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A BANACH SPACE NOT CONTAINING [,
WHOSE DUAL BALL IS NOT WEAK*
SEQUENTIALLY COMPACT

BY
J. HAGLER AND E. ODELL!

The structure of Banach spaces with nonweak* sequentially compact dual
balls was studied in [7], where it was proved that if X is separable and the unit
ball of X** is not weak* sequentially compact, then X* contains a subspace
isomorphic to I;(') for some uncountable set I". Subsequently it was proved in
[1] that if the unit ball of X* is not weak* sequentially compact, then (a) either
Co is a quotient of X or I, is isomorphic to a subspace of X, and (b) X has a
separable subspace with nonseparable dual. In this note we give an example of
a Banach space X whose dual ball is not weak* sequentially compact, but
where X contains no subspace isomorphic to /,. This answers a question posed
by H. P. Rosenthal [7].

The example we construct draws on two ideas. First R. Haydon [2] exhibited
a compact Hausdorff space K which is not sequentially compact such that
C(K) does not contain a subspace isomorphic to I,(I") for any uncountable set
I'. Central to this construction (and to ours) is the existence of a “thin” family
of subsets of the integers which infinitely separates every infinite subset of the
integers (see Lemma 1 below). Secondly, the space X we exhibit must be
nonseparable. A key part of our construction is a nonseparable analogue of J T,
the James tree (cf. [3] or [4]). This space has the property that JT* is not
separable, yet JT contains no isomorph of ;. We recall the definition of JT
below during the proof of Lemma 2.

Notation. If X is a Banach space and (g,), ; S X, then by (g, , . ; We mean
the linear span of the set (g,), s, While [g,].; denotes the closure of guer
Also if L and M are subsets of N, the set of natural numbers, then | L| denotes
the cardinality of L. L =*M means |L\M|< o and LnM =°( means
|L M| < 0.

Other Banach space notation we use is standard and may be found in [5].

The definition of X.

LEMMA 1. There is a well ordered set I, < and a collection of infinite subsets
of N, (M,)xcy, such that:
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(1) If @ < B then either My <® M, or My N M, =°.
2 If McN, |M|=o0 then there is an o€l such that
M A" M,| = |MM,| = .

Proof. Let (S,), ., be the collection of all infinite subsets of N and let < bea
well ordering of J. For each « € J let M, be an infinite subset of S, with
|S.\M,| = co. We shall inductively choose I =J so that (1) and (2) are
satisfied. If o, is the first element of J, put o, in I. Let f € J and assume I has
been defined for all « < . If there is an a < f§ such that

@) 1S5 0 My| = [S5\M,| = oo,

we “discard” B. If no a < f satisfies (3), we put fin I.

Clearly (M,),., satisfies (1) by construction. If M = N, |M| = oo, then
M =S, for some BeJ. If eI, then |M N Myl = |[M\My| =c0. If B &1
then there is an a < 8 so that (3) holds and thus (2) is proved, Q.E.D.

We wish to thank M. Wage for showing us the proof of Lemma 1 and for
allowing us to reproduce here his argument.

Now define a new partial ordering < on I as follows: a < f if a < f and
M, <=* M, We note that (I, <)is atree (i, if fe I, {xel:a < pf}isa well
ordered set). Also every nonempty subset of (I, <) has at least one minimal
element.

Remarks. (1) The requirement that o < f in the definition of « < f is ac-
tually redundant. Indeed ifo, B € I, My =* M, and « > f then M, =* M zand
so M, = M. But then |S, n M| = |S,\M;| = oo and this contradicts our
definition of I in the proof of Lemma 1.

(2) In[2], R. Haydon used Zorn’s lemma to construct infinite subsets of the
integers (M,), ., satisfying (2) and such that if « # B then either M, <* M,,
M, =*M; or M, M =“0.The importance of Lemma 1 to us is the partic-
ular partial order it allows us to define.

By a segment B in I we shall mean a subset of I of the form

B=[a,fl={el:a<y<p

where o, f € 1. Let (g,),; be a linearly independent set of vectors in some
vector space. If (t,),.; is a finitely nonzero set of scalars, we define

() || X tada

axel

= sup

k 211/2
> ( Y ta) } : By, ..., B, are pairwise disjoint segments .

i=1 \aeB;

Let Y be the completion of {g,),.; under this norm (Y is the nonseparable
analogue of JT referred to above).
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For each a € I, let 1), be the indicator function of M, in [, and let
ha = (lMaa ga) € (loo @ Y)oo

Thus, for a finitely nonzero set of scalars (), e,

I tahall = max {3 talar, oo, |12 tada [}

Let X be the closed subspace of (I, ® Y), generated by (h,),.; and let B%
denote the unit ball of X*.

B¥% is not weak* sequentially compact.

For n € N, let F,(h,) = 1y,(n) and extend F, linearly to {h,),.,;. Then if

Z taha € <ha>ael,
|Fu( tahe)| = |2 talaa ()] < 12 b, o < 2 b

Thus F, has a unique extension to a norm one element of X* which we also
denote by F,. We claim that if M is an infinite subset of N, then (F,), c » does
not converge. Indeed by (2) there is an a €I such that |M nM,| =
|[M\M,| = oo. Thus, (F,(h,)),m does not converge.

X contains no subspace isomorphic to l,.

LEMMA 2. Every infinite dimensional subspace of Y contains an isomorph
of 1,.

Let us assume for the moment that Lemma 2 has been proved and that X
contains an isomorph of /;. Then there exists

en = (fn, gn) € <ha>ael

such that (¢") is equivalent to the unit vector basis of /;. By passing to a block
basis of (¢") if necessary we may assume that [ g"|| - 0 and (f")is equivalent to
the unit vector basis of [;. An easy application of Rosenthal’s characterization
of Banach spaces containing I, [6] yields a subsequence of (f™) (which we
continue to call (")) and real numbers r and  with 6 > 0 such that if

A,={meN:f"m)>r+6} and B,={me N:f"(m)<r}

then (A4,, B,)?-, is independent. This means that if F and G are disjoint finite
subsets of N, then

(\ A, () B,#0.

neF neG
In particular |4,| = |B,| = oo for all n. We can also suppose that r + & > 0 (if
not, multiply each ¢" by —1) and fix n large enough so that ||g"|| < r + 6. We
show that |4, | < oo, which is a contradiction.
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Let

e'= Z taha = ( Z talM,,, ZD taga),

aeD aeD

where D is a finite subset of I. Choose a finite subset G of N and M, < M, for
o € D such that if o, o’ € D are distinct, then

(i) M, M, =°0¢implies M, n M,, =0,
(i) M, <M, implies M, = M,,,
(iii) M,nG=0¢and M, =M, v G.

Let m € M, for some o € D. Then there exists a unique sequence
oy <ty <-r<a inD

such thatm € M, for 1 <i<kandm ¢ M,for o € D\{ay, ..., o,}. Consider the
segment B = [o;, o] in I. Then f"(m) = Y%_; t,, =Y s pt, Since ||g"| <r + 4,
f"m)<r+6 and so m ¢ A,. Thus A, < G is finite and we conclude that X
does not contain /.

To prove the lemma, we present a simplified version of our original argu-
ment, as shown to us by Y. Benyamini.

Proof of Lemma 2. We show that every infinite dimensional subspace of Y
contains an isomorph of an infinite dimensional subspace of JT and thus by [3]
an isomorph of I,. First let us recall the definition of JT. Let T = {2~ {0, 1}"
be a dyadic tree (i.e., if §, y € T with lengths n and m respectively then @ < y if
n < m and the first n terms of y form @). If x is a finitely nonzero scalar-valued
function on T let
1/2
[ x]| = max

k
3 (3, xor)
i=1 \QeB;
where the max is taken over all k and pairwise disjoint segments By, ..., B, in
T. JT is the completion of the linear span of all such x with this norm.

Now let Z be an infinite dimensional subspace of Y. We can assume that Z is
separable and that there is a countable set I, = I such that Z < [g,],« -

Let I, = {o € I,: a is a minimal element of I,} and for a countable ordinal ,
set

Iy = {a € I,: «is a minimal element of I\ I,}.
r<p

Since I, is countable, there is a countable ordinal a, such that Iy = | J<q I
Now, let B < a, be the smallest ordinal such that the restriction map to
Ju<p I, is an isomorphism on an infinite dimensional subspace of Z. (This
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map is defined as follows: For a finitely nonzero set of scalars (t,), < ,, define

R( Z taga) = Z ! L1Ga-
It is clear that |R| < 1.) et e

First, if the restriction map to I; is an isomorphism on an infinite dimen-
sional subspace of Z, then clearly [, imbeds in Z. (For instance, this case must
occur if B is a successor.)

If not, then a standard gliding hump argument shows the existence of a
subsequence n; < n, < --- of N, and normalized basic sequences (z;) = Z and
(v;) < Y such that

yielgiael {Isn; <8 <nj}

and |z; — y;|| <27/ for each j € N. (Thus, by a standard perturbation argu-
ment, (z;) is equivalent to (y;).)

We claim that [(y;)] is isometric to a subspace of JT. Indeed let y; € 9w uc D;
where D; is a finite subset of

U {Is:n; <6 <njiy}

and choose an order preserving injection Q: | /%, D;— T. Let x;€ JT be
defined by x (@) = y;(Q~'(@)) for @ € T. Then (x;) is isometrically equivalent to
(v; QED.

Remark. 1If (S, <)is any tree and (g,), . s are linearly independent vectors in
a vector space we may define a norm on g, . s by means of () above. Lemma
2 remains valid for the resulting Banach space if every nonempty subset of S
has a minimal element. In general it is false, however. For example if S is the set
of rationals with the usual order then corresponding Banach space can be seen
to contain ¢,.
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