjugate in H to u or tu.
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Also, as is well known, we have"

(4.13) Cn() </, fi> x 7 for some subgroup 7 of with O2’(7)
Cr() - PGL(2, q), Cn()’ ’ Cr()’, and with (y, , iT) < ’.

(4.14) (y, z) Syl2(O2(Co(t, u))).

Let S < 6e Syl(G). Then S =/= 6e by (4.4) and S < Nee(S). Since Z(S)
(t, z) < Nee(S) and (z) - Nee(S) by (4.3), we have"

(4.15) IN/S)/SI-- 2, Z(Nee(S))= (z) Z(6a), tNee(s) {t, tz}, and
t , zin G.

Also (4.3) and (4.11) imply that 02(N(S)) < C(S) Cn(S). Also (t, z) e
SyI2(C(S)) and hence"

(4.16) N(S) O(N(S))Nee(S).

Suppose that Y <a S# and Y oa2(6e). Then ICv(t)l _> 23 and Cr(t)< S.
Thus Cr(t) (t, u, z) by (4.7). Hence Y, which is impossible. Thus"

(4.17) SCNs(6e)=O.

Since r2(6a) > 4, rll, Four Generator Theorem] implies that there is an
E e oa(ff’) such that E < 6e. Clearly z E. Suppose that c E 0. Then
I1 -< 28, which is false. Also, if I-t, E] 1, then E < S and hence E
(t, u; z ) which is impossible. Thus"

(4.18) E= 0, zeE, andE S Cee(t).

Setting E1 Cg(t), we have zE1 E4 and tE < S. Thus E x
(t) (t, u, z) and E (z, u) or E (z, tu). Replacing u by ut and x by
xt, if necessary, in the above, we obtain"

(4.19) C(t) (z, u), E < Nee(S) c Nee(A) c Nee(B), {t, tz}, and
Nee(S) ES.

Let M N(A) and M/O(M). Then C(M) O(M) x A, ( U, p) <
M, and p3e O(M). Also Nn(M)= (O(M)x A)(p,x) and Nn(M)=
-Cs(t) Cs(i)= fi.(#5, 2). Let F (y, z). Then

A FtFuFc.)tuF, tc(FwuF) 0, and tF tA.
Since M N(A) controls G-fusion among the elements of c A by (4.6),

we have"

(4.20) Either M A tFand I/,1 24 or tM=
tuF and IM/AI 48.

cA tFw
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This concludes our investigation of the consequences of the hypotheses of
Theorem 2.

5. The case IM/AI 24

Throughout this section, we will assume that tM= tc A tF and
IM/A] 24 and we shall prove that the conclusion of Theorem 2 holds in this
case.

Since Ca(iS) (i, ) -# , we conclude that//. X4,- O2()(, )
and IO2()1 26 Note that (tutu) F. M. Let U= Ns(A) < qZ
Syl2(M). Then Iel 27 and o O2()(). Let W O2,, 2(M)and V
O(M)[W, p]. Clearly O(M) x F V.

LEMMA 5.1. W/F -- Ea6 and V E6 or V Z, x Z,.

Proof. Clearly W/FI 24 and Cw/r() A/F - E4. Suppose that
W/F Zz x Qs. Then ICv()l- 2 and Cv() < Cw() (i, if). Letting
7tV be such that [?::/F[ 4 and be such that Cv() (). Then
2and Z() (,y,) sinceF<a and/5 acts on V. But () <
(i, fi) and W (, fi); thus Z(W) (, y, ) and Z() since o
W (2). Hence {, i}. Since (t, F) - M, we conclude that ./(,
GL(2, 3). Suppose that E16 X< q/. Then

Hence . and A char q/. This implies that q/ SyI2(G). As Iqzl 27, this
is impossible. Applying I-9, Lemma 2.1], the result follows.

LEMMA 5.2. If -- Z4 x Z,, then IGI2 < 29.

Proof. Assume that V Z x Z and note that V <a . and F (y, z)
QI(V). Also (i, ) x (/7, ) acts on V. Thus inverts V and there is an element
ul (t, u) (t) such that i-_, V-I 1. Hence

(> x V((/> x (p,>) and o (> x (V(i,>)
where V(i, 2) is of type M2. Let W" q/c W, q/" q/c V, and E=
(ul) x r. Then q#r<a q/, q/’<a , E C(q/’)<a q/, and
Also let X (ul, F) QI(E), so that X< ay. Since

m o(m)mM(q4) O(M)q(NM(W’) c CM(t)),
it follows that there is a 3-element r/ Nu(W’) c C(t) inverted by x such that
Y/ fi and F/3 C(W’). Set L N(W’) and E L/O(L) and observe that
C(#’) O(L) x X where X Z() < L. Since Jo (q4) E <a L, we also
have F- L. Moreover E/’X Aut (W’) implies that ]El2,- 3, E
O2(E)(q, 2), and F < Z(02, 2(L)). Clearly Cr(r/) (t, u) and (, r/) < L.
Let q/ < q" SyI2(L) and observe that X char q/ implies that C,(X)=

char q/. Thus q/ < ’- and O2(E)(ff).
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Let vl f/" be such that v2 y and set/)2 /)" Then v22 yz and C,.(x)
(vlv2). Also c E 0, E tF, and

I(tE) E u (tul)E w (tvl) w (tulvl) (tv2)r w (tulv2) w (tvlv2)
w (tulvlvz).

This implies that E/ X;4 and hence ]Y-] 29.
Suppose that O(L) x f/" < Cz(X) O2,,2(L). Then (ul) <_ Z(L). Setting

E/(I), we have Co2(i)(fl) () and Co2()() (Co2tr.)(i)) , Es
since c(t,ul) {t}. Also Z4 x Z4 /----- and O2() 27 By [9,
Lemmas 2.7 and 2.8] there is a subgroup J of L such that O(L)E < J < L,
J < O2,,2(L), t J, ]Y[ 27, Cj(/)= (), O2(f,)= Y(i), and such that
J Za x Za or. is of type L3(4). Let Y-J. Then of< Y- and
Y- o(x,t). Letting x x ifu u and x xt if ul ut, we have
xaul xu and txl , txlul in G. But Cy()211) C()2a) has order 2a

in either case by [9, Lemma 2.9]. As (Cs(LI)) Cy(a), we conclude that
IC()l 2*. But C(tx)= C(txa)(t, x)and hence ICr(tx)] 26. Since
(ul, z) <_ Z(Ca-(tx)), we obtain a contradiction from (4.1). Thus O(L) x
fir Cz(X), Cr(X)= f/’, and 4 Lflr GL(3, 2).
Assume that Y ga(Y-), Y < Y-, and Y -# X. Since Z(Y-) (z), we have

z Y. Suppose that Y (xE xtE) # O. Then [Y, "K] contains an element
of order 4 which is impossible. Thus c (xE w xtE) 0. Also c Y 0
since [Y-[ 29. Note also that U Ca-(t) since X <a Y-. Thus Cr(t) < U
and ]Cr(t)[ > 4. Since I(U) A wB, we must have Cr(t) < A (t,X).
Thus Y < Na-(A) ql E(x, t) and Y <_ E(t). Since Y E, thereisan
involution z(tulF) Y. Thus [z,E] F< Y and tul Y. Also .
02,, 2(L) c - is transitive on

{tX, tvlX, tv2X, tvlv2X}

and hence Ca(tul)= Cr(tul) A. Thus I(tul)l 24 which is impossible.
Hence X char Y-, Cr(X) fg" char Y-, Y- e Syl2(G), and the lemma follows.

LEMMA 5.3. If -- E16 then IGI2 < 21.

Proofi Assume that V - Ea6. Since V <a , F Cv(i, ) Cv(i), and
(t, if) acts on Cv() - E4, it follows that there is an involution ul s (t, u)
(t) such that [a,V] 1. Set "K" V c and E= (ua) x f/- E32.
Then 32(//) {E}, q/ E(x, t), and, as in Lemma 5.2, there is a 3-element
tl Nu(E)c Ct(t) inverted by x such that f/ fi and g/3 C(E). Also
I(tE) tFw tuaF, Ce(t) ql A(x), and c tE= tF= t Let L
N(E), L/O(L), and let ok’ < Y- e Syl2(L). Then q/ 4: Y- since E char q/

and 10//1 27 and - Syl2(G) by (4.17). Since Crm(t) UE/E, it follows that
C(E) O(L) x E, LIE c_} Aut (E) GL(5, 2) and, since UE/E - E4, that
Y-]E is dihedral or semidihedral of order at most 16. Also ]Y’/EI > 8 and
ICE(x)] [C(xt)] 8. Let Y- < if’ e SyI2(G). Then Y- # 5 and there is
an element z e Ns(Y-)- Y- such that z2e Y-. Letting E1 E’, we have
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E :/: E1 <a 07-. Hence Z(-/E) < (EIE)/E and IE c Etl 8. Thus J’/E
E8

Note that I(xE) x u (xux) and I(xtE) (xt) (xtul). Also x ,
xu in G and xt xtu in G. Ifu u, set xx x and if ul ut, set

xx xt. Thenxaul xu x in G, Z(-/E) (xiE) andt txtu
in -. Since (EaE)/E (E(xl, t))/E, it follows that we may assume that
z Cse(t) also. Note that U C:r(t), z2 U, z normalizes U (t, ut) x D
and (U, z) SyI2(H). Thus A B, z normalizes (t, u, z) Z(U) and
Z((U, z)) (t, z).
LetEs Y<a if’. Thentc Y 0andZ(6a) (z) since Z(( U, z))

(t,z). Hence E4 Cr(t) < A c B (t,u,z) and Cy(t) (z,u) or
(z, tu). Thus Y < Ne(A) ql E(x, t). If Y g E, then Y xtE # 0
and hence [E, xx] C(xx) < Y. Since (Cr(t), C(xl)) < Y c E and
I(Cv(t), C(xl))l 23, it follows that Y < E. Thus Y E c Ea CE(xx)
(ul, z, v) where C(x) (z, v) for some v q:#. Hence Y is unique, EEl <
Ce(Y) <a if’ and x Ex. Since 7- (EEa)(t), C(Y) EEl, I(" (EEt))
I(tE txxE), and Cse(t) (U, z), it follows that N(’) (, z). Hence
Cse(Y) EEt < 6a.
On the other hand, E/E is of type D8, Cr4(l) (() x (l, 2))E)/E, and

iJ , 2E in E. Hence 02(E/E) 1.
Suppose that O(E/E) 1. Since E/E GL(5, 2), it follows that (E/E)’
s and E/E Xs.

Since (C(E), oq-, 7) < C.(ua), it follows that (ul) < Z(L). Let K be the
subgroup of index 2 in L such that C(E) O(L) x E < K. ThenK/E ,
oq- c K EEl, and there is a 3-element K such that acts transitively on
((ExE)/E). Noting that Y Z(EEI), it follows that if ex E E, then
C.(et) Y. Let R 632(EE) with R - E. Then Y R E and hence
xl R and R < Cg(x) Ex. Thus R Ex and o32(EEI) (E, E}. But
Y- Nse(E) has order 2a and hence 131 29 and we are done in this case.
Hence we may assume that O(E/E) # 1.

Since LIE GL(5, 2), we conclude that O(E/E) Z3 x Z3 and E/E -Ea-’L Z2. Let P Syla(L). Then, clearly Cz(P) (u) < L and [P, E]
<aL.
Now f(-) - and 5/E - Ds.
Assume that ux"/: tI)(-/-U). Then d-/r Dx6 by Lemma 2.2. But

E(x) < oq- and E4 (E(xa))/:; this contradiction shows that ux (’).
Since (ul) < Z(L), [10, I, 17.4] implies that L contains a normal subgroup L1
such that L (u) x Lx. Hence O2(L) (O(L)$:)P < LI where O2(Ea)
-/7 and E,a/"/ Za"L Z2. Then [6, II, Lemma 2.2(vii)] implies that L1 is of
type ao. Since " (ul) x (7- c Lx), it follows that 16a2(")1 4. Thus
we may assume that

32(:’) (E, El, E2, E}.

Also I(E, Ex, E2, E3)I 27 IEEI. Hence d’a2(-) fa2(EEt). Since
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N(E) 7", I’l 2s, and EEl < 6e, we conclude that Il < 21 and we
have proved Lemma 5.3. Then I-4, Theorem] implies"

LEMMA 5.4. If IM/AI 24, then the conclusion of Theorem 2 holds.

6. The case IM/AI 48

As a result of Lemma 5.4 and (4.20), it suffices to assume that I/1 48
and M c A tF w tuF throughout the remainder of the paper.
Thus IMI2 28,/ O2(])(P, ), 102()1 27, and Ca(p) . Set

X (u, y, z) (u, F), so that M tX. Clearly Ca(/3)___ implies that
03(M/A) 1. Since /g Aut (.) - GL(4, 2) and GL(4, 2) has no sub-
group isomorphic to GL(2, 3), we also have /g Z2 x E4. Since M

c A tX, we conclude from (4.1) that u uz and X < M.
Let U Ns(A) < ql SyI2(M), W O2,,2(M), and V O(M)[W, p].

Also let /" W and /" q/c V. Clearly M= W(p,x), V< M,
Iq/I 28, q/ (x), / max q/, Cr(t) A, r tX. //’/A - Es and
qg’/A acts regularly on tX. Clearly M O(M)Nu() O(M)//’(NM() c
H). Hence there is a 3-element r/ Nu(t) c H such that r/3 O(M), rl ,
t/x r/-1, [A, r/] F, Ca(r/) (t, u), and q/" [q/’, r/].

Set o C(r/). Then clearly C(t) (t, u), q/ - D8, {t, tu}, q’
Z() (u), (ql, r/) < NG(A), and A < N(U). Also F < < q/"

,lq, r/3 CG(q/’), /A/A - E4, and (q/, r/) < N(q/’). Moreover the argu-
ments.in [9, Section 7-1 yield"

LEMMA 6.1. (i) rF, ] 1.
(ii) The orbits of on r t c A tX are (u), tz (u), ty(u), and

tyz(u) "I/A/A acts regularly on these four orbits and O2(Z(M))
(iii) ’g" (q) 31(//) X.
(iv) F= <y,z) < ’/’A _< X.
(v) ([o, xl, [, xt]) (u), and x or xt centralizes

Since r tX and Ca(t) A, it follows that no element of tX is a square
in A and hence the proof of [9, Lemma 7.4] yields"

LEMMA 6.2. "/" satisfies one of the following five conditions:

(i) q/" El6 and Cr(t) F.
(ii) q/ Z4 x Z4, F fl(t), and inverts

(iii) There is a (r/, x) invariant subgroup of q/ such that q/" F x .,- - Q8, .’ (u), and (((r/, X>)/<r/3)) ’ GL(2, 3).
(iv) q/" <u> < X Z("/) ("//’) fl(r), exp

Z4 x Z4, q/’/F - Os, inverts q//q’, and ((q/’<r/, x>)/(<r/3) x F)) GL(2, 3).
Also if q/" Z(q/’), then I1 4, C() <, z(0), and 2 <u> F.
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(v) /" Z() (u), / contains subgroups Q1 and Q2 with Q1 and Q2
quaternion oforder 8 such that /" Q1 * Q2, char //’A /(t), Q Q2,
and A is of type 8.
Our analysis of each of these five possibilities of Lemma 7.4 is presented in

one of the remaining five sections of the paper. These investigations are similar
to those of [-9, Sections 8-12].

7. The case of Lemma 6.2(i)

In this section, we shall prove"

LEMMA 7.1. If satisfies (i) ofLemma 6.2, then IO2(G)I2 2x.
Thus, throughout this section, we assume that / - E16 C(t) F, and

that 21 < IO2(G)[2 and we shall proceed to a contradiction.
As in I-9, Section 8], we have c / 1, C() max , u e , and

(q/, q,) _< N6(//’) c N6().

Set . x /’. Then #/" =.(t), .< q/ =.(x,t), Z(q/) (u,z),
[, t] (u), and IC(x)l IC(xt)l 4.

LEMMA 7.2. Z,.

Proof Assume that (u, co) where (02 1. Then 64(ff’) (,) and
I(t.) ta= tX. If [, xt] 1, then C(xt)= ( C(xt))(x, t) has
order 26 and C(xt)< C(xt), which is impossible. Thus coxt cou
and cox co. Let N No(.) and N N/O(N) and let q/ < -e Syl2(N).
Then q/ 4: -, c 0, and X Ca(t) < Cu(t), so that Cu(t) < No(A)
M and Cx(t) U. As I(t.) and (q/, r/) < N, it follows that Co(.)
O(U) .@, C() , C(i) .(, ), and N/ Aut (2) GL(6,2).
Also we have C-/() (ff, ) and hence /. is dihedral or semidihedral
with 8 < I-/l < 16. Thus 29 <_ [-[ <_ 2l and 2 is not characteristic in -.
Also t. xt. in "/., xt in , and Z(-/.) (x.). Since ICa(x)] 24,
it follows that -’/ - Ds and I-I 29. Let - < 5e Syl2(G). Then - - 5e
and we may choose an element N(-) such that T2 -. Set -1
.’. Then -1 < -, Ca(x) (u, co, z, v) -1 c . for some v # such that
v’ vz, C(x) (z, v), and -1 (u, co, z, v, x, e) for some involution e.
Clearly " 2 21 and we may assume that e C(t) where U C-(t) is a
maximal subgroup of C(z). Then

"c" A +-* B, "c" (u, z, y) -* (u, z, x),

N(’-) "C(t), normalizes (u, z), I-z, ] 1, and u’= uz. Hence
z(9) (z).

Let Y< 5with Yegs(5). Thus c Y 0, zeY, andE4 Cv(t) <
A c B (t, u, z). Hence Cv(t) (u, z) and Y <_ N,(A) qJ (x, t).
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This implies that Y <.(x). IfY 2, then[2,x] (z,v) _< Yand Y
(u, z, v). Thus Y < ., Y < c -1 (o, u, z, v) and hence

Y {(u, z, o), (u, z, v), (u, z, or)} and --1 -< C(Y)
But u uz implies that Cnr)(Y) --1. However C(t) < N(-) and
I(t..l) " since " (2L1)(t). This yields C(Y)

Suppose that all involutions j. of 1/. are such that Icu.)I 24 and let
E 64(..1) with E - .. Then there is an element w E c ql. for some
q1-1 --. Then Ca(w) (u, oo, z,v) and hence Ec. (u, o, z, v).
Since I(qa) ql(u, o, z, v), it follows that ql E. But then E -1 and
16(..) {., .a}. This implies that 15 .1o and we have a contradiction.
It follows that some involution j. ofx/ is such that IC(j-)l -> 2.

Let K Nn(). Then (Co(.), rl, ) < K, Nn() Nu() and K/.
Aut (2). Since Z(/) (2) and 2 O2(/) O2()/., it follows that
02(K/) 1. Thus K’/ has a normal 2-complement. But P - , Oz, z,()
acts completely reducibly on . and [., f/] , so that - . Let M/.
be a minimal normal subgroup of K/ with//. <_ O(K/.) and assume that
IM/KI {5, 7}. Then [2,/] _< . and hence acts on C() (, ). Since
this implies that [, ] 1, we have F(O(K/)) is an elementary abelian
3-group. Thus O(K/) is an elementary abelian 3-group.
On the other hand, (, 1, f/) <- Ce()

___ , O2(C()) - and

Ce()/ Aut ()- GL(4, 2).

Moreover x SyI2(Cg()) and (21)’ (21) < q/"; hence
1. Then [10, IXI, 4.4] and [10, I, 17.4] imply that C() E where

E. Cg(V). Since O2(Cg()) < E, we have Ec. O2(E). Let L
denote the inverse image of E in C/() and note that Ce() is <i>-invariant,

/ < C()<i ), P < Ce(P)(i >, and Cs() c (C()</))

Thus 02(Ce(P)(i)) and (Ce(P)(i))/o Aut () GL(4, 2). Then [6,
II, Lemma 2.2(vii)] implies that -/ / is of type tlo. Recall that -(-.l)(t), --1 x ((-01) c L), and let r e 64(’). Then Yg/ <_
(-1)/ and hence <_ Y. On the other hand, ./ .1/ E16 and
(.-1)/ max -/, so that (..1)/ Ds D8 and hence (--1)
D8 x Ds. This implies that 16a(’)[ 16(..1)1 4 and 1[ _< 21. Thus
151 21 , 5 is transitive on e6(..1), and 15/(.1)1 8. But Nz(") max
and -- (..l)(t), so that 5/(..1) D8 and N(")/(..I) - E. Also, as. Nz(’-), it follows that 5/..1 acts faithfully on d6(..1). Let 91 denote
the inverse image of Z(5/.1)) in 5 and observe that a c (--1) 0, S,
and N(-) -S with - c S --1. Moreover, by [8, Corollary 2.1.2],
it follows that 5 contains an extremal G-conjugate a of in S since
D8. Now

--1 - E4 x D8 x D8
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and hence Z(-.I) . c 1 # x (z, v). Also there exist elements "2, ’3
of 64(1) such that 23 1, 2 3 Z(I), 64(1)
(, 1, 2, 3},

Thus Caa,() < Z(...I). However uNr) {u, uz) and hence o’u uz.
Since 15e/(.%)1 8 and ICs()l 26, it follows that Es Caa(oO
As ct Caa,(), we obtain a contradiction from (4.7) and the proof of Lemma
7.2 is complete.

Thus, throughout the remainder of this section, we assume that
where 09

2
U, "1(..@) (U) X "/’, and L1(2) <u). Set E fl(.), N

N(a), R N/O(N), C Co(.), and D C1,(E). Then C _< D
___
N <_

C(u), D/C is a 2-group, O(N) O(C) O(D), (qg, r/) <_ N, and Ca(r/)
Applying the proofs of [9, Lemmas 8.3-8.4-1, we obtain the following two

lemmas"

LEMMA 7.3. (i) C C(f/) x / where [C, 1], C(fl) is a cyclic 2-
group and f2(Ci(Y/)).

(ii) normalizes Cc(VT) and Ce(f/)<i> is dihedral.
(iii) . < C < D < O2(N).

LEMMA 7.4. (i) Co(r/) x where [,
(ii) normalizes Co(O) and Co(fl)(i) is dihedral or semidihedral.
(iii) Either Co(O) Cc(gl) (and C D) or Co(O) is dihedral or generalized

quaternion and Cc(fl) is the unique cyclic maximal subgroup of Co(O) when Co(O)
is not isomorphic to Q8.

(iv) tcD=O.
(v) . x / char O/f Co(Y/) is not isomorphic to Qs.
(vi) Cs(l) ](f/, ).

From the nature of the remainder of the proof of Lemma 7.1 and in order to
simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume that O(N) 1.

Set N? Co(r/). Then D x , N(t) is dihedral or semidihedral,
Z(N(t)) (u), Ce<o(E) is cyclic, dihedral, or generalized quaternion,
E= (u) x /" <_ Z(D) and cD 0. Let/ be agenerator of the cyclic
maximal subgroup of N(t). Then _< (), 7eC if C D and (2)
Cc(r/) if C D. Also I(tD) I(t) x F and hence I(tD) if N?(t) is
semidihedral and I(tD) (ty) if N(t) is dihedral. However, if N(t) is
dihedral and C - D, then N is dihedral and tD since c D : 0.
Now ql .(x, t) ( x )(x, t), IC(xt)l IC(x)l 4, IC(xt)l

23, and Cz(xt)<a C(xt). Then (4.7) implies that [09, xt] q/ and hence
[-o, x] 1. Similarly, since q/ < D(x, t), we conclude that C(xt)
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and hence (xt) is dihedral or semidihedral. Also, it is clear that # < l(xt)
and if z e I(xtD), then

Co<xt>(z) (z, u) x C(xt) - El6.

LEMMA 7.5. a c (D(x)) O.

Proof. Suppose that a c (D(x)) O.

Since D(x) ( x /)(x), a c O 0, and IC(x)l 4, it follows that
there is an involution z e a c ((x)) . Now x (x) < C<x>(x) and
hence (x) is neither dihedral nor semidihedral. Thus IC<>(z)l > 4. But

Co<x>(z) Ce<x>(Z) x Cf(x) and El6 -- (z, u) C.r(x) <_ Z(Co<x)(’c)),
so that we obtain a contradiction from (4.10). Thus Lemma 7.5 follows.

Let / El(u). Then / E16 N acts on / and D < CN(/)-----N
Na(.).
The proof of [9, Lemma 8.5-] yields:

LEMMA 7.5. CI() D ad N/D Aut () GL(4, 2).

Choose vl e * such that C(x) (z, vl). Then v vlz and C,.(xt)
(z, vy). Also let D(x, t) < e SyI2(N).
The proofs of [9, Lemmas 8.6-8.7] yield:

LEMMA 7.7. (i) ’- v D(x, t).
(ii) CmD(tD) (tD) (lD, xD) CI(t)D/D.
(iii) O2(N)= D.
(iv) d-/D D8, Z(q-/D) (xD), and tO xtD in -.
Next we prove:

LEMMA 7.8. ’- e SyI2(G).

Proof Assume that - is a maximal subgroup of the 2-group S and let
z e 9 -’. Then "17

2 e - and 2 4: -l * <a ’-. Let E, fl(l) E’.
Note that U Cx(t), ta .x 0, and CE,(t)= (u, y,z) or CE(t)=
(u, x, z). As in the proof of [9, Lemma 8.8], it follows that

Cn(t) <u,x,z> and D.x . c.1 , x <z, va>.
Since 6a normalizes . c , it follows that (u) < Z(6e). If in ’, then
we may assume that z Ca(t, u). Then z normalizes UCa-(t) and hence z
Ca(t, u, z). Thus ICse(t)l 26 and Z(Cs(t))= (t, u, z) which contradicts
(4.1). Hence in - and, utilizing (4.14), the proof of [-9, Lemma 8.8]
yields a contradiction. Thus Lemma 7.8 is established.

Finally the argument at the end of [-9, Section 8-1 can now be applied to
establish Lemma 7.1.
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8. The case of Lemma 6.2(ii)

In this section, we shall prove"

LEMMA 8.1. If/" satisfies (ii) ofLemma 6.2, then IO2(G)I2 21.

Thus, throughout this section, we assume that - Z4 x Z4, F fl(),
inverts /’, and that 21 o < IO2(G)12 and we shall proceed to a contradiction.
As in i-9, Section 9-1, let v be such that v2 y and set v2 v] and

v VlV2. Then v2 =yz, v2 z, (Vl, V2), and C.(x)= (v). Also
C(/) max , u e , [, /’-I 1, and (q/, r/) < NG() c NG().

Set . x . Then // .(t), . < q/ .(x, t), and Z(q/) (u, z).
Note also that

C.(xt) (vy), (((u) x (vy))(x, t)) <_ C(xt) and (u,z, vy) < Z(C(xt)).
Thus C(xt) ((u) x (vy))(x, t), [-, x-[ 1, and [, xt] (u). Clearly- 0 and if z I(x.), then CA(z) x (v), IC<>(m)l 2, and
Ca<x>(z) is abelian. Thus (.(x)) 0 by Lemma 2.1(vi). We also clearly
have q/’= (u) x (v) x (y), C(q/’)= ., fl(q/’)= X, C(X)= /’,
UI(q/’) (z), and I1 28.

LEMMA 8.2. -- Z.Proof. Assume that (u, 09) where 092 1. Let q/be a maximal sub-
group of the 2-subgroup - of G and let L N(q/). Clearly - < L, . < L,

=.(t)< L, Z(#’) (u,y,z)- L, .(x)- L, and .(xt). L as
(.(x)) 0. Thus Ca(x) (co, u) x (v)- L, (co, u,z)< L, and
(z)- L. Since C,(/) < C,(A) O(C,(A)) A, it follows that C.(g)
O(L) x (u, z) where Z(U) (u, z). Hence L has a normal 2-complement.
As I(xt.)= (xt)a, IC,(xt)l 25, and Z(C(xt))= (u,z, xt), it follows
that -6 SyI2(L), L O(L)-, g7" qlC-(xt), and u q Z(C-(xt)) since
(z) < Z(Cr(xt)) and ICr(xt)l 26.
Note that . Jo(#) char and set N N(/), N N/O(N), and

E fl(.) x F. Clearly X Z(#/") - N, C(t) X CA(t),

I(t) w (tvl)a w (tO2)a O (tV)a

and (q/, r/) < N. Also Cu(t) O(Cu(t))A(q, x) where O(Cs(t)) < CG(tU)
and C(//#)= O(N) Z(/U). Then Cs() , Cs(i ) (f/, 2) where
3 and

_
O2(-)(, ) as NIX c Aut ("#/) and IAut (#/’)12, 3.

Now " < N, Co:s)(l) since Cos)(i) and C(/) - Cos)(O).
Thus N/ -E4 and O2(-)/"/ E4. As F<a N, we conclude that
[O2(), ] 1. Since (O2(]V) )(2) and Z(), it follows that
Cs(X) "/ and hence Cs(E7) ,. Then// c, Aut (E) - GL(4, 2). But
then N/., - Z2 x E4 where (i)< (_/). Hence [E, i] ()- /V and
we have a contradiction since Z(). This completes the proof of Lemma
9.2.
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Let <og>whereo2 u. Thustinverts. x Z4 x Z4 x Z,
and f]l(.)= X. Also I(t.)= t., I(x.)= x(<u> x <vy>) and I(xt.)=
xt(9 x <v>). Note also that if zi I(t.), z2 I(x.), za I(xt.), then
<’Cl, X> <Tjf>, <7j2, vy) < (Z), and (za, v) < (zaa).

LEMMA 8.3. Let ql < 9 where 9 is a 2-subgroup of G. Then X <a 9 and X
is the unique normal element of 68().

Proofi Since X t)l(q/’) char q/, it suffices, by induction on [[, to assume
that X <a and to show that X is unique. Thus let X -# Y < where Y
6s(). Assume that Gc Y # 0. Then [[ _< 28 and hence q/. This
implies that Y _< . and hence Y X, which is impossible. Thus a c Y # 0.
Also, since X <a Cs(t), it follows that U Cs(t). Now the proof of [-9,
Lemma 9.3] applies to yield Lemma 8.3.

Clearly . Jo(//’) char .(t),

(ql, 1) < NG(#) < N(.), C(#r) O(Ca(#)) x X, and r/3 O(Co(#’)).

LEMMA 8.4. (i) .ql <_ Nc,(W’) n C(.) N(W’) and O(Nc,(//’)) is a normal
2-complement of NG(W’) C(.).

(ii) Either . SyI2(N(/) c C(.)) and

t(n(r) c((a)) tX a

or . is a maximal subgroup ofa Sylow 2-subgroup ofN(tz) c C(.) and

t(n(r) c(a)) t( x F).

Proof. Let N NG(//), . N/O(N), and J C(2). Clearly . < Z(J),
J <a N < N(.), O(N) O(J) O(Ca(W’)), O2(J) O(J), and (i)holds.
Thus Cs() is a 2-group and (2, ) normalizes 3. Also

o < (, i) and (,, i) <_ Z(Cj<,>(/)).

Hence C(i) ((fi) x (y))(, i) SyI2(Cj(.f>(I)) and the proof of [-9,
Lemma 9.4] yields Lemma 8.4.
For the remainder of this section, let N N(.), C Ca(.), and N

N/O(N). Clearly (q/, r/) < N. Let Y C(t) and let q/ .9.(x, t) _<
Syl2(N). Clearly r/3 C and Y <a N. Also let O(N) < 9 < C be such that

cc(,).
Applying the proof of I-9, Lemma 9.5-1, we obtain"

LEMMA 8.5. (i) C-" x , "/ [C-’, ], is a cyclic 2-group and
n().

(ii) normalizes and <i> is dihedral or semidihedral.
(iii) Cs(i) <77, >.
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As in the previous section, without loss of generality, we assume that O(N)
1. Thus C / and C(x, t) < r Syl2(N). Since Cc(x) x (v),
it follows that c (C(x)) 0. Then, as in [9, Lemmas 9.6-9.7], we obtain"

LEMMA 8.6. (i) . 2(C)char C(x, t).
(ii) - # C(x,t).
(iii) N O2(N)(r/, x) and ’- 02(N)(x).

Next we prove"

LEMMA 8.7. (t) is dihedral and inverts C.

Proof Assume that (t) is semidihedral. Then, as in [9, Lemma 9.8],
we conclude that N/C Z2 x E, where Z(N/C) (tC), X char -, . char
-, d- Syl2(G), and N(-) -. Since C < -, we also have (u) < Z(-)
and hence Z(-) (u) by (4.15), (u) Z(N), Co:N(X) Y char q-, and
C char d-. Since [y, x] z, it follows that (u, z) is the unique element of
6,(X) that is normal in -.

Since u uz, it follows from the proof of [9, Lemma 9.8-] that there is an
element # e N such that (uz)g u. Since (u) Z(N), we have a contradiction
and we are done.

Setting O2(N), we prove:

LEMMA 8.8. (i) (t) C(r/).

(ii) /C- Es.
(iii) . char ’- and 7" Syl2(G).

Proof. Assume that (t) - C(r/). Then, as C(r/, t) (t, u), it follows
that Cr(r/) is dihedral or semidihedral. Since Cr(r/) (t) - C(r/), we con-
clude that (t) max Cer(r/). Let a generate the cyclic maximal subgroup of
C(r/). Then C(r/) (, t) and tI)(C(r/)) L51((a)). Set 5e
(C, t, , x). Then, as in [9, Lemma 9.9], it follows that q/" <a 5e, inverts
, t in G, 5t’/C - E8, C(x, t) max , (u, z) < Z(St’), C(x) < 5, and

C(xt) <2 5a. Moreover, if(xt) is not dihedral, then it follows that [Cse(xt)[
26 and (u, z, xt) <_ Z(Cse(xt)) which is impossible. Thus xt inverts and
[,x] 1. Suppose that 5a # Y" and let yN(5e) 5a be such that

2 5 c . Then as in [9, Lemma 9.9], it follows that acts trivially on 5t’/C
and that [y, (u, z)] 1. But I(xtC) (xt)<c’’> and hence IC<se, r>(xt)l
26. Since (u, z, xt) <_ Z(C<,r>(xt)), this is impossible and we must have
if’ ". Then, as in [9, Lemma 9.9], we obtain a contradiction. Thus (i) holds.
Moreover, as in [9, Lemma 9.9], we conclude that (ii) holds and X char
Suppose that (iii) is false. Then Cr(X)= char J’, Z(-)= (u, z), and
(u) Z(N). Moreover, setting # [, r/I, as in [9, Lemma 9.9], we con-
clude that 0oe’ (u) x "//’, a’ (u), ’ < Z(ff), and Nr(A) .Z’. Then



CLASSIFYING FINITE GROUPS, II 639

it follows that (u, z, xt) < Ce(Xt) and ICr(xt)l 26, which is impossible.
Thus (iii) also holds.
Hence No(q-) NN(-) q-, Ig-I >- 2, and I1 -> 2. Thus (u) <

Z(N). Then the argument at the end of Lemma 8.7 yields a contradiction.
Hence the proof of Lemma 8.1 is complete.

9. The case of Lemma 6.2(iii)

In this section, we shall prove"

LEMMA 9.1. If q/" satisfies (iii) of Lemma 6.2, then 102(G)12 2z.
Thus throughout this section, we assume that contains a <r/, x>-invariant

subgroup . such that /" F x ., . - Qs,-’ <u>, and

((.(rl, x))/(rls) - GL(2, 3).

We shall also assume that I02(G)I2 >_ 2x and we shall proceed to obtain a
contradiction.

Clearly c (u) and acts on

C(x) {velv vorv v-a} (z> x

where q . is such that q q qu. Also tF or a tuF and hence
qt {qz, quz}. Since . (q, q", q,Z), it follows that no element of can
invert q. Then, as in [-9, Section 10], C(/’) is a maximal subgroup of
and (q/, r/) < No(q/’) c No(). Also (q/’, , r/, x) < No(.2) and I(tq/’)
t (tu). Set E . Then q E(t), E < ql E(x, t),
Z(og) (x, t), Z(E) x F, and [, t] (u).
Suppose that (u, to) where coz 1. Then E (co, y, z) x . and
c E 0 by (4.6). But then the proof of [9, Lemma 10.2] implies that

ell Sylz(G). Since Iq/I 28, we have"

LEMMA 9.2. -- Z4.

Let (co> where 0)2 U and cot co-z. Thus I(tE) tX (tco)X,
E F x ( ), IEI 26, and ifj e I(E) Z(E), then CE(j) is abelian of
order 25. Then (4.1) and the fact that S/(t) is isomorphic to the group
given in Lemma 2.1 with n 3, imply that c E 0. Also CE(t) Cr,(tco)
X Dz(Z(E)) and Z(E) F x . Moreover q/’ F x (q), C(Qz(q/’))=
C(X) E(t ) char q/, and hence Dz(E) E char

Set N No(E), N/O(N), and C Co(E). Thus (q/, r/) < N, r/a e C,
and Z(E) F x < Z(C). Also let q/ < 7- e Syl2(N) and set Y C(t).
Note thatE’ (u) < Z(N) and X Dx(Z(E)) N. LetO(N) < < C
be such that Co(0). Since Cn(t) X < CN(t), we have U e Syl2(Cl(t)).
The proof of [9, Lemma 10.3] yields"



640 MORTON E. HARRIS

LEMMA 9.3. (i) ’ ff where [C, 77] , o Cc(77) is a cyclic
2-yroup, f2(), and fl(C).

(ii) .( normalizes o, C(i) (, and o(l> is dihedral or semi-
dihedral.

(iii) CN(I) A(f/,

From the nature of the remainder of the proof of Lemma 9.1 and in order to
simplify notation, it is clear that, without loss of generality, we may (and shall)
assume that O(N) 1. Then C t F,

EC F x (,.)<a N, EC <_ Cu(X)<a N,

and G c (EC) 0 since Z(EC) F x 9 has order at least 24. Since X <a N,
we also have"

(9.1) EC(x) , EC(t) EC(xt) in N.

Since exp (S) 23, the proof of !-9, Lemma 10.4] yields"

LEMMA 9.4. (t) is dihedral.

Let 9 (7). Then I(tEC) ec w (tT)ec. Since U < EC(x, t) and G c
(EC) 0, we conclude that INN(EC(t))" EC((t) (r/, x))l < 2. More-
over, the proof of [9, Lemma 10.5] yields"

LEMMA 9.5. Nn(EC(t)) v EC((t) (rl, x)).

Set J Nn(EC(t)). Then J O2(J)(q, x),

[O2(J), q] [EC, rl] F x . < J.

Also O(J) acts on X and IOz(J)/Co)(X)l _< 2. It follows that IOn(J), X]
1, F < J, and O(J) //Co)(). Then (t Cc<>(r/) is a maximal sub-
group of Co)(q), Co<)(rl, t)= (t, u, and Co<)(ri) is (x>-invariant and
dihedral or semidihedral. Also, as in I-9, Section 10], it follows that
Co,)O1, /) tl is a maximal subgroup of Co<)() 1( , is dihedral
or generalized quaternion, is the cyclic maximal subgroup of 1,

I1EC F x (1"2) and 6e (F x (l*-))<x,t>Syl(J).

Moreover, it also follows that X char Aa,

Cs(X) (F x (1 * 2))(t > char Ae

and I(t(F ( .)) r*a)). It is easy to see that c (F x (1 * -))
0. Since X char 6a and q/ Ns(A) Sylz(N(A)), it follows that S/’ Sylz(G).
Then the last portion of [9, Section 10-I applies and the proof of Lemma 9.1 is
complete.
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10. The case of Lemma 6.2(iv)

In this section, we shall prove"

LEMMA 10.1. If"t/" satisfies (iv) ofLemma 6.2, then IO2(G)I2 < 21.

Thus, throughout this section, we assume that satisfies (iv) of Lemma 6.2
and that 21 < [O2(G)[2 and we shall proceed to a contradiction.
As in [-9, Section 11], we conclude that if q /" X, then qt q u qau

and that # C(//) max . Clearly u #, (q/, r/) _< NG(/) c NG(), and
I(tt/’) w (tu). Set 2 #"K" #.r. Then #" .(t), 2<a
2(x, t), Z(Og) (u, z), and [#, t] (u). Also, as in [9, Section 11], there
is an element v e /" X such that v2 uz and vxt v(u).

Suppose that Iv, xt] 1. Then since v vz, v normalizes B (u, z, x, t).
Then B < B(v) < C(xt) and hence B(v) U. Hence (z) (B(v))’
?31(B(v)) (uz), a contradiction. Thus vxt vu.
We shall now describe how the proof of [-9, Lemma 11.2-1 can be adapted to

prove"

LEMMA 10.2.

Proof Assume that (co) where 0,)2 U. Clearly o; o-1 and
fl(.) X. Suppose that xt inverts 0. Then B (u, z, t, xt) is
invariant, B <a B(ov) < C(xt), (ov)2 z, and [cov, t] (uz) and we have
a contradiction. Thus [#, xt] and co 0-1.

Set N N(), C C(2), and

_
N/O(N)). Thus Z(.) # x F <

Z(C) (ll,l) < N, qa e C Z(.) x F . c C < N, and X<
Z(C(t)). Let og < y- e Syl2(N). Then, as in the proof of [9, Lemma 11.2],
we conclude that Cc(fl) x where Ce(fl) is cyclic, )2(Cc(f/)), and

[, /]. Moreover, without loss of generality and in order to simplify
notation, it follows that we may assume that O(N) 1.
SetN Cc(r/). Then C x F, N(xt) is abelian or modular, C(x, t) <

Y-, [xt, ?jI(N)] 1, and Il -< 24 by (4.3).
Suppose that < and let N (7)- If (xt) is abelian, then IN[ 2a

since xt in G and (( x (z) x (xt))(t)) < Cr(xt). Now (4.7) yields a
contradiction. So suppose that N(xt) is modular. Then vy Ca-(xt), (vv)2

V22 UZ2 and hence [v[ 11. Since (((vv) x (z, xt))(t)) <_ Cr(xt),
we again obtain a contradiction by (4.7). Thus and C x F. Also,
as in the proof of [9, Lemma 11.2], we have N O2(N)(r/, x), 7- 02(N)(x)
and .(t) (C.)(t) (# /)(t) _< O2(N). Setting .Z O2(N), we also
have C(t) A and G c . 0 since fl(.)= X _< Z(.).

Suppose that .(t). Then " q/ Syl2(G) as in [9, Lemma 11.2-1
and we have a contradiction. Thus .(t) < Z. Let1 N.Z(’)" Then
as in [-9, Lemma 11.2], it follows that [l/(.(t))[ 2,
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9(t) is of index 2 in C,(r/), x is dihedral or semidihedral,, ogx c / (u), 9x C,(/’) is a maximal subgroup of1, R is dihedral
or quaternion of order 8, and x (9x, )(t). Suppose that z ac
(9 /). Then, since 19a * /1 27 and (9 /")’ (u), it follows that
C,.(z) (z)x /" which contradicts (4.3). Thus tac (9, )= 0.
Also, it is easy to see that I(t(l /’)) ’. Since (.) X- N, we
have .4 Cr(t) and hence ea and - (9 Y/’)(t, x). Moreover
X (-’), as in [9, Lemma 11.2] and hence X char and C(X)=
1 char . Assume that " is a maximal subgroup of the 2-subgroup 5 of G.
Then X- 5, ea . 5p, and X Cs(t). Thus A Cs(t), we have a contra-
diction and the proof of Lemma 10.2 is complete.
Hence (u, to) for some involution to, . (to)x /’, .’= (u),

.1(,) X, .(t), and q/ .(x, t). Let E fll(.)= (to) x X
E16. Then E Z(.) and c . 0. Since X l(q/’) char q/, we conclude
that C,(X) char q/. Also, as in [9, Section 11], we have E char U and. char .

Set N N(#’), C C(U), and V N/O(N). Clearly

(ql, 7) < m < N() < N(X) and a//c C X= "/U c C.

Let < Y-eSyl2(N); thus # since #char. Also Nx(A)= ql.

Then X e Syl2(C), C O(N) X and -" X. Moreover, as in [9, Section
11], we have_ O2(.)(Y-/, ), 3 and < ff O2(N)(2). Again, for
convenience, we assume that O(N) 1.

Set O2(N). Note that N < Na(X) and hence CN(t) < N(A) M, so
that C(t) A, C(q, t) (t, u) and C(r/) (t, to) . Then we con-
clude that is transitive on I(t), Il 29, 1(-) E is strongly closed in
U with respect to G, E <a N and N/tr X,. Also we always have lIE, .x]l 4:
lIE, xt]l and, as in [9, Section 11], we have N/ Z2 x Z,, (t)=
C.m(rl), < [, rl], q [, rl], - (x), lYI 21, and 6 SyI2(G).

LEMMA 10.3. E char - and E char

Proof. Clearly E < -. Let E16 Y < -. Suppose that Y . Then

Y c (x xt) # 0

and Y contains an element of order 4, which is impossible. Thus Y < .
Noting that if r e qU, then lit, r]] 4, it follows that Y < . and hence
Y E and the lemma follows.

Clearly . _< Ca-(E) Ca(E)char -.
Suppose that . Cr(E) and set J N(E) and J/O(J). Let - <

5" SyI2(J) and suppose that there is an element z 5e- y such that z
normalizes . and .(t). Then, we may assume that z Cs,(t) od-. But X
Cv,(t) . C(t) and hence U Ce(t), so that we have a contradiction. Thus
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Cz(E) .. Now ./E - E4 and any element of odd order in Ns() c CG(E)
must centralize .. Thus CG(E) O(J)., N]()= Ns(), C()= E,
and ]/E Aut (.). Then Y O2(Y)(/, 2), O2(Y)= C/./), and hence
O2(Y) acts trivially on X 31(.). But then [O2(Y):-[ divides 23 and hence
[[ [Y-[ which contradicts Lemma 10.3.
Thus . < Ca-(E)= C(E). Setting e C(C), we have e

and .e Ca-(E) char - (x, t).
Also 1 .[e, q] <a N, Iral 2s, and C,(r/)< N. Set /

N/. As in [9, Section 11], we conclude that -1 is of type L3(4) and (u) <
] < (Y’I) < E z(el). If tI)(l) X, then "U < I-Y’,
[, rt] < N, and IT’, r/] c . "U and we obtain a contradiction as above.
Thus E (1)= z(el)= E, exp (1)= 4, C,/(tE)= S/E, I(tl)=
’, c Y’ 0, and ((x))/ - Ds. Set J No(E), Y J/O(J), and let
r < 5e Syl2(J). Then Y" # 5e and U Cse(t) since Ce(t) X < Cee(t).

LEMMA 10.4. E char

Proof Let El6 Y < 6e. Since 2ix < 16el, we have c Y 0. Note
that 4 < [Cr(t)[ and Cse(t) U A(x). Also, if z x. w xt., then there
is an element v e /" X such that I[v, vii 4. Thus Cr(t) < X (u, y, z)
and hence [Y, t] < Cr(t)< X. But . is transitive on tX. Hence Y <
.Cse(t) and then Y < .(t) #. As usual, this implies that Y < ..
Thus Y E and Lemma 10.4 follows.
We can now conclude the proof of Lemma 10.1. Clearly Lemma 10.4 implies

that 5a SyI2(G). Since 1 < Cse(E) and I(trl) a‘, we conclude that
1 Cse(E) and hence 5a/1 c. Aut (E). But Cse/(toZ1) Y-/l - E,,
so that 6e/.Z D8. On the other hand, I(tl) and hence t.l xt.l
in St’. Thus (xl) (Se/el)’ z(6e/.,), I1 211, IC.(xt)l ICg(t)l
8, o oou, and o’ 09. But then I(xl) xe’ and c (l(x)) 0.
Now [12, Lemma 5.38] implies that 102(6)12 < 21. This contradiction com-
pletes the proof of Lemma 10.1.

11. The case of Lemma 6.2(v)

In this section, we conclude the proof of Theorem 2 by proving"

LEMMA 11.1. Ifr satisfies (v) ofLemma 6.2, then IO2(G)I2 < 2t.
As usual, throughout this section, we assume that r satisfies (v) of Lemma

11.1 and that 21 < 102(G)12 and we shall proceed to a contradiction.
Thus "U’= Z("U)= (u), Sr contains subgroups Q1, Q2 quaternion of

order 8 such that "U Q1 * Q2, /" char q/’A "U(t), Q] Q2, and rA is
of type a8. Note also that O2(-) .,-/O2() - X3, and Nu((/))
(i, fi, 2) and hence the proof of [6, VI, Lemma 2.7(iii)] implies that q/
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/A(x) is of type a1o. Thus .tA(x) Da-’x_ Z2. Also we clearly have

" //’A /’(t), [#’, r/] [/’, r/] /, O16(’#//") (A}, and every
element of /A interchanges Q1 and Q2. Moreover, as in [9, Section 12],

contains a maximal subgroup such that [, ] 1, (q/, r/) < NG() c
NG(/), and c/ (u). Set . / ./’. Then (t),. <a q/ .(x, t), Z(q/) (u), and Z(.) U.

LEMMA 11.2. # __2’ Z4

Proof. Assume that (u, 09) where o92= 1. Then . (09) x ,
I(t) tX a and ql (x, t) Syl2(G). As in [9, Lemma 12.2-[, we
conclude that . char q/and Z(.) char q/. Set N N(), C C(.),
and ? N/O(N) and let q/ < " Syl2(N). Then q/ # -, Ce(t) U since
Ca(t) X<a Ca-(t), I(t#) t(u) and hence q/n C - c C #.
Thus C O(N) x , C , and 1/ q. Aut (.). As in [9, Lemma 12.2],
it follows that -/ D8, Ig--I 29, z(ff-/) (x.@), and t. xt2 in ’-/..
Let - be a maximal subgroup of the 2-subgroup 6 of G. Since I(t) and
2 : 6a, we also have IC/t)l 26. But Z(6a) (u), U A(x)<a Cse(t),
U’= (z)<a C(t), and hence (t, u, z)< Z(Cee(t)). Thus (4.1) yields a
contradiction and the proof of Lemma 2.2 is complete.

Let # (co) where 092= u. Then I(t)= taw (t09), . char q/, and
# char q/as in [9, Section 12]. Set N N(.), C C(.), and . N/O(N).
Then X Ca(t)<a Cs(t), (ql, rl) < N, and /3 C. Let q/ < 7- Syl2(N);
thus q/ q: -.

Applying the proof of [9, Lemma 12.3], we obtain"

LEMMA 11.3. (i) C O(N)(C c oq-) where C c " is cyclic,
(C ’-)(t) is dihedral or semidihedral, and < (C q’) c Z(C).

(ii) (C c "). (C c -)
(iii) /(Ct/") Z2 Z,6.
(iv) CN(t) (O(Cs(t)) c C)A(rl, x), O(Cs(t) c C) < O(N),

and Cs(i) (l, ).

As in [9, Section 12-1, without loss of generality, we assume that O(N) 1.
Then C C c -, (C /)(x, t) Cq/ < -, and C. C < O2(N).
Let C () and ICI- 2a for some integer a _> 2. Clearly (09)
f2(C) and the proof of I-9, Lemma 12.4] yields:

LEMMA 1.4. C * char Cq/ (C /)(x, t), char C//, and # Cql.

Assume that Nu((C, t/)(t))= (C, /’)((t) x (, x)). Then, as in [9,
Lemma 12.5], we conclude that O2(N)= C, /, -/02(N) -38, and

" Syl2(G). Let q- be a maximal subgroup of the 2-subgroup 6a of G and
suppose that C(t) Cr(t). Then Cr(t) U is a maximal subgroup of
Ce(t). Hence U’ (z) < Ca-(t). Since Z(6a) (u), we have (t, u, z) <
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Z(Ce(t)) which contradicts (4.1).
proof of I-9, Lemma 12.5-1 yields"

Thus C(t)= Cse(t)= U. But then the

LEMMA 11.5. (i) INN((C /)(t))" ((C q/’)((t) x (r/, x)))l 2.
(ii) C( ) is dihedral.

Let Y NN((C t)(t)). Then

I02(Y)/((C * )(t))l-- 2 ICov>O1)/C(t))l,

Co2rO1) is dihedral or semidihedral, [O2(Y), r/] " <a Y, and there is a
maximal subgroup t of Co,y(rl) such that [-9, -[ 1, C max , Coy(rl)
9(t), 9 is dihedral or generalized quaternion, 9q/ 9L 9 /’, 9 c q/"

(u), and

Y (9 )((t) x (r/, x)).

LEMMA 11.6. (i) a C (9 q/’) 0.
(ii) I(t(9 q/’)) *.
(iii) / O2(N).
(iv) O2(N) * /" or O2(N) ( //’)(t).

Proof. Let T 9. r and z a c T. Then [-9, Lemma 2.12] implies
that ]Cr(z)l > 26 and if ICr(z)l 26, then exp (Cr(z)) 4. Thus (i) follows
from (4.3). Noting that (ii) is clear and that (iii)-(iv) also hold as in [9, Section
12-1, the lemma is proved.

LEMMA 11.7. O2(N) 9 and " :/: (9 /’)(x, t).

Proof. If O2(N) # * /’, then - ( q/’)(x, t). Thus assume that- ( /’)(x, t).

Clearly, Z() (u) _< LI("-’) LI(C) since J" C. (//" c -’). Also,
as in [-9, Lemma 12.6-], we have /" char -.
Assume that Itl >_ 2. Then, as in I-9, Lemma 12.6-1, it follows that -SyI2(G). Hence I-I >- 2, ICI >- 2, and we obtain a contradiction as in I-9,

Lemma 12.6]. Thus Itl 2a, C #, I-I 29, and is extra-special
of order 27

Let J Na(9 q/) and let - _< 6a SyI2(J). Thus " -# 6a and Z(6a)
(u). Then, it follows that Cse(t) C-(t) U. Moreover, the argument at
the end of [9, Lemma 12.6] yields a contradiction and we are done.
As in I-9, Section 12], we have ’-/02(N) D8, tO2(N) xtO2(N), and

xt in , Z(J’/O2(N)) (xO2(N)), and x e -’. Also, when Itl 2a.
we obtain a contradiction as in [9, Section 12]. So, let Itl 2" with a > 4,
Then # < O2(N)’ 9’, # f2(O2(N)’), Co:(n(#) C t, C Z(C ),
and . f2(C * ). Thus C <a N, C < N, [C, x] 1, 02(N)(x) <a oq-
and every involution of xO2(N) is conjugate via O2(N) to an involution of 9x.
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Also c O2(N) 0, Iz(<x>)l 4 by [9, Lemmas 2.2-2.3] and Ca<x>(t)
(u, x). Note that

Suppose that fi c (x). Thus fi x. Assume that Z((x))
(x, u). Then (x) x (x) and is dihedral. Let u, rl, r2 be repre-
sentatives for the conjugacy classes of involutions of. Then (xr, xr2 } and
El6 (x, u, 3, z) <_ Co2()(x>(6). Since {x, u, z} 0, we have 6 x6
in G by Lemma 6.1(ii). This is impossible since x6 #. Suppose that
Z(l(x)) (xog). Then (x) (o, x) and is generalized quaternion
and (t) is semidihedral. Let o9, q, q2 be representatives for the conjugacy
classes of elements of order 4 or . Then 6 {xooqxxooq2 } and (xog, 6, z) <
Co()<>(5). If x" Q Q2, then C(5) C,(x) - E8 and hence Co()<>(6)
is abelian of order 25. Since this is impossible, x normalizes Q and Q2 and
there is an element fix Qx such that fl2 u, fl fl- and x xfla in Q(x).
Clearly (u, z) (u, flfl). Also, it is easy to see that 6xal 6. Hence
El6 -- (3, u,. z, xfll ) <__ C02(N)<x>(6). Since c {u, x, zfl} 0, as above,
we have 6 6xfla. However 6xfl O2(N) and we again have a contradiction.
Thus c (02(N))(x)) O.

If Syl2(G), we obtain a contradiction as in 9, Section 12]. Suppose
that " is a maximal subgroup of the 2-subgroup of G. Since Z(-) (u)
Z(), we have Cs(t) Cr(t) U. But now the argument at the end of
[9, Section 12] yields a contradiction. Thus the proofs of Lemma 11.1 and
Theorem 2 are complete.
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