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REDUCED E-SPACES

BY

A. J. LEDGER AND A. R. RAZAVI

E-spaces and reduced E-spaces were first introduced by O. Loos [10] in 1972
as a generalisation of reflection spaces and symmetric spaces. Loos proved that
if E is a compact Lie group then any E-space is a fibre bundle over a reduced
E-space which, in turn, is homogeneous. This raises several questions about
such spaces when the compactness assumption is removed. Our purpose in this
paper is to introduce and study other classes of E-spaces, essentially for the
reduced case. We hope that the terminology introduced here will prove to be
acceptable and so lead to some standardisation of language within the subject.

Basic properties of any reduced E-space M (defined by (Y. 1)-(E6))are given
in Section 1. Most of these are contained in [10] but, for completeness, we have
selected what is needed for our purpose and given a self-contained account.
Thus, properties of the group GM are due to Loos, as are Lemma 1.6 and
Theorem 1.7 which are fundamental. We have introduced tensor fields S as a
natural extension of the tensor field S defined on s-manifolds [2].

If M is a reduced E-space and E is compact then, by [10], GM is a Lie
transformation group ofM on which E acts by automorphisms, and the associ-
ated coset space is a reduced E-space isomorphic to M. An important step in
the proof is to show that M admits a particular affine connection. This connec-
tion can be characterised by two properties. In Section 2 we select one of these,
(E7), to define a reduced affine E-space, and the space is then called canonical if
the second property, (E8), holds. We consider such spaces with E possibly
non-compact; in particular, Theorem 2.7 gives a coset space presentation for
the canonical case. It follows, for the same case, that the group G is a con-
nected Lie transformation group ofM; this result is basic for l.ter applications.

In Section 3 we study the case when E is cyclic, and show that, as for
E-compact, such a space always admits the canonical connection. Further-
more, it is then, essentially, just an affine s-manifold. Other versions of these
results can be found in [7] and [13]. It should be noted, however, that the
compact and cyclic cases differ in their coset space presentation and we give
some examples in that direction.

Finally, Section 4 deals with reduced Riemannian E-spaces and, in Theorem
4.4, we obtain a coset space presentation which shows that the existence of an
invariant metric implies the existence of the canonical connection. Then by
Corollary 4.6 we see that E can always be compactified so as to extend its

Received May 22, 1980.

(C) 1982 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

272



REDUCED -SPACES 273

action on M. By means of this result we obtain a de Rham decomposition
theorem which relates to similar theorems for symmetric spaces and regular
s-manifolds.

1 Reduced E-spaces

Following O. Loos [10] we have"

DEFINITION 1.1. Let M be a smooth connected manifold, E a Lie group,
and p" M x E x M -M a smooth map. Then the triple (M, E, p) is a (differ-
entiable) E-space if it satisfies

(El)
(2)

,(, ,, )= ;
,u(x, e, y)= y;
,(, ,, ,(, , Y))= ,(, ,, y);
,(, ,, ,(y, , z))= ’(’0’, , Y), (’-’, ’(, ’, z));

where x, y, z M, tr, z E, and e is the identity element of E.
The triple (m, E, #) is usually just replaced by M. For each x M and tr E,

a diffeomorphism ax: M - M is defined by ax(y)= l(x, tr, y), and a smooth
map trx: M - M is defined by ax(y)= ar(x). With respect to the first of these
two maps the above conditions become

For each x M write E, for the image of E under the map E E,; a - a;
then from (E2)’, and (E3)’, E is a subgroup of Diff M and the map is a
homomorphism.
For E-spaces M and M’, we say a smooth map 4)" M - M’ i’s a homomor-

phism if

4(/(x, tr, y))=/(4(x), tr, 4(Y)) for x, y e M, a E,

or, equivalently, tp ax trtx) b. If tp has a smooth inverse then it is an
isomorphism, and if, in addition, M M’ then tk is an automorphism ofM;we
write Aut M for the group of automorphisms of M.

DEFINITION 1.2. For p M, any subgroup G of Diff M is Ep.-stable if
try, gtr, G for all g G and tr E; if this relation holds for all p M then G is
called E-stable. Similarly a (possibly non-effective) Lie transformation group of
M is E, (resp. E)-stable if its image in Diff M is E, (resp. E)-stable.

We remark that if, as in later sections, M and M’ carry additional structures then the above
definitions must be modified in the obvious way.
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LEMMA 1.3. Let p M and denote by Gt the subgroup of Diff M generated
by {trxtr" x M and a }. Then Gt is independent of the choice ofp. More-
over GM is a normal subgroup of Aut M and the groups GM and Aut M are
E-stable.

Proof For q M we have axaql= axav(aqa-)- so G does not
depend on p. Now each trx tr Diff M and by (E4)’

 xO;

"OxOp_ l(y)O’xO"p

Thus G is a subgroup of Aut M. Moreover, if tp Aut M then

so GM is a normal subgroup of Aut M. It follows easily that GM and Aut M are
E-stable.
For any smooth map ( between manifolds we again write b (or occasionally

(k,) for its differential. We also write 5f(M) for the Lie algebra of smooth vector
fields on a manifold M and denote by TM (resp. TM) the tangent bundle over
M (resp. the tangent space to M at x).

LEMMA 1.4.

Then
(i)

(ii)
(iii)
(iv)

For each (r E define a (1, 1) tensorfield S on the E-space M by

SXx aXx for all x M and X TxM.

S is smooth;
(SX) S-I(zxX) for tr, z ,, X 3(M), x M;
S is Aut M-invariant;
axXx (I a)X (I S)X.

Proof. (i) Define the smooth map/z," M x M M by

y)=

Then for any X 3(M) we have SX go, (0, X), where X and (0, X)are
regarded as smooth maps from M into TM (and T(M x M)) respectively. It
follows that SX is smooth and so S is smooth. Now, (ii) and (iii) are easily
proved, and (iv) is a consequence of (Z 1).

DEFINITION 1.5. A Z-space M is a reduced E-space if, for each x M,
(E5) TxM is generated by the set of all trx(Xx), that is

TxM gen {ax(Xx): Xx e TM and tre E}
gen {(I S)Xx X e TxM and a e E};

(E6) if Xx e TxM and axX 0 for all a e E then X 0, and thus no
non-zero vector in TM is fixed by all S.
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We now establish two key properties of M which are special cases of 10,
Lemma 2.5 and Theorem 2-6].

LEMMA 1.6. Let M be a reduced E-space and p M. Then there exists an
open neighbourhood V ofp and a map O: V- Gt such that

(i) O(p)= idt;
(ii) O(x)(p) x for x V;
(iii) the maps , P: V x M-M defined by (x,y)=O(x)(y)and

W(x, y)= (O(x))-’(y)are smooth.

Proof. It follows from (E5) that there exists a finite set tr 1, 0"2,’’ O’m such
that TpM= gen {im (I-S")p, i= 1, 2, ...,m}. Now, define a map
o" MmGM by

(, ,..., x)= (()x())(()()) ((),( )),
and a smooth map p: M M by

%(, ,..., )= (, ,..., )(p).

Writing q (p, p, p), we have (q)= p, and it follows, using Leibniz’s
formula [4, Chapter I, Proposition 1.4], that

,(x,, x,..., x=) Z (x,)
i=1

(1 S’)Xi for (X a, X:,..., X) M.
i=1

Thus (M) TM. Consequently, there is a submanifold U of M, with
q U, and an open neighbourhood V of p in M such that ] U" U V is
a diffeomorphism. Define O" V GM by 0 - x. Clearly O(p) id M, and
for x V, O(x)(p)= x. Finally, since " m x Z x m m is smooth, the two
maps of M+ M defined by

and

(,, :, ,,) ((,, , ,))-
are smooth, hence and are smooth as required.

THEOREM 1.7. Gt is transitive on M and is the smallest subgroup ofAut M
transitive on M and E-stable.

Proof. With the notation of the previous lemma, we have V c G(p)and it
follows that GM(p) is open for each p M. Hence GM(p) is also closed and so
Gu(p) M since M is connected. Next suppose a subgroup G of Aut M acts
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transitively on M and is E-stable. Then for each x M there exists g G such
that g(p)= x, thus, for each a E,

aotp)ap gapg g(apg ap
so GM c G and the assertion follows.

2. Reduced affine E-spaces

DEFINITION 2.1. An affine E-space is a E-space M together with an (affine)
connection V such that

(X7) V is E-invariant; that is, each a is an affine transformation.

Furthermore, V is called a canonical connection if

(E8) VS 0 for all a E.

We shall consider such spaces only for the reduced case and write (M, V) for
a reduced affine E-space. We say (M, V) (or just M) is canonical if V also
satisfies (E8). This terminology is justified by the following lemma.

LEMMA 2.2. A connection on a reduced E-space M satisfying ([;7)and (X8) is
unique and Aut M-invariant.

Proof Let V and V’ be two such connections on M, and define the smooth
tensor field D of type (1, 2) on M by

D(X, Y)= Vx Y- V’x Y for X, Y (M).
Writing Dx for the derivation defined by Dx Vx V, we have, by (E8),
(2.1) DxS 0 for X 6 At(M), a E.

Also, by (E7), ax(Dx Y)x (Doxx ax Y), so

(2.2) S(Dx Y)= Dsox(SY).
Then (2.1)and (2.2)imply

(2.3) O{,_s,x(S ) O.

Now S is invertible and it follows, using (E5), that Dx Y 0 for all X,
Y 5F(M). Thus O 0 and V V’ as required.
The invariance of the canonical connection V by Aut M is now easily proved

by showing that if b Aut M then the connection V’ defined by
V, Y tk- V,x qY satisfies (X7) and (E8) and so is just V. This completes the
proof.

For any reduced affine E-space (M, V)write A(M, V) for the Lie transform-
ation group of all affine transformations of (M, V) with respect to the compact-
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open topology [4, Chapter VI, Theorem 1"5].2 Unless otherwise stated, the Lie
algebra a(M, V) of A(M, V) will be considered as the Lie algebra of complete
infinitesimal affine transformations of (M, V)(cf. [4, Chapter VII). We denote
by Aut (M, V) the group A(M, V) c Aut M and consider some of its proper-
ties in the next lemma. First we remark that a diffeomorphism b of M, will be
called S-preserving if dp(SX)= S(rkX) for each X e (M) and a e E.

LEMMA 2.3. Let (M, V) be a reduced affine Z-space. Then
(i) gut (M, V) is the .qroup of all S-preserving affine transformations of

(M, V);
(ii) Aut (M, V) is a closed subgroup ofA(U, V)and then acts as a transitive

Lie transformation group ofM;
(iii} Aut (U, V)has Lie algebra aut (U, V)defined by

aut (M, V)= {X e a(M, V): .qxS" 0 for all a e Z},
where x denotes Lie derivation with respect to X.

Proof. (i) Clearly, by (iii) of Lemma 1.4, each e Aut (m, V) is
S-preserving.

Conversely, suppose e A(M, V) and is Sr-preserving. Then

Thus b-1 <r+<:> b and trx are affine transformations of M which fix x and
have the same differential at x, hence they are equal and b e Aut (M, V).

(ii) A(M, V) acts as a Lie transformation group ofM and hence ofthe (1, 1)
tensor bundle ’-(M). Since S" is a closed section of -(M) then the subgroup
of A(M, V) preserving S" is closed. Now Aut (M, V) is the intersection of such
subgroups for all tre X and so is closed in A(M, V). With its induced Lie group
structure Aut (M, V) then acts as a Lie transformation group of M. Finally,
Aut (M, V) is transitive on M because, by Theorem 1.7, GM is.transitive on M
and, by Lemma 1.3 and (Z7), GM Aut (M, V).

(iii) This is an immediate consequence of (i)and (ii).

Remark. If a reduced E-space admits a canonical connection V’ then, by
Lemma 2.2, Aut M Aut (M, V’) and so in that case Lemma 2.3 will apply to
Aut M; in particular, Aut M will be a Lie transformation group of M.

The next two lemmas describe some basic properties of Aut (M, V) and
aut (M, V). Note that we call any subspace m of aut (M, V) E-stable if
a,X m for each X m, a E, and if this property holds for all p M then m
is E-stable.

We remark that A(M, V) is second countable and hence, by [12, Chapter IV, Theorem VI],
A(M, V) has a unique topology as a Lie transformation group of M.
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LEMMA 2.4. Aut (M, V) is E-stable (cf. Definition 1.2) and, with respect to a
base point p M, Z, then acts as a Lie transformation 9roup ofautomorphisms of
Aut (M, V) or of any connected Z,-stable Lie subgroup G of Aut (M, V) by
r(g) apga; x. The induced action ofZ, on aut (M, V) (and on the Lie algebra (
of G) is 9iven by X - apX, so that ( is Z,-stable and aut (M, V) is E-stable, p
being arbitrary.

Proof. Since A(M, V) and Aut M are E-stable then so is Aut (M, V). Now
choose p 6 M; each a Y acts as an automorphism of Aut (M, V)by
4 --* tr, 4a- and the differential of this map acts on aut (M, V) by X - aX(recalling that elements of aut (M, V) are infinitesimal affine transformations).
Thus aut (M, V) is E-stable. Since dim aut (M, V) is finite it follows easily that
E acts as a Lie transformation group of aut (M, V). Then, for any neighbour-
hood U of the identity in Aut (M, V)on which exp- is defined (as a map), the
diagram

Ex U Aut(M,V)
J, id x exp- T exp

E x aut (M, V) aut (M, V)
is commutative; hence E acts as a Lie transformation group of Aut (M, V).

If G is any E-stable Lie subgroup of Aut (M, V) then by restricting the
action of 5; on Aut (M, V) to G we have a smooth map E x G Aut (M, V)
with values in G. If G is connected then it is second countable and hence
E x G ---, G is smooth [1, Chapter III, Section IX, Proposition 1]. Thus E acts as
a Lie transformation group of G. The last part of the lemma is obvious.

LEMMA 2.5. Choose p (M, V) and let be any Lie subaloebra ofaut (M, V)
which is E-stable and for which the map --, TpM defined by evaluation at p is
surjective. Define a Lie subaloebra I) and a subspace rn of by,

(x + a: x. 0},
m gen {X aX: a + E, X e g}.

Then
(i) I)={Xs:a,X=Xforalla
(ii) m is E-stable;
(iii) [I), m] = m.

Furthermore, if (M, V) is canonical then
(iv) g I) m (vector space direct sum).

Proof Following the method of Nomizu [11], let X a(M, V) and define
the tensor field Ax of type (1, 1) on M by

AxY=[X, Y]-VxY, Y
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Along any smooth curve on M with tangent vector field V, the pair (X, Ax)
satisfies the system of first order linear differential equations

VvX T(V, X)- ax V, VvAx R(X, V).
Hence (X, Ax) on is determined by its value at any point of . Since M is
connected it follows that X is determined on M by (X,, (Ax),).
We now show that if X 6 aut (M, V) then

(2.4) (Ax-ox + (VxS)S-) 0 for all a E.

Thus, for Y X(M),

Aox Y [a,X, Y] Vo,,x Y
-Vra,X- T(a,X, Y)

-Vo.-tX at, T(X, aT Y).

Then, using (iii) of Lemma 2.3,

(a. Y), -S*(Vs.- ,rX + T(X, S*-’ Y)),
So([X, S-’Y] Vx(SO-’Y)),
(IX, r] Vx Y s (Vxs- ’)
(Ax Y + (VxS)S-’Y),,

which proves (2.4).
(i) Clearly I) is a Lie subalgebra of , and if X I) then

(X at,X) (Ax_o) 0

so X aX 0. Conversely if X fl and X a,X 0 for all a 6 X; then, by
(X;6), Xp 0 so X s h.

(ii) m is Ep-stable because fl is Ep-stable and

(x x)=x (-1)x.
(iii) If X b and Y then, by (i),

IX, r- cr r] [X, Y] a,[X, Y] m,

from which (iii)follows.
(iv) If V is the canonical connection then (2.4) is just (Ax-), 0 since

VS 0. Then if X I) c m we have X= (Ax) 0 and so X 0. Also, by
(E5), if X g then

k

X y. (Xi %Xi) for some ri, X, X g, 1, 2, k.
i=1
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Hence

x x (x,- + E (x,-
i=1 i=1

=Y+Z
where Y t9 and Z m, which proves (iv).

Before obtaining an alternative characterisation of a canonical reduced affine
E-space we make the following definition.

DEFINITION 2.6. Let G be a connected Lie group, E a Lie transformation
group of automorphisms of G, and H a closed subgroup of G such that
(G)o c H c G, where

G={gG:a(g)=g for allaX}.
Then (G, H, Z) is a Z-triple if f# g ( m (direct sum) where m is the subspace
of G generated by

{X a(X): X + G and

This definition implies that G/H is reductive with respect to the decomposition
G H + m since, as an easy consequence of H c G, we have adH(m)c m.
Then G/H admits the connection of the second kind [5, Chapter X] which we
use in the next theorem.

THEOREM2.7. (a) Let (G,H,E) be a E-triple. Define M=G/H; let
v" G M be the natural projection, and set p v(H). Then M admits a unique
reduced E-space structure with the two properties:

(i) trp v= v a for each a Z
(ii) with the standard action of G on M as a Lie transformation group, each

element of G is an automorphism ofM and G is E-stable.
Moreover, (M, V) is then canonical where V is the connection of the second

kind on M.3

(b) Conversely, let (M, V) be a canonical reduced affine E-space with base
point p. Let G be any connected E-stable Lie subgroup ofAut M transitive* on M,
and let H be the isotropy subgroup of G at p. Then (G, H, E)is a E-triple for
which the map aH ---, a(p), a G is an isomorphism ofthe corresponding reduced
E-space structure on G/H with that on M.

Proof. (a) Suppose given (G, H, X;). Then (i) can be written as an(bH)=
a(b)H, and, by (ii), we requiretr(bH) art(a-b)H for all a, b G and tr X.

If, for a given (G, H, X;), G acts effectively on M G/H then clearly it acts as a Lie subgroup of
Aut M. However, by analogy, with the definition of a symmetric pair [3, Chapter IV] it is preferable
not to make this assumption.

4 For example the identity component (Aut M)o.
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Thus we have uniqueness of the E-space structure and accordingly define a
map

#’Mx,xMM
by

v(an, r, bn)= air(a-tb)H
(this is well defined because H GZ). Now it is easy to see that # is a smooth
map with properties (Z1)--(Y.4)so M becomes a Z-space satisfying (i)and (ii).
Note that G is E-stable since, by (i), it is Efstable and hence E-stable by
transitivity.
To prove (E5) and (E6), we first note that m is stable with respect to the

induced action of E on f; for if tr, z E and X (9, then

(X (X)) (X) -’(X) +

Next, if Y m satisfies a(Y) Y for all a E then Y g and so Y 0. It now
follows, using (i) and the above remarks, that (Z5) and (Z6) hold at p and hence
on M by the transitivity of G. Thus M is a reduced Z-space.

It remains to prove (ZT) and (Y8) where V is the connection of the second
kind on M. For each X f9 write for the corresponding infinitesimal affine
transformation of M. Then V is eharacterised by the condition

V, Y [., Y]n for all X m, Y (M).
Since an(.,() a(X), it is clear that each an preserves V at the base point p H,
and it follows from the action of G on M that each am is an affine trans-
formation. Finally, by (ii) above and (iii) of Lemma 1.4, each S is G-invariant
and hence VS" 0 since V is the canonical connection of the second kind.

(b) Conversely, suppose (M, V) is canonical with G and n as given in (b).
Let Y. act as a Lie transformation group of G by a(g)= trt, gtr- as in Lemma
2.4. Clearly Lemma 2.5 applies with (, replacing fl, I) respectively. Then, in
particular, g is the fixed point subset of (# under the induced action of
hence n (G)o Also

-ah=h for h Hcr,htr aptTh(p)

so H c GZ; thus (GZ)o c H c Gz.
Now define m as in Lemma 2.5. For X 6 f# and h 6 H we have

h(X cry,X)= h(X) tr,h(X) + m,

and it follows, using (iv) of Lemma 2.5, that M G/H is reductive with
f m. Thus (G, H, E) is a Z-triple. The isomorphism property is clear by
construction of the E-space structure on G/H; it is an affine transformation
since the canonical connection is unique. This completes the proof.

We remark that the canonical connection is complete since it agrees with
the connection of the second kind.
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COROLLARY 2.8. Suppose (M, V) is canonical with base point p and associ-
ated E-triple (G, H, E) as in (b) of Theorem 2.7. Let G’ be the subgroup of G
generated by {ga(g-1): g G and tr E}, let GM be the subgroup of Aut M
generated by all elements of the form trxtr for x M and a , as in Lemma
1.3, and let G" be the connected Lie subgroup ofG with Lie algebra f#" generated
by m. Then G’= GM G". Thus we may consider Gu as a connected Lie sub-
group of Aut M.

Proof. We identify M with G/H and use (a) ofTheorem 2.7, the Lie algebra
of G being regarded as the tangent space to G at the identity e. First note that
G’= Gu, for if a, b G and a e E then

aa(a- ’)(bH} aa(a- ’a- ’(bH}) CranCrff ’(bH).

Next, G’ is a Lie subgroup of G. Thus, for any (piecewise smooth) curve in G,

and, as an easy consequence, G’ is an arcwise connected subgroup of G, hence a
Lie subgroup [4, Appendix 4]. Moreover, " is a subalgebra of ’, for if is a
curve in G with prescribed tangent vector X at e then the curve- V(t)a((V(t))- ) in G’ has tangent vector X a(X) at e. Consequently, G" is
a Lie subgroup of G’.

Finally, we show that Gu c G". Now m projects onto TM so the orbit G"(p)
is open in M. But G" is a normal subgroup of G since (", being ad H-stable, is
an ideal in (; it results that every orbit of G" is open and G" is transitive on M.
Furthermore, m is stable under the action of E on , so G", as a subgroup of
Aut M, is E-stable and hence E-stable being transitive. Then, by Theorem 1.7,
Gtc G".
We complete this section with an example of a E-space of the form
M G/H, where E acts as a Lie transformation group of autbmorphisms of G
with (G)o c H c Gz and M admits a Eu-invariant (and G-invariant) connec-
tion but is not a reduced E-space.

Example. Let G be the identity component of

0 u v 6SL(3, R)
0 w

and H its Lie subgroup of matrices of the form

1 0 x)0 1 y
0 0 1
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Define E to be the group of inner automorphisms Ih of G for all h H, then E is
isomorphic to H and (G)o H. It can be seen that

a/t = {X a(X): X + <-# and tr + E}
so (G, H, E) is not a E-triple. However, as the proof ofTheorem 2.7(a) shows, #
is well defined so that M G/H is a E-space with G acting effectively.
Moreover, a G-invariant connection can be defined on M as follows. Define a
direct sum decomposition of ( by (# t )m where

m

and identity m with R’ by

0 u 0 "x+u+w=O
0 t w

x y O)
x

0 u 0 -o Y
0 w

The isotropy representation 2: H GL(4, R) is then given by

2(h)(X) (Ad (h)X) for X m,

and the induced Lie algebra homomorphism, also denoted by 2, is just
2(X)(Y) [XY],, for X e g, Y m. Define A: G gl (4, R) by

Then

and

0 0 0 0

A(X)= 0
0 X
0

A(X) 2(X) for X + ocg,

A([X, Y])= [A(X), A(Y)] for X

Hence, by [5, Chapter X, Theorem 1.2], there exists a G-invariant connection
on M. Such a connection is also Y. invariant. For let tr In and a G. Then
for b G, aaa(bH)= art(a-b)H aha-bH, so tr t,a- where for x G,
t is the affine transformation M-o M; bH- xbH. The E-space M is not
reduced, since

(Ado (h)X),,,=X forX= 0 u 0
0 0 w
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so (Z6) is not satisfied. Also, in this case the connection is not canonical, for it is
easily seen that if (8) is satisfied then

(Ad h)(A(X))= (A(X))(Ad h) for h + H, X + m;

but the equation is not satisfied when, for example,

h= 0 1 1 andX= 0 0
0 0 1 1 0

3. Cyclic reduced Z-spaces

In this section we consider the case when E is cyclic with a generator denoted
by a, unless otherwise stated, and we call such spaces cyclic reduced E-spaces.
They are shown to be in one-to-one correspondence with affine regular s-
manifolds. Moreover, as for the case of Z compact, it results that a cyclic
reduced E-space always admits a canonical connection. We first recall the
following"

DEFINITION 3.1. A regular s-manifold is a connected manifold M together
with a map s from M into Diff M such that

(i) each point x e M is an isolated fixed point of the corresponding
diffeomorphism s(x) (written as sx);

(ii) s, sr ssx<r) sx for all x, y e M;
(iii) the (1, 1) tensor field S on M defined by

SXx= sxXx forxeM, Xxe TxM
is smooth.
For each x M, s, is called the symmetry at x and S is the symmetry tensor

field. If, in addition, a connection V exists on M such that each symmetry is
affine then M is an affine regular s-manifold [2], [9].

We now prove a lemma for arbitrary reduced Z-spaces although it will be
used here only for the cyclic case.

LEMMA 3.2. Let M be a reduced Z-space for which there exists a map
L: TM --..(M) such that, for each a Z, p, x M and Xv TvM,

(i) L TvM is linear;
(ii) a,,L(Xv)= L(aXv), (L(Xv))v Xv.

Then M admits a Evrinvariant connection. Moreover, M admits a canonical
connection if and only if a map L: TM -+ X(M) exists satisfyina (i), (ii)and

(iii) <x)S O, for each Xv TM.
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Proof. Suppose M satisfies (i) and (ii), and for each Xv TM and
Y 3(M), define

(3.1)
Then

Vx, Y= [L(Xv), Y]v"

cr(Vxv Y)= [axL(Xv), crx Y],(v)

(3.2) V,xtr Y.

We now use the map : V x M M defined in Lemma 1.6 to prove that a
smooth connection V is given by (3.1); the linear properties ofV are clear. Since

is smooth and (x, p)= x for x V, it follows that for each X TM a
smooth vector field X’ satisfying X=X is defined on V by
X (0, X) O(x)Xp. Then, from equation (3.2) and the definition of O(x)
we have,

Vx, Y O(x)Vxv(O(x))- Y

which is clearly a smooth vector field on V. Also vector fields X’ as above
generate (V), and the smoothness of V is an easy consequence. Finally V is
Eu-invariant by (3.2).
We next note that if the above map L also satisfies (iii)then (M, V)is

canonical since, by (3.1), for each Xv

Vx,S" (ux)S’)v O.

Conversely, suppose (M, V) is canonical and let Xv TvM. Then, by (ES) and
the transitivity of Aut M, we have

k

Xv (X- av(X))v for some a 6 Ev, X 6 aut M, i= 1, 2, k.
i=1

Writing
k

E (x,-
i=1

we see that L(Xv)is unique since (L(Xv))v Xv, (A(x,))v 0, and L(Xv)is an
infinitesimal affine transformation. Thus L: TM (M) is defined and clearly
satisfies (i). Property (ii) follows easily, and (ii) is a consequence of (iii) of
Lemma 2.3 sin L(Xv) aut M. This completes the proof.

THEOM 3.3. Any cyclic reduced E-space mits a connection satisfyin#
(E7) a (ES), a is then an affine regular s-manifold. Conversely, every affine
re#ular s-man,old is a cyclic reduced E-space. In each ce the correspoence is
just
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Proofi Let M be a cyclic reduced Z-space. Then I S is invertible, for it
follows from (X;6)and the cyclic property of X; that (I- S*)X,= 0 implies
Xp 0; hence (E5) is redundant. Now define maps K, L" TM ---, (M) by

and

L(X,) K((I S*)-tX) for all p, x M.

Clearly (i) of Lemma 3.2 is satisfied. Also (ii) holds because

-t(I S’)-taxX (by Lemma 1.4)

and, secondly, (L(X)) a(I S*)-tX X. Hence, by mma 3.2, a con-
nection V is defined on M. We next show that, for X TM,
K(X) aut (M, V). Now Aut (M, V) is transitive on M so each X can be
extended to some X aut (M, V) generating a 1-parameter group $ in Aut M.
Then for all x M, a$,(x)= $,a,_,t(x). It follows from Leibniz’s formula,
that

which implies

tTpX Xtr(x) tTXXp,

X a,X K(X,).
Then, by Lemma 2.4, K(X,) aut (M, V). It is immediate that
L(X) aut (M, V) hence .txS 0 proving (iii) of Lemma 3.2. Thus V is
the canonical connection on M.
To show that (M, V) is an affine regular s-manifold with s, try,, let p M

and let U be a normal neighbourhood of p. Since I S is invertible, it follows
easily that p is the only point in U fixed by try. Thus (i) of Definition 3.1 is
satisfied. Also (ii)and (iii)are immediate by (X;4)’ and Lemma 1.4.

Conversely, let M be an affine regular s-manifold, and let E be the discrete
group isomorphic to the cyclic group generated by s for a fixed point p M.
Note that E is independent of p since, by [8], if x X then there is a diffeo-
morphism b of M such that

q(p)=x and s=bos,ob-:.
Now define V: M x E x M ---, M by/(x, trk, y) sk(y). The smoothness of/ is
proved in [9] for the Riemannian case but the same proof applies here. Then
(Y.1)--(E4) are immediate. Also I S is invertible, as follows easily by using (i)
of Definition 3.1 for a normal neighbourhood, as above. (X5)and (Y6)are
clearly satisfied and the proof complete.
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Let G be a connected Lie group, Z a Lie transformation group of automor-
phisms of G and H a subgroup of G such that (G)0 c H c G. Then it can be
shown [10] that, if E is compact, the conditions ofTheorem 2.7 always apply so
that, in particular, G/H has the structure of a reduced E-space. However, this is
not true when is cyclic as we now show.

Example.

Let

Let G SL(2, R) and H its Lie subgroup of matrices of the form

and let Z be the cyclic group of inner automorphisms ofG generated by a. Then
H G (G)o and G acts effectively on G/H. As in the proof of Theorem 2.7,
G/H is a Z-space. However, it is not reduced; thus for example

is fixed modulo A by the induced action of E on f and hence its (non-zero)
image at the point H G/H is fixed by S" which clearly contradicts (E6).

Again, one might conjecture from Theorem 3.3 that ifM is a reduced E-space
there always exists tr E such that, with respect to the group E’ generated by
M is a cyclic reduced E’-space, or perhaps that M is a regular s-manifold with
respect to some tr E. A counterexample to both conjectures is as follows.

Example. Let M Ra, X {e, tr, z} where tr2 z2 (trz)2 e, and define
M x E x M M;(x, a, y)-, trx(y by

ax(Y) (Y, 2x2 Y2, 2x3 Y3)
(y) (2 y, y, 2 y).

e(y) y, (az)(y)=

It can be seen that M is then a E-space. Moreover, it is reduced because if

= (v, v:, v)z TM then

4v (v s-v) + (v s)+ (v
and no non-zero vector is fixed by S", S and S. However, S", S and S" each
fix some vector at p. Also, taking p the origin in R3, it follows from the
linearity of that p is not an isolated fixed point of a, z or (az). Thus
neither (6) nor (i) of Definition 3.1 can be satisfied by selecting one element
of Z.
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4. Reduced Riemannian X-spaces

DEFINITION 4.1. A Riemannian Z-space is a E-space M together with a
EM-invariant (Riemannian) metric #, that is, a metric for which each ax is an
isometry. An RE-space is a Z-space which admits such a metric. 5

We consider these spaces only for the reduced case, and (M, #) will denote a
reduced Riemannian E-space.

Remark. (E5)is now a consequence of (X;6). For at pc M, let
V gen {X S*X: X TM and a X;}, and suppose g(V, Y)= 0 for some
YTM. Then for all XTpM and aZ,, g(Y-SY,X)=g(Y,
X S*X)= 0 so Y 0 by (E6). Thus V TM proving (X;5).
We write I(M, ) for the Lie transformation group of all isometries of (M, g)

with respect to the compact-open topology, and define Aut (M, g)= Aut
M c I(M, g). Now I(M, g) is a closed Lie subgroup of A(M, V) where V is the
Riemannian connection on (M g), and clearly an affine reduced E-space struc-
ture is induced on (M, V). Then, with slight modifications, Lemma 2.3 and 2.4
apply to the Riemannian case. In particular (ii) of Lemma 2.3 is true for
Aut (M, g) and so it will be considered as a closed Lie subgroup of I(M, g).
Now write i(M, ) and aut (M, g) for the Lie algebras of I(M, g)and
Aut (M, g) respectively. Then in order to avoid repetition we simply state:

LEMMA 4.2. Lemmas 2.3 and 2.4 remain true with Aut (M, V), aut (M, V),
a(M, V) replaced by Aut (M, g), aut (M, g), i(M, #)respectively.
We remark that G Aut (M, #) as a consequence of Definition 4.1.

DEFINITION 4.3. Let G be a connected Lie group, H a closed Lie subgroup
of G, and E a Lie transformation group of automorphisms of G. We call
(G, H, E) an RE-triple if

(i) (GZ)o c H c

(ii) the subgroup ofAut G generated by ad H and Z. has compact closure
in Aut G, where Z. is just the image of Z under its differential representation
on G.
We now obtain the following analogue of Theorem 2.7.

THEOREM 4.4. (a) Let (G, H, E) be any RE,triple. Then it is a E-triple, and
the corresponding reduced E-space M G/H is a reduced RE-space admitting a

EM-invariant and G-invariant metric.
(b) Conversely, suppose M is a reduced RE-space with base point p. Let g be

any Y.u-invariant metric on M, G any connected Z-stable Lie subgroup of
Aut (M, g) transitive on M,6 and H the isotropy subgroup of G at p. Then
(G, H, E) is an RE-triple for which the isomorphism property in Theorem 2.7 is

satisfied.

Clearly, a similar distinction can be made for the affine case.
For example, (Aut (M, g))o.
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Proof. (a) Let (G, H, E) be an RE-triple and let K be the closure of ada H
and E. in Aut f. It then follows that K() t. Also, since K is compact, there
exists a K-invariant positive definite quadratic form ( ) on fg. Let

m gen {X a(X): X f# and a E}.
We show that f9 has the orthogonal decomposition f# i) m. Thus for all
X c, y e ,, and a E, we have

<X a(X), Y <X, Y <X, a-l(y)> 0

so and m are orthogonal subspaces of f#. Also, ifX G is orthogonal to
and rn then for all Y e ( and a E,

(X a(X), Y> (XY (X, a-
<X, Y a-(Y)>

-----0.

Thus X a(X) 0 for all a Z, and as X is orthogonal to we have X 0
by (i). This proves the orthogonal decomposition of ( and shows that
K(m) m. In particular, ad H(m)= m so (G, H, Z)is a Z-triple. Now apply
Theorem 2.7 to obtain M G/H as a reduced Z-space. It is standard that the
restriction of < > to m gives rise to a G-invariant metric on M and it
follows easily that is also Zu-invariant, the proof being similar to that for the
invariance of V in Theorem 2.7(a).

(b) Conversely, suppose M is a reduced RE-space with G, H and as given
in (b), and with Z acting on G as in Lemma 2.4. Then (i) of Definition 4.3
follows as in Theorem 2.7(b). To prove (ii), let H’ denote the closure in I(M, )
of the group generated by H and Z,. Then H’ is compact, and it is easy to see
that f is invariant by ad H’, the image of H’ under its adjoint representation
on i(M, 9). Then the restriction of ad H’ to (9 is a compact subgroup of Aut (
containing adH and Z,, and (ii) of Definition 4.3 follows immediately. The
isomorphism property holds as in Theorem 2.7 and the proof is complete.

COROLLARY 4.5. Any reduced RE-space M is canonical and, for any
Et-invariant metric #, V# 0 where V is the canonical connection.

Proof. For a given / there exists an RE-triple (G, H, Z) as in Theorem
4.4(b) and then, by (a), it is a Z-triple. Hence, by Theorem 2.7, V exists on M.
Moreover, since it is the connection of the second kind and g is G-invariant,
then V9 0 as required.

COROLLARY 4.6. Let M be a reduced RE-space. Then there exists a compact
Lie #roup Z with respect to which M is a reduced REC-space such that

(i) for each x M and a
(ii) every Zu-invariant metric on M is Z-invariant.
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Proof Let I (’]ga I(M, 9) where A is the set of all Einvariant metrics
on M. It is easy to see that I is a dosed subgroup of each I(M, 0). Moreover,
since each I(M, 9) has the compact-open topology the induced Lie group
structure on I is independent of the choice of I(M, 9). Now Gt c I, hence I is
a transitive Lie transformation group of M. Choose p M and let K be the
isotropy subgroup of I at p. Then K is compact and Z, c K. Hence the closure

E _of E in K is compact. In order to standardise notation, let Z be the image
of E in I under inclusion. Then we can write the inverse map as-- ’[p.
Now define the closed Lie subgroup G of I by G (I Aut M)o; G is

Efstable and hence fstable by continuity. Also G is transitive on M. Let H be
the isotropy subgroup of G at p. Then H is compact since K is compact. Next
choose a metric connection associated with some 0 A. Now the first part of
the proof of Theorem 2.7(b) does not use the canonical property of a connec-
tion and so can be applied here since the metric connection is invariant.
Thus we have (G)o H G. Then G’ {a G" a, aa a for all a Ec}
clearly satisfies (G)o (G)o, and, by continuity H G as a consequence of
H G. Thus (G)o c H G.
Now G is a closed subgroup of I with c acting on G by a - a,a , also c

and H are compact. Hence (G, H, ) is an R-triple. Thus, by Theorem 4.4, M
is a reduced R-space for which (i) and (ii) are clearly true, and the proof is
complete.
We now prove a generalisation of the de Rham decomposition theorem for

symmetric spaces [5, Chapter XI, Theorem 6.6] and, more generally, Rieman-
nian regular s-manifolds [6, Theorem 3].

THEOREM 4.7. Let (M, 9) be a simply connected Riemannian reduced
E-space7 and let M Mo x M x x M, be its de Rhamdecomposition where
Mo is Euclidean and Ma, M2, M, are irreducible. Then each factor is a
Riemannian reduced Z-space where Yi is a closed Lie subgr.oup of Y, offinite
index.

Proof We consider the cases E compact and E non-compact separately.
First some general remarks. Choose a base point p s M and let

V,

be the orthogonal decomposition of T,M with respect to the linear holonomy
group (p). Now each a is an element of the isotropy group at p and so
normalises ,(p), that is S(p)S"-= (p). Thus each S" preserves the above
decomposition of TM except possibly its order, also S(Vo)= Vo. For each
i= 0, 1, r, define

Z {(r Z: S(Vii)= V/} and Z, {a, Z,: a Z}.

(M, 0) is complete since it is homogeneous [4, Chapter IV, Theorem 6.2].
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Clearly, Zo Z and each E is a closed subgroup of E; moreover, it follows
from the previous remarks on S that each X has finite index in E. Let M be the
totally geodesic submanifold of m with T/r V. Then Z(/r)= i. Now
Gu is connected and transitive on M and for each we set

G, { G: $(i) i}.
Then G, G IO(i) and is transitive on . Let x i and choose
SsG, such that $(p)=x. Then for aE, a=Oa$-t and so
a(M) (M). It follows easily that, for each i, the map

,,. x, (x,
is smooth; thus each M is a Riemannian Ecspace with respect to the induced
metric. It remains only to prove (E6) for each (cf. the remark following
Definition 4.1).

Ce (i) Suppose X is compact. Let da (resp. da) denote bi.invariant Haar
measures on

and, by (X6), S*(X)da 0. Now suppose E has index k in E. Thus there
exist z, z2, z E such that

(4.1) SZ
Let X G; then as a special case of [3, Chapter X, Theorem 1.7] we have, for
suitable measures,

k

o s (x) s

Hence, by (4.1), z, S*’(X) da 0, and it follows that if S*’(g)= X for all
a Z then X 0. By using G, we see that the same property holds at each
point of and hence (Z6) is satisfied on ,, as required.

Ce (ii) Suppose Z is non-compact. Then, by Corollary 4.6, (M, g) is a
reduced Riemannian X-space. Moreover,
Now, by Case (i), the action of Z on has no fixed vectors and it follows
immediately that the same must be true for Z, which completes the proof.
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