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A BANACH SPACE NOT CONTAINING
WHOSE DUAL BALL IS NOT WEAK*

SEQUENTIALLY COMPACT

BY

J. HAGLER AND E. ODELL

The structure of Banach spaces with nonweak* sequentially compact dual
balls was studied in [7], where it was proved that if X is separable and the unit
ball of X** is not weak* sequentially compact, then X* contains a subspace
isomorphic to 11 (F) for some uncountable set F. Subsequently it was proved in
[1] that if the unit ball of X* is not weak* sequentially compact, then (a)either
Co is a quotient of X or 11 is isomorphic to a subspace of X, and (b) X has a
separable subspace with nonseparable dual. In this note we give an example of
a Banach space X whose dual ball is not weak* sequentially compact, but
where X contains no subspace isomorphic to t. This answers a question posed
by H. P. Rosenthal [7].
The example we construct draws on two ideas. First R. Haydon [2] exhibited

a compact Hausdorff space K which is not sequentially compact such that
C(K) does not contain a subspace isomorphic to (F) for any uncountable set
F. Central to this construction (and to ours) is the existence of a "thin" family
of subsets of the integers which infinitely separates every infinite subset of the
integers (see Lemma 1 below). Secondly, the space X we exhibit must be
nonseparable. A key part of our construction is a nonseparable analogue of JT,
the James tree (cf. [3] or [4]). This space has the property that JT* is not
separable, yet JT contains no isomorph of l. We recall the definition of JT
below during the proof of Lemma 2.

Notation. If X is a Banach space and (g),
_

X, then by (g,),, we mean
the linear span of the set (g) x, while [g]x denotes the closure of (g,), t.

Also if L and M are subsets of N, the set of natural numbers, then [L denotes
the cardinality of L. LcaM means [L\MI< and LM=a0 means

Other Banach space notation we use is standard and may be found in [5].

The definition of X.

LEMMA 1. There is a well ordered set I, < and a collection of infinite subsets
of N, (m,) t, such that:
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(1) If < fl then either Ma c a M or M/ M =a O.
(2) If M cN, [M[ = then there is an I such that

IM M IM\MI oo.

Proof. Let (S) be the collection of all infinite subsets ofN and let < be a
well ordering of J. For each J let M be an infinite subset of S with
S \MI oo. We shall inductively choose I J so that (1} and (2)are

satisfied. If is the first element of J, put in I. Let fl J and assume I has
been defined for all < ft. If there is an < fl such that

(3) [Sa M ISa\MI-- ,
we "discard" ft. If no < fl satisfies (3), we put fl in I.

Clearly (M)I satisfies (1) by construction. If M N, MI , then
M Sa for some fl J. If fl I, then IM Mal IM\M I If fl I
then there is an < fl so that (3) holds and thus (2)is proved, Q.E.D.

We wish to thank M. Wage for showing us the proof of Lemma 1 and for
allowing us to reproduce here his argument.
Now define a new partial ordering < on I as follows: < fl if < fl and

Ma c M. We note that (I, _<)is a tree (i.e., if fl I, { I: _< fl} is a well
ordered set). Also every nonempty subset of (I, _< has at least one minimal
element.

Remarks. (1) The requirement that < fl in the definition of _< fl is ac-
tually redundant. Indeed if , fl I, Ma M and > fl then M, Ma and
so M,= Ma. But then IS, c Ma[ IS=\M I and this contradicts our
definition of I in the proof of Lemma 1.

(2) In [2], R. Haydon used Zorn’s lemma to construct infinite subsets of the
integers (M) satisfying (2) and such that if 4: fl then either Ma c M,,
M, =aMa or M, Mt 0. The importance of Lemma 1 to us is the partic-
ular partial order it allows us to define.

By a segment B in I we shall mean a subset of I of the form

B-- [, fl]- {y I: _< y < fl},
where , fl I. Let (9) be a linearly independent set of vectors in some
vector space. If (t,), is a finitely nonzero set of scalars, we define

1/2

B1, Bk are pairwise disjoint segments

Let Y be the completion of (g) under this norm (Y is the nonseparable
analogue of JT referred to above).
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For each e e I, let 1M, be the indicator function of Ms in l and let

ha (1M, g) (loo @ Y)oo.
Thus, for a finitely nonzero set of scalars (t) ,

lie max {lie tlM lie
Let X be the closed subspace of (lo (R) Y)o generated by (h) and let
denote the unit ball of X*.

B] is not weak* sequentially compact.

For n N, let F,(h)- 1M,(n)and extend F, linearly to (h)t. Then if

f( t=h=)l- I t=l(n)l < II tlM, II -< IlY th II,
Thus F, has a unique extension to a norm one element of X* which we also
denote by F,. We claim that if M is an infinite subset of N, then (F,), does
not converge. Indeed by (2)there is an z I such that M M
[M\M " Thus, (F,(h))n M does not converge.

X contains no subspace isomorphic to x.

LEMMA 2.
of l:.

Every infinite dimensional subspace of Y contains an isomorph

Let us assume for the moment that Lemma 2 has been proved and that X
contains an isomorph of l. Then there exists

e"= (f", 9")

such that (e") is equivalent to the unit vector basis of 11. By passing to a block
basis of (e) if necessary we may assume that I1  11 - 0 and (f")is equivalent to
the unit vector basis of 11. An easy application of Rosenthal’s characterization
of Banach spaces containing [6] yields a subsequence of (f") (which we
continue to call (f")) and real numbers r and fi with fi > 0 such that if

A,={meN’fn(m)>r+6} and B,={meN:f"(m)<r}
then (A,, B,),= is independent. This means that if F and G are disjoint finite
subsets of N, then

neF neG

In particular ]A, lB, for all n. We can also suppose that r + 6 > 0 (if
not, multiply each e" by 1) and fix n large enough so that 119"ll <r + 6. We
show that A, < , which is a contradiction.
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Let

where D is a finite subset of I. Choose a finite subset G of N and Ms Ms for
e D such that if e, e’ 6 D are distinct, then

(i) Ms Ms, 0 implies r r, 0,
(ii) Ms Ca Mc, implies

_
r,,

(iii) MsG=0andMsMsw G.

Let m e Ms for some D. Then there exists a unique sequence

<2<"’<k inD

such that m , for 1 < < k and m r for D\{ , k}. Consider the
segment B [el, ek] in I. Thenf"(m)
f"(m) < r + 6 and so m A,. Thus A, G is finite and we conclude that X
does not contain
To prove the lemma, we present a simplified version of our original argu-

ment, as shown to us by Y. Benyamini.

Proof of Lemma 2. We show that every infinite dimensional subspace of Y
contains an isomorph of an infinite dimensional subspace ofJT and thus by [3]
an isomorph of 2. First let us recall the definition of J T. Let T =o {0, 1}"
be a dyadic tree (i.e., if 0, Z T with lengths n and m respectively then 0 < Z if
n < m and the first n terms of form 0). If x is a finitely nonzero scalar-valued
function on T let

xl=max 2 x(0)2
i=1 O6Bi

where the max is taken over all k and pairwise disjoint segments B 1, B in
T. JT is the completion of the linear span of all such x with this norm.
Now let Z be an infinite dimensional subspace of Y. We can assume that Z is

separable and that there is a countable set Io = I such that Z
_

[9,] to.
Let Ix { 6 Io: cx is a minimal element of Io} and for a countable ordinal/,

set

I={oeIo’oisaminimalelementofIo\I}.
Since Io is countable, there is a countable ordinal eo such that Io o I.
Now, let B _< eo be the smallest ordinal such that the restriction map to
)_ I is an isomorphism on an infinite dimensional subspace of Z. (This
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map is defined as follows: For a finitely nonzero set of scalars (t,) to, define

It is clear that IIRII-< 1,)
First, if the restriction map to Ia is an isomorphism on an infinite dimen-

sional subspace of Z, then clearly l imbeds in Z. (For instance, this case must
occur if fl is a successor.)

If not, then a standard gliding hump argument shows the existence of a
subsequence n < n < of N, and normalized basic sequences (z) Z and
(y) Y such that

and lzj- yj < 2-J for each j N. (Thus, by a standard perturbation argu-
ment, (z)is equivalent to (yg).)
We claim that [()] is isometric to a subspace of JT. Indeed let yj

where D is a finite subset of

{Ia:nj6<nj+x}
and choose an order preserving injection Q" =x Dj T. Let x JT be
defined by x(O) y(Q- ()) for T. Then (x)is isometrically equivalent to

Q.E.O.

Remark. If (S, is any tree and (9) s are linearly independent vectors in
a vector space we may define a norm on (9)sby means of (,) above. Lemma
2 remains valid for the resulting Banach space if every nonempty subset of S
has a minimal element. In general it is false, however. For example if S is the set
Of rationals with the usual order then corresponding Banach space can be seen
to contain c0.
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