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TOWARDS A CLASSICAL KNOT THEORY
FOR SURFACES IN R’

BY

COLE A. GILLER

A tried and true method of knot theory in R3 is to study a knot K by means
of its projection onto some 2-plane. Such a projection is easy to draw, and by
keeping track of which crossings (i.e., singular points of the projection)
represent under- or over-crossings, we lose no information about K. In fact,
the early knot theorists showed how to use projections not only to manipulate
knots (e.g., Tietze moves) but also to calculate various knot invariants (e.g., 71).
More recently, J. H. Conway [1] has used the following fact to develop
efficient and powerful methods of computing Alexander polynomials:

Fact 1. Any knot projection is the projection of an unknot obtained by
changing overcrossings to undercrossings or vice versa as necessary.

In particular, Conway computes the effect on the Alexander polynomial as a
crossing is changed, and develops a rich recursive hierarchy useful in several
contexts. A careful exposition of these ideas and some applications may be
found in [2].

In this paper we ask how far a similar program may be pursued for oriented
surfaces knotted in R#. Specifically, we prove that (after isotopy) any
embedded surface may be projected to an immersion in some 3-plane; we give
a necessary and sufficient condition that an immersed surface in R3 lift to an
embedding in R#; and we give a notion of crossing change allowing an
analogue of Fact 1. The relevant Alexander invariant is then defined, and we
give an example of its calculation using projections.

I would like to thank Robion Kirby for much patient advice and
encouragement, John Hughes for many helpful discussions, and the referee for
valuable comments and suggestions.

0. Motivation and statement of results

In classical knot theory, the embedding of a circle f: Sl R3 is studied by
means of the immersion fo obtained from composition with projection onto a
2-plane"
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f
S ( R3

For example, the operation of changing a knot crossing can be viewed as the
result of first projecting to a 2-plane and then lifting the obtained immersion
to a slightly different embedding (Fig. 1).

FIG.

We wish to carry out an analogous study of knotted surfaces in 114; i.e., we
wish to study embeddings f: F R4 of an oriented surface F by studying the
immersionfo obtained by composition with the projection"

f
F C R4

However, given any embeddingf, it is by no means immedigte that there is a
suitable 3-plane from which to obtainfo, and conversely given an immersionfo
it is not clear when there is a corresponding embedding. Accordingly, we later
give the following results in the case F is oriented"

Result I (Theorem 5). The embedding f may be changed by an isotopy so
that projection to some 3-plane gives an immersion.

Result 2 (Section 2). There is an algorithm which determines precisely
when any given immersionfo lifts an embeddingf.

These results will be proved in Sections 2 and 3. The proof of Result 1 is
surprisingly difficult.

Using the algorithm of Result 2, in Section 2.2 we give an example of an
immersion in 11 of oriented surfaces of arbitrary genus which do not lift to an
embedding in 114. We also note in Section 3 that Result 1 is false for
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non-orientable surfaces by showing that no embedding of RP2 in R’ projects
to an immersion in Ra (and so no immersion of RP2 lifts to an embedding in
114).

Kinoshita in [6-1 has sketched a computation of n(S -f(S2)) from fo and
the subsequent calculation of an Alexander polynomial via the Fox calculus,
but must assume without proof thatfo is in fact an immersion.
Although we now have the machinery with which to study embeddings in

R4 via immersions in 13, we wish to do more. Recall the basic knot theoretic
fact used by Conway that any link can be transformed to the unlink by
changing a finite number of crossings, and that abelian invariants can be
calculated at each crossing change. We will investigate the analogous situation
for embedded surfaces in R’ by defining a notion of crossing change which will
transform any embedding into a trivial one.

Let us first reconsider the case of a knot in 13. To say that a knot K can be
changed to another knot K2 by changing crossings is to say that there is a
regular homotopy ht from K1 to K2. The stages ht which are not embeddings
correspond to crossing changes (Fig. 2).

hi_ h, h,+

FIG. 2

Now define H: Sx I---Ra x I by H(x, t)=(h,(x), t). After making H
transverse, we see that H(S x I) is immersed in R x I and hence has only
isolated point self-intersections. Each of these self-intersections corresponds to
the stage in the homotopy h when the knot is passed through itself. Thus Fact
1 can be restated as follows: any knot can be changed to the unknot by a
sequence of isotopies (corresponding to the stages of h between singular points
of H) and passages through singular points of H (corresponding to crossing
changes).

In the case of an embedding f: F2--- R’ and a regular homotopy ht off, we
define H: F x I-- R4 x I exactly as above. Now, H(F x I) is an immersed
3-manifold in R4 x I having as self-intersection set an immersed 1-manifold J.
Thus, any regular homotopy off can be accomplished by a series of isotopies
of immersions and appearances of the 0-handles, 1-handles, and
self-intersections of J.
To state the analogy of Fact 1 in this setting we use the following theorem

of Hirsch I-3, Theorem 8.2]:
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THEOREM. The reoular homotopy classes of immersions fo: F2k-’+ Ra’k are
classified by the normal bundle offo, i.e., are in one-to-one correspondence with
the 2k-plane bundles v over F such that v TF e,4k. The correspondence is

fo " the normal bundle offo(F) in R’k.

However, it is well known that any embedding of F2 in R4 has trivial
normal bundle, and so we have:

Fact 2. Any embedding of F in R4 can be transformed to any other by
regular homotopy, or equivalently, by a series of isotopies of immersions and
appearances of the 0-handles, 1-handles, and self-intersections of J. In
particular, any embedding can be so transformed to an embedding in Ra

_
R’

with trivial unknotted image.:

Accordingly, in Section 4, we define our notion of crossing change and
prove Fact 2. A crossing change will not necessarily transform an embedding
into an embedding but may introduce self-intersections. This is demanded by
the fact that J is a 1-complex.
Thus we have the desired fact, but we wish to go yet further. For knots K in

Sa recall that there are standard ways of constructing the infinite cyclic cover
of S3- K given a Seifert surface for K and likewise of computing Ak(t). In
Section 5 we show that these methods may be applied to embeddings
f: F--, R’ in the case that the associated immersionfo has no triple points. We
give an example of a computation of A(t) of a spun knot, and leave the case of
triple points to a future investigation.

1. Preliminary definitions and conventions

This chapter is a hodge-podge of notions which will be needed later.
F will always denote a closed, oriented 2-manifold unless otherwise stated.

The symbol will be used to denote a diffeomorphism or isomorphism,
whichever is appropriate. We write f: Md- N to indicate that f is an
immersion.

DEFINITION. Let G be a graph, i.e., a union of immersed circles st. Then the
st are called the transverse components of G.

DEFINITION (Movies). Let A_ R4= Rax R and let p: R’--* R be the
projection. Write A for A c p- (t). Then a moviefor A is a sequence of pairs

(aa, A), (a3, A), (Ra, A,), (Ra, A,,), (R3, A_ ), (R3, A_ ), (R3A)
such that

(1) p(A) =_ (t, t), and
(2) A c p- l(t, t + 1) - As, x (0, 1), where st (t, t+ 1).
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Thus a movie in a record of successive Ra-sections of A. We will write

Evidently, two spaces A and B are isotopic in R’ if and only if they have
identical movies.

In most cases, our movies will be of handle additions to surfaces in R4. For
example, Fig. 3 is a movie of a torus in R’.

Ft6. 3

We sometimes refer to the Ra-sections as snapshots.

DEFINITION. Let fo: Mo--N be an immersion. A homotopy of f,
h: M x I--- N, will often be written as f, where f(x)= h(x, t). A regular
homotopy offo is such a family of maps f,, each of which is an immersion, and
such that the map H: M x I N x I defined by H(x, t)= (f(x), t) is an
immersion. An isotopy of fo is a regular homotopy of fo such that the
homeomorphism type of (N, f(M)) does not change as t varies over 1.

DEFINITION. Let f: F R4= Rax R be an embedding of F, and let
rt" R4 Ra be the projection. If fo rt of is an immersion we say that f
projects to an immersion and thatfo lifts to an embedding.

DEFINITION (Pushing). Let A be a simplicial complex embedded in F with
regular neighborhood N, and let fo: F,+- Ra be an immersion. Let : A R be
any continuous function, and extend y to F by setting (F- N)= 0 and
extending over N such that (dN)= 0. Then we say that the ’map f: F R4

defined by f(x) (fo(x), (x)) is the result of pushing A into R according to .
Note that ),(x) may be positive, negative, or zero. A non-zero push of A
(respectively, positive, negative push) will be a push in which 4= 0 (respectively,
>0, <0).

DEFINITION. Given an immersionfo" M-- N, let

St {x M lfff l(fo(x)) contains at least points)

be the ith singular set offo, and let S Ui> St be the singular set offo. Note
that S M. We call fo(S)= the ith singular value set and fo(S)= " the
singular values offo.

All immersions will be assumed transverse; i.e., each St is assumed immersed
in M and hence each ’ immersed in N. In fact, each St is transversally
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immersed in S_ (i.e., the inclusion $ $i_ is transverse) and hence g is
transversally immersed in $-_ (although not in N). For fo(M) has transverse
self-intersections, and so each x g is contained in a neighborhood B

_
N

such that

(B, g,, x) - (n, X, c , O)

where B" is the unit ball in R and Xt is the union of coordinate planes of
dimension m. But then the pullback underfo of the pair

(S--1 n B, S- r B) (Si_l f X(B), St f- X(B))
must be homeomorphic to the corresponding pullback for the standard
immersion (B, X), and hence must be a transverse pair. Since any point in S
lies in some f(x)(x gt), St must be transversally immersed in St- as
claimed.

2. Lifting immersions to embeddings

In this chapter we give an algorithm which determines precisely when a
given immersion of an oriented surface in R3 lifts to an embedding in R.

1. A Liftin# Criterion. Let fo" F- R3 be an immersion of the closed
oriented 2-manifold F with singular set S

_
F and singular values " =fo(S).

We will assume that S and are immersed closed 1-manifolds in F and R3

respectively, and that S is transversally immersed. Then each point x in a
transverse component of has two distinct preimages (although the
preimage of may have only a single component).

Furthermore, each point x 6 has one of the neighborhoods N(x)-fo(F)
immersed in R3 shown in Fig. 4.

or

FIG. 4

Thus a neighborhood of in fo(F) is an immersed copy of

[0, 1-1 x X/(O, X) (1, X),

where X {(x, y) R21xy 0 and X2" y2_< 1} and is some homeo-
morphism of X.
For example, if is a figure eight, then a possible N() is given in Fig. 5.
Since F is oriented, it is easy to check that must be the identity, so that

N(g) is an immersed S x X. Thus N(g) is the union of two distinct immersed
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FIG. 5

annuli A and A-, and A =ffft(A) and A, =fffX(A-) are distinct annuli
immersed in F. Let A A w A’ be the regular neighborhood of $ in F.
Since s (resp. s’) is the core of A (resp. A’), we have:

COROLLARY 3. For all transverse components s of S, s :/: s’ (i.e., each
transverse component of has two distinct preima#es in S). I
Now, S is immersed in F and so is a 1-complex with vertices ax, a and

edges % joining a and a. Let e be the edge identified to eo byfo, and denote
the endpoints of e’o by a’ and a). Then Corollary 3 shows that eo 4: ej and that
eo and e may intersect only at their endpoints.
Our algorithm is based on the following proposition:

PROPOSITION 4. There is an embeddintf F-. R coverinl a tiven immersion

fo if and only if there is a 1-1function y: {at,..., a}- Rsuch that

(1) (ceo) _> (cej) or y(cOeo) _< (e;j);

i.e., is #reater on both endpoints of one edge than on either endpoint of the
other.

Proof. Define h: S {a, ak}-- S {a, ak} by h(x) y if and only
iffo(x) fo(Y). Note that h(eo) e.

Suppose y exists. For convenience write e for eo and e’ for e;. We will show
that may be extended to e and e’ so that for any x e , y(x) > h(x) (resp.
for all x , y(x) < h(x)).
Now, e and e’ are either homeomorphic to intervals or circles and may

intersect only at their vertices. If e and e’ are disjoint, then (1) ensures that
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can be extended as desired. The only remaining cases are the four in Fig. 6.
But in each case it is easy to see that (1) again ensures that y exists. In
particular, for any x , y(x) 4 h(x). Thus if x e e, y e e’ with fo(x) fo(Y),
then y(x) y(y) unless x y e e c e’.

e e’

FIG. 6

Now push S into R’ according to y, to obtain a mapf (fo, Y) (see Section
1). We claim that f is 1-1. For suppose that x and y are distinct points of F
with fo(x)=fo(Y). If x for some e as above, then y e , and so by the
previous discussion y(x) 4= y(y); thus f(x) 4= f(y). If, however, x is a vertex of $
then so is y; let z be the third point infff l(fo(x)). Then locally near x, y, and z,
S appears as three crosses identified to , shown in Fig. 7, where the edges
labeled 1 (resp. 2, 3) are identified by fo. Clearly there is an e as above with
x e Oe and with y e Oe’. But then the preceding argument shows y(x) 4= y(y). In
all cases, then, f(x) 4 f(y), and sofis the desired 1-1 embedding covering fo.

FIG. 7

z

Remark. y is nothing more than the restriction to f(F) of the projection
p" R’---} R. This part of the proposition shows that specifying a ), on S
satisfying the consistency conditions in (1) gives the embedding fi

DEFINITION. An embedding (resp. immersion) arising in this fashion from
will be said to be a y-embedding (resp. y-immersion).
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We now prove the remaining implication of Proposition 4. Letf: F R’ be
an embedding coveringfo, and define V: F R byf (fo, ). Let {at,..., ak},
e, and e’ be as before.

First note that we may perturb V slightly with the effect of changingfandfo
by a small isotopy. Thus we may assume that V is 1-1 on {at,..., ak}.
Now, e is either homeomorphic to the interval [0, 1] or the circle

{z C: zl 1}. Define a function p: I e to be this homeomorphism in the
first case and to be e2 otherwise. Similarly define p" I--, e’, and arrange that
hop=p’ on (0,1). Now let q=Vop and q’=vop’. Then q and q’ are
functions on I which agree nowhere on (0, 1) since f is 1-1. Therefore
q(c3I) > q’(c9I) or q(tI) < q’(tI). Furthermore, ), p(c3I) V(cOe) and

p’(c9I) ),(cOe’), and so V satisfies (1) as claimed. I
Remark. The orientability of N(S) in F is essential. For example, RP2

immerses in Ra as Boy’s surface, and can be shown to have no lifting by noting
that g is homeomorphi to the curve in Fig. 8, and that N(g) is an immersed
[0, 1] x X/(X, O) ~ (X, 1), where rotates X + by 90. Then each of the
loops in S is double covered by a loop in S composed of edges e and e’
(Fig. 9).

e fo

FIG. 9

FIG. 8

But ),: l R must agree on two antipodal points by the Borsuk-Ulam
Theorem, and sof (fo, ) cannot be an embedding.

In fact, we show in Section 3 that no immersion of RR2 in Ra lifts to an
embedding in R’. However, the standard immersion of the Klein Bottle in Ra

is an example of an immersed non-orientable surface which does lift to an
embedding.

2. The algorithm. We now sketch an algorithm which determines precisel
when a given immersionfo lifts to an embedding. Label the double points of S
as a, ak as usual and pick a transverse component s of S. The
identification of s with s’ induces an identification of some of the vertices a
with a’. Now choose either < or > and for all such write a < a; or a > a;
accordingly. Continue for all such pairs of transverse components of S,
choosing < or > at will. To the resulting set of inequalities add (a 4 a
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=/= j}. Then a solution to all of these relations is a choice of determining a
lifting; conversely, if no solution exists for any of the (finite) choices of < and
> made along the way, then no exists andfo does not lift. But the solvability
of such a set of inequalities can clearly be accomplished recursively.

Example. Fig. 10 is S for an immersion of the sphere in R3 [5]. Starting
with al and a3 a, we write

al > a3, a2 > a4, a2 > a6, a,t > a6, a3 > as, al >

and also at # aj, all i, j 1,..., 6. But these relations have a solution (e.g.,
at 6 i) and so this immersion lifts to an embedding.

el2

el2

a3 a4

FIG. 10

a6

Remarks. 1. Iffo is such that each s and s’ lie in different components of S,
then fo lifts; simply define to be n on the nth component of S and adjust
slightly within each component to make , 1-1 on {al, ak’}. In particular,
any immersion with no triple points lifts to an embedding.

2. We will see in Section 4.4 that every fo lifts to an immersion in R4

regularly homotopic to an embedding.

Example. We construct an immersion of S2 in Ra which does not lift to an
embedding of S2 into R’ (by forming a connected sum of this example with a
standardly embedded genus g surface, we can produce a like example of
arbitrary genus).
A well known immersion of RP2 in R3 is Boy’s surface (for a photograph,

see [4], p. 320). Its normal 0-sphere bundle in Ra is an immersion of its double
cover, and hence an immersed $2; our example is this immersion fo: $2- R3.
We may obtain fo(S2) from Boy’s surface by forming a "double pushoff"
(Fig. 11). Thus to draw the singular value set of fo(S2), we first draw the
singular values of Boy’s surface (Fig. 12.).
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,./-/_ .o:s-/
l fo(S2) 1

FIG. 11

where

denotes

FIG. 12

Forming a double pushoff changes

"1 -T"
I_... to l...""] .-"" I__ I____x

Note also that a double pushoff of a neighborhood of the single triple point of
Boy’s surface yields the eight triple points offo(S2), which we label in Fig. 13.

FiG. 13
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The reader may now carefully draw the resulting singular set, homeomorphic
to Fig. 14.

a5 a7

b5
c3

c7 b6
b3

al

FIG. 14

Here for each i, a, b, and c correspond to the same triple point (viz., the one
labelled as above). Thus segment alcl is identified byfo to segment blb, c7 bs
to a7 as, ba b, to aa c,, etc. A list of all inequalities arising from the algorithm
gives, in particular,

ct > ba > as > c6 > b3 > a2 > ct;

this contradiction then shows that fo lifts to no embedding of S2 into R4 as
claimed.
We close this chapter with a question. Is there an intrinsic characterization

of those immersions of oriented surfaces in Ra which do lift to embeddings in
R’?

3. Projecting embeddings to immersions

In order to understand knotted surfaces in R’ via immersions in Ra, we
must know that any such embedding may be projected to an immersion. More
precisely, the object of this chapter is to prove the following theorem:
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PROJECTION THEOREM 5. Let f" F-- R’ be an embedding of an oriented
closed surface F. Thenfmay be isotoped so that composition with the projection
rI. R4 Ra is an immersionfo"

Before giving the proof, we need several lemmas.

LEMMA 6. Let f: F-. R be an arbitrary embedding (resp. immersion)
covering an immersion as above. Then f is isotopic to a ?-embedding (resp.
?-immersion)for some ? S- R.

Proof Define ?I:F--* R as in Section 2 by settingf (fo, 5’1). Let A be a
regular neighborhood of S in F, and deform ? to ?: F--, R so that

(1) ?ls--?lls, and
(2) ?(F- A) O.

Then (fo, ?) is a y-embedding (resp. y-immersion) of F into R* covering fo.
Furthermore, since fo has no self-intersections away from A, the deformation
of 71 to ? can be accomplished via an isotopy off (intuitively we have pushed
F- A into Ra). |

LEMMA 7. Let Fo Rax [-1, 1] be an oriented surface with boundary
such that tgFo

_
c3(R3 x [-1, 1]). Suppose bt: R3 x 1-* Ra x 1 is an isotopy

fixing each point of Fo n (Ra x 1) with dpo the identity. Then c/bt extends to an
isotopy

t: Ra x [-1, 1]--- R3 x [-1, 13

fixing Fo pointwise.

Proof We may assume Fo c (R3 x I’0, 13)- (F c (R3 x 1)) x I, i.e., that
Fo is just a collar on Fo c (R3 x 1) between s 0 and s 1. Define the
isotopy on Ra x [0, 1] by (x, s)= (bs(x), s). When s 0, t $o is the
identity, so that t extends to Ra x [- 1, 1] as desired. I
The following geometric lemma allows us to transfer twists between bands

in an Ra-slice of a surface in R’ via an isotopy of the embedding.

TRANSFER LEMMA 8. (1) Suppose a movie for f: F-. R contains the series

of snapshots in Fig. 15. Thenf may be isotoped so that this sequence appears as
in Fig. 16.
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(i) (ii)
FIG. 15

11ll ]1 III I[ii l-

FIG. 16

(2)
18.

Similarly, the sequence in Fig. 17 can be chanoed to the sequence in Fio.

FIG. 17

FIG. 18

Proofi We prove only (1), since the construction for (2) is similar. First,
isotope f so that the vertical band in level (i) is pushed to (ii). Our movie is
then given in Fig. 19.

(iii)
FIG. 19

Let Fo be the part of F up to and including level (iii). Then the isotopy of R3

taking
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in level (iii) extends by Lemma 7 to (114, Fo). Thus a movie at these levels now
looks like Fig. 20.

tU!!l!i!t

(iv) (v)
FIG. 20

Pushing the vertical band in (v) back to (iv), we get Fig. 21. Finally, this
sequence is isotopic to the sequence in Fig. 22. But this last isotopy can be
performed without changing the movie previous to these snapshots (i.e., with-
out moving the lines labeled/), so that Lemma 7 shows we may extend to an
isotopy off. I

FIG. 21

 i111 !iiii. I!iiliiiill

1111
FIG. 22

Proof of Projection Theorem. Let p" R4-- R be the projection and isotopef
so that y p f is Morse on F. We may assume that y(F)_ [0, 1-1 with all
critical points of index 0 (resp. index 2) lying in y-1(0) (resp. -1(1)). Then the
movie of F with respect to , is a sequence of snapshots in Ra beginning with
the appearance of some disks (0-handles of F), then the appearance of some
bands (1-handles) so that the boundary of the result is an unlink, and finally
the appearance of some disks D (2-handles) capping off this unlink. (Recall the
example of a torus in R4 given in Section 1. Notice that the projection of this
torus to R3 has a standard, unknotted image.)

Clearly n f always immerses the 0 and 1-handles of F in Ra, with only
ribbon intersections. Let Fo be this immersed surface, so that tgFo is the unlink
c with unknotted components c tgD. We may extend n f to an immersion
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over the 2-handles D if a collar of c in Fo - Ra is untwisted, i.e., if the curve
c+ obtained by pushing c into Fo links c geometrically zero times (Fig. 23). If
the collar is twisted, projecting D to R3 will introduce non-immersed cusps.
So, we need to know that all collars are untwisted.

FIG. 23

Case 1. c has one component. Let l(c, c+) be the linking number of c and
c +. Since Fo is an oriented simplicial complex in R3 with boundary c,

l(c, c +) CA (c +, Fo)

where CA (c +, Fo) is the signed intersection number of c + and Fo.
But Fo is built by adding bands to disks and allowing only ribbon intersec-

tions, and c / intersects Fo only near these intersections (Fig. 24).

FG. 24

The net contribution of each ribbon intersection to #(c /, Fo) is seen to be
zero, and so c + is algebraically unlinked from c. But since c / is a pushoff of
the unknot c, the two knots are geometrically unlinked and the collar is
untwisted. Thus we may cap off to an immersion with the 2-handle.

Case 2. c has two components c and C2o Recall that Lemma 6 shows that

f is isotopic to a y-embedding. Likewise, we may isotope f It-to1 as) fixing
c9(F (D1 w D2)) to arise in the same fashion from some ),; clearly this isotopy
extends to one off. Thus in a movie for f we see Fo A appear in the R3 x 0
level, followed by a copy of A pushed into R4 by y. The boundary of the
resulting surface is the unlink c lying in an Ra-level, which is capped off as
before by D w D2 (Fig. 25).
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I 2

FIG. 25

Let o(t) be a path from Pl cl to P2 6 2 on f(F- (D w D2) such that
o is an embedded arc missing the triple points. Note that t) lies in

Ra x 0 except near c and near S, where it is pushed into R’ according to ),
(Fig. 26). Let e > 0 be small and let P be a regular neighborhood in f(F) of
o([0, 1 el), so that

P -co(J0, 1 -el) x I.

The parts of P near S (i.e., P n F(A)) are pushed into R’ by y; this push can be
extended to all of P so that/ n (Ra x O) is a disjoint union of bands b (Fig.
27).

Cl c2

Pl P2

FIG. 26

push

into

bt b 2

Ra x -1 a x0 Ra x 1

FIG. 27
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Thus between r cl and zr c2 in R3 x 0 We have a sequence of gaps and
bands along the track of co. The collars of c in Fo may be twisted (Fig. 28).
Furthermore, we may push parts of F into R’ so that F c (R3 X 0) near each
band looks like Fig. 29.

where denotes n full twists

FIG. 28

FIG. 29

The Transfer Lemma can now be used to isotope f so that the kx twists about
C are transferred to the collar about c2 (Fig. 30).

FIG. 30

However, an argument as in Case 1 shows that if c + is the link obtained from
pushing c into Fo, then 1(, c +) k + k2 0. But then there is no twisting
about either collar and so we may project D and D2 into Rax 0 to an
immersion.
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Remark. There are movies for the k-twist spun knot of the trefoil in which
c has two components and in which kl -k2 2k.

Example. Fig. 31 shows a movie of an S2 in R4. The projection into R3 of
this S2 up to level (i) is given in Fig. 32, so that kl -k2 1. Fig. 33 is a
sequence of movies showing the required isotopy off.

FG. 31

FIG. 32

This new movie projects to an immersion and in fact to an embedded S2 in Ra.
Thus our original S2 was unknotted.
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Case 3. c has more than two components. As in Case 2, l(c, c+) 0 so that
the sum of the twisting numbers is zero. Furthermore, if the twistings about
components c and c2 are kl and k2 respectively, then f may be isotoped as
above so that the twistings are 0 and kl + k2. Repeating as necessary using the
various components of c, we see that we can change all twistings to zero. Thus
we may extend foyer all the 2-handles to an immersion. I

Remark. The Projection Theorem is false for non-orientable surfaces. For
example, no embeddingf of RP2 in R4 projects to an immersion in Ra. To see
this, let N be the normal class off; then formula 8.4 of [11, p. 1131 states that

N 2;t(RP2) (mod 4)

(Whitney’s proof of this is both elegant and geometric). Since the Euler
number of RP2 is + 1, N must be non-zero. However, if f projected to an
immersion fo, then the normal bundle vs off must split as Vso )e1. Then
has a non-zero section, forcing N 0.

In particular, no immersion of RP2 in Ra (e.g., Boy’s surface) lifts to an
embedding in R4, a fact which was claimed in Section 2.1.

4. The unknotting theorem

As mentioned in Section 0, the Smale-Hirsch Theorem shows that any
embedding f of a surface in R# is regularly homotopic to a trivial unknotted
embedding. In this chapter we define the appropriate notion of crossing
change for surfaces and show that in fact any embedded surface can be ren-
dered trivial by a sequence of isotopies and crossing changes.
Our program is as follows. Any immersion of an oriented surface in Ra is

regularly homotopic to one of four simple immersions (Section 4.3) and fur-
thermore any regular homotopy is covered by a sequence of isotopies and our
crossing changes (Section 4.2). But iff covers one of these immersions, then f
itself is unknotted.

1. Regular homotopies of codimension one immersions. In this section we
show how the critical points of a certain Morse function enable us to system-
atically classify the action of any regular homotopy on a given immersion fo"
Fk Rk+ 1.

Let h: Fk x 1-- Rk + be a regular homotopy offo and define

H: F x I--, Rk+l x I

by H(x, t)= (h(x, t), t). Note that H is then an immersion. Let Si be the ith
singular set of H, so that Si is the image in F x I of an immersion
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of a manifold Yt. Clearly S t> St may be isotoped within F x I so that
the projection g" F x I---} I is Morse on each St, > 1 (i.e., so that g tr is
Morse on

Remark. That S may be so isotoped can be seen by noting that g can be
perturbed to be Morse on each St by the addition of a linear term Z atxt as in
[7]. But there is a diffeomorphism 0 of F x I such that

FxI FxI

commutes, and in fact 0 is the end result of an isotopy of F x I. Restricting
this isotopy to S gives the desired deformation of S within F x I.
The following lemma (with M F x I, N Rk / 1, and fo H) shows that

this isotopy of S is the result of an isotopy of H.

LEMMA 9. Let fo: Mo-, N be an immersion with singular set S
_
M, and let

t: S--M be an isotopy of S in M fixing cS_cM (i.e., each is a
homeomorphism). Then there is an isotopyf offo such that the singular set off
is t(S) (i.e., t is the result of isotopy offo).

Proof S is the iroage of a transverse immersion and so has a regular
neighborhood P in M which is an embedded manifold with boundary. The
isotopy fit can be extended to one of P, and by the Isotopy Extension Theo-
rem can be extended to an isotopy : M---} M of the identity of M. Thus the
following diagram commutes"

Sx0 Px0 Mx0

SxI PxI MxI ,M(.J N

where (x, t) -l(x) and q(x, t) ,(x). Then f fo t-’1 is the desired
isotopy. |

Thus assuming S
_
F x I is transverse to F x near d(F x I) (which we

may do since h is assumed transverse), we may isotope H so that each St is
transverse to F x except at a finite number of and so that each g tr is
Morse. But then t> (critical values of g trt) is a finite set tl,..., tk in I.
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PROPOSITION 10. Let hs be an immersion hs(x) h(x, s). Then after isotopy of
H, we have thefollowin#.

(1) Let s (ti, ti+ 1). Then h: F x (ti, ti+ )- Rk+l is an isotopy of h(F) (i.e.,
h(F) has the same homeomorphism typefor any such s).

(2) Let s (ti e, ti + e) Iifor e small. Then there is a ball Dk+ c F x I
centred at the critical point x correspondint to ti, a ball k+ Rk + centred at

hti(xi), and a ball Uk fk such that

O c(F xs)=D c(U xs)

and

(D, (D c S) w (D c (U x s))) - (, h(F) c O-).
In other words, the critical point structure of S lives the local action of the
homotopy ht (Fig. 34).

gives

FiG. 34

Proof (1) No g cr has any critical values in (t, tz+ 1), and so

Sj c l-t(ti, ti+ l)

is a product homeomorphic to (jth singular set of h,) x [. Thfas at no stage of
the homotopy hs is the homeomorphism type of St changed.

(2) Note that dim S k dim F. Fix So 6 I and pick V
_
F so that V

x t contains x and so small that

h,(V) ho(V - Bk a k-ball,

for any s Ii. Since the singular set of h [r-v has no critical points on F x I
for s Ii, we see by (1) that h: (F V) x Ii-- Rk+ is an isotopy of hso(F

V). Thus there is a diffeomorphism h(F- V) ho(F- V), which can be
extended to a diffeomorphism of regular neighborhoods of h(F- V) and
ho(F- V) and thence (by the Isotopy Extension Theorem) to a diffeomorp-
hism bs of Rk+ 1. Then bt h, (t I) defines an isotopy of h to a regular
homotopy b hs: F-- Rk / with

ck, hs(x)= dpo ho(x forxF-V.
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A partition of unity argument shows we can isotope H without changing
Hlu-i) so that H(x, t) opt ht on some subinterval of It containing t. For
convenience then, we assume this isotopy already done and merely assume
that hs(x)= hso(X)for s e Iand x F- V.
Now assume that we chose V small enough so that h ]v is an embedding for

all s It. Then h: V Rk/ describes an isotopy of V - Bk fixing 0V.
For small e, we can perturb h slightly so that for sl, s2 It,

h,(V) hs,.(V)

is a I-complex G(sx; S2) h(V) (in fact, h(V) and h(V) are close for small e
and so their intersection is a disjoint union .of circles). Furthermore, x (V
x t) c S and so

h,,(x,) h,,(V) c h,,(F- V)= h,,(V) ho(F- V).

Thus hs (and hence H, as above) may be isotoped so that

h,,(V) 0 h(V) 0 G(t; s)
sli sl,i

misses a neighborhood of h,,(x). Note also that for e small enough,

0 G(so; s)
sli

misses a neighborhood of h,o(X).
Now pick a neighborhood U V centered at x such that

(a)
(b)
(c)

h,,(U) c h,,( V) - Bk,
h,,(U) misses e, G(ti; s),
h,(U) contains h,(x) and misses )s, ,, G(s; s’).

In particular, for all sx, $2 ff It, h,(U) and h(U) are disjoint.
Let D t, U x s and let /5 st, h(U). Then D and / are k-balls

and we are a homeomorphism A" D/given by A(U x s) hs(U). Therefore,

S c (U x s) (singular set of h) c U

h(U) c h(F- U)

h,(U) c hso(F- U).

Taking a union over s

S c D-aho(F-U) c D

and

F x so c D=(U x So) Dahso(U) D,
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(where a is the restriction of the homomorphism A) and so

(O S) w (O (U x So)) - (/, [ho(F- U) w h.,o(U)] 03
(, hso(F c ff). |

2. Crossing changes. We now define our notion of crossing change and
show that any regular homotopy of a surface in Ra can be covered by a
sequence of such chanses and isotopies.

Suppose fo" Fa-} R3 is covered by an immersion f: Fo R4. Define y" F-+ R
as previously byf-- (fo, Y). Using Lemma 6 we see thatfmay be taken to be a
y-immersion. Let e and e’ be subintervals of $ c_. F identified by fo, so that
we have a homeomorphism h" --, ’ as before. Suppose further that y(x), h(x), x , so thatfis an embedding near e and e’. Then deform YI (rel 0e) to

Yc so that the graphs of y and y h intersect at exactly two points (Fig. 35).

derm

oh
FIG. 35

Now form a new immersion f, (fo, ).

DEFINITION. Passing fromftof tofwill be called changing a crossing.

Remarks. 1. Changing a crossing corresponds to the appearance of 0 or
1-handles of the singular set of H: F x I R4 x I as described in Section 0.

2. Suppose sl and s2 are transverse components of S with’),(sl) > (s2). As
will be seen later, crossing changes can sometimes be used to obtain a new
with (Sl) < 1($2).

THEOREM 11. Let h" F x I---} Ra be a reoular homotopy offo" Fa-} Ra, and
let f: Fa-} R4 be an immersion coverin9 fo. Then there is a sequence of points x,

tk I and mapsf" F--} R4, I {tx, tk} such that

(1) f covers
(2) f describes an isotopy, (t, t+ ),
(3) f+ is obtainedfromf_ by a crossino change (e small).

That is, h can be covered in R by a sequence of isotopies and crossing changes.

Proofi As in the previous section, h induces an immersion H: F x Ia- R3

x I with singular set S c_ F x I. Let t, t be the critical values of the
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projections 9 tri as before. Then we see $2 S built accordingly with 0, 1,
and 2-handles, Sa with 0 and 1-handles, and the discrete set S, with 0-handles.
We define ft inductively. Suppose that ft,+ exists. Then

ht: F x (ti, ti+ 1)-’+ R3

is an isotopy by Proposition 10.1. Now, if

ft,+ (ht,+, yt,+),

then, for (t + e, t + x), set

where b: ht,+(F) ht(F) is the diffeomorphism induced by the isotopy hr. This
defines an isotopy ft covering ht for (t + e, ti/ t), and similarly we can

defineft for (t, t+ t).
The definition offt,/ from ft,- will depend on the various types of critical

points corresponding to t, which we now consider.

0 and 2-handles of S2. At a 0-handle, S2 locally is shown in Fig. 36.

F x t,+ e

FIG. 36

Thus Proposition 10 shows h as having the effect of pushing the disk D
h,_,(U) through hso(F U); see Fig. 37.

7 hs(F U)

/
ht,_(F) ht,+.(F)

FIG. 37

Let I7 , fo(F U) h(U) and let W ht7.2(l,). Then
W (singular set of h),

sli

and in this case W U is a disk. Now, since h,_ lifts to f,_, we may define,_ byf,_ (ht_, t,_). We can clearly deform t_ to make

t,_(W c U) > t,_(W c F- U).
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Calling this new map Yt,+, we definef’t,+ (ht,+, Yt,+). We have now defined
a new immersion of F into R’ with W U pushed farther into R’ than
W n F- U. Homotope f’t,+ to a mapf+ so that f’t+(U) is pushed within
the Ra-level as in the above picture; because of our choice of t+, this homo-
topy is in fact an isotopy, introducing no new self-intersections.
Thus we have defined f+ in the case that t corresponds to a 0-handle of

$2. The case for 2-handles is entirely similar: first push W n U into R’ and
then push ht_(U) across the critical point within the Ra-level.

I-handles of $2o S2 locally is shown in Fi9. 38.

FIG. 38

So ht has the effect of pushing the disk ht,_.(U) through a pair of (slit) pants.
Our procedure is now similar to that of the previous case. Let

W (singular set of hs).
s.li

In this case hti_.(W ht,_.(U) is again a disk, and we want hti+,, to send
W n U farther into B’ than W n F- U.
Let el and ez be two curves in U sent to the curves indicated in the figure by

h,,_. Then e’ and e lie in F U (recall that h,,_ identifies e with e). We will
obey the following convention in the rest of this section. Since ei and e’ are
identified, we have an associated homeomorphism r/" bi--- b.’. If for all x ei,

7(x) > 7 r/(x) (resp. <) then we write 7(ei) > (e’i)(resp. <).
Now, if 7ti_.(e.i) > ,,,_,(e9 (resp. <) for j 1 and 2, then we simply deform

ht-, by deforming t- to 7t+ satisfying

7ti+.(W U) > t,+(W (F- U)) (resp. <).
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Then set f’t,+ (ht,+ Yt,+), and note that the induced deformation from ft,
to f’t,+ introduces no self-intersections.

If on the other hand yt,-(el) and ?t,-(e2) are not both greater than (resp.
less than) ,t,_(e’) and ,t,-(e’2), then we must perform a crossing change along,
say, el. This introduces two new self-intersection points which we may assume
lie in F U. After the crossing change then,

Vt,-,(ej n U) > ,t,-,(e’ U) (resp. <) for j 1 and 2.

(Note that we do not require that e and e2 be distinct, since crossing change is
a local operation.) Then we proceed as above, definingf’ with this new ,.

ti +e
Thus we can push f’ +(U) within the R3 level to cover the desired homo-

topy, and our choice of , guarantees that this push creates no new self-
intersections. We call the resulting map ft, /.

Remark. The immersed surface in Fig. 39 in R3 is covered by an embedded
S2 w T2 in R4.

FIG. 39

Let , fl be curves on T2 sent to a and b respectively by this.immersion, and
let ,’ fl’ be curves on S2 similarly sent to a and b. If ()> ,(’) and
V(fl) < ,(fl’), then the S2 and T2 are linked in R4. We have indicated the
relative magnitude of , on these curves in the figure by placing a + sign near
the component of the singular set pushed farthest into R4 by for each
component of S.
A crossing change can be used to arrange that ,()> (’) and (fl)> (fl’).

Then the S2 and T2 are unlinked in R and can be isotoped apart. This
isotopy in fact covers a regular homotopy corresponding to the above case of
1-handles.

O-handles and 1-handles of S3. At a 0-handle of $3, S is locally shown in
Fig. 40 and h moves the curved sheet in the figure as indicated. (Actually, Sa
should be drawn curved and ht,_(U) flat as in Fig. 41. We draw Fig. 40 as
shown for clarity.)
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i !!/.lli//i/

FIG. 40

FI6. 41

This case is similar to previous ones. If the ’t,-,(e n U) are greater
than (resp. less than) ,,,_(e’ c U), then first pushing W U sufficiently far
into R4 permits the definition of f/, as before. Furthermore, by changing
crossings if necessary, we can ensure this condition on Yt,- is satisfied.
The 1-handles of $3 are dealt with entirely similarly, reversing the direction

of action in Fig. 40.

O-handles of $4. Our local picture is given in Fig. 42.
As before, it is easy to see how to use crossing changes to deride f,/,.

3. Regular homotopy classes ofF2 in R3. The previous section showed that
any regular homotopy of a liftable immersed oriented surface in R3 can be
covered by a sequence of crossing changes and isotopies of a lift in R’. We
now show that every such homotopy class contains an immersion with a
standard image.
The Smale-Hirsch Theorem [3] classifies the regular homotopy classes of

F2 in R3 as being in 1-1 correspondence with the set of homotopy classes of
bundle monomorphisms

IT(F), T(Ra)] IT(F), Ra],

where T denotes tangent bundle and T(R3) is identified with R3 by parallel
translation. In fact, the correspondence assigns to the class containing the
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F- U)

FIG. 42

immersion fo" F-} R3 the homotopy class containing the derivative map Dfo"
T(F)--} T(R3).
However, F is oriented, so there is a non-zero section of the normal bundle v

to fo(F) in R3; thus v is a trivial bundle and T(Ra) ]fotr) splits as Dfo(r(F)) v.,Furthermore,fo(v) is trivial and so

T(F) f(v) - T(R3) It,
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where we think of F as standardly embedded in Ra. So we see that the
homotopy class of Dfo determines a homotopy class of

F x R3 T(R3 Dfo
)Iv T(F) f’(v) T(R3) [f0(r) f x R3,

i.e., a homotopy class in IF, SO(3)].
Conversely, given a class in IF, SO(3)], we may use the considerations above

to get a map T(F) T(R3). Thus we have:

LEMMA 12. Regular homotopy classes of F in R3 are in 1-1 correspondence
with IF, SO(3)]. The correspondence takes an immersion ofo to the map

T(R3) IF " T(F) f(v)
Ofo T(fo(F)) ( v ’ T(Ra) l:otr)

induced by Dfo. |

In fact, we need only look at what the map F SO(3) does on nl(F)"

LEMMA 13. The homotopy class of a map h" F-- SO(3) (and hence the
associated regular homotopy class ofFo R3) is determined by

h," r,(F)-- ,(SO(3))= Z/2.

Proof. If hi, h2" F SO(3) are two maps agreeing on r(F), then they agree
on r(F), all (since rh(F) 0, > 2). Then h and h2 are homotopic by White-
head’s Theorem [9, p. 405]. Conversely, if h is homotopic to h2, then hi,
h," rt,(F)-- (SO(3)). |

We now use this classification to pick an exhaustive set of representatives of
regular homotopy classes of F in R3.

DEFINITION. Suppose g" F--, R3 is an embedding, and let a be a simple
closed oriented curve on F with annular neighborhood A _F. Let
D(a)" F F be the diffeomorphism given by performing a Dehn twist about
(see [8]); see Fig. 43. Then g D" F--, R3 is an embedding which we call the
result of performing a Dehn twist to g about .

FIG. 43
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Now suppose F is a torus, and let and/3 be standard generators of rl(F),

FIG. 44

We consider F as being standardly embedded in R3 by i: F Ra and identify
F with i(F).

Let (el, e2) be a pair of O’s and l’s, and let 9 be the embedding obtained
from i: F---, R3 by performing Dehn twists on (resp./3) if and only if ex 1
(resp. e2 1). Notice that the image of anyf is the (standard) image of i, which
we identify with F. So,f (viewed as having domain i(F)) will map and/3 as
follows:

+ e2/, /e +/.
Now let f: F,-, R3 be any immersion. Pick a framing q: F--, SO(3) of T(R3) [r
so that b() and b(/) represent generators of 7(SO(3)). Let : F--, SO(3) be

FIG. 45
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the restriction of the standard flaming of T(Ra) If(F). Then Dfinduces a map h"
F--, SO(3) as before corresponding to the regular homotopy class off. We can
define h by comparing b and as follows. b(x) is a 3-frame in T(113) Ix and so
Df(ck(x)) is a 3-frame in T(R3) ]r(x). Viewing 3-frames a matrices, let h(x) be the
element of SO(3) defined by

(x) h(x). ok(x)

where denotes matrix multiplication.
However, Lemma 13 shows that to determine h we need only calculate h,()

and h,(fl), and that there are at most four regular homotopy classes of the
torus F in Ra; we will construct four distinct representatives. The first three
arefwhere (0, 0), (0, 1), and (1, 0). We compute h, in these cases:

Case 1. (0, 0). Then h,() and h,(fl) are represented by rotations of 113
about a single axis, so that both elements represent 1 1(SO(3)).

Case 2. (1, 0). Then J(fl)= +/3; so h,()= 1 as before and h,(fl) is
represented by consecutive rotations about two different axes. Thus h,(fl)= 0
e (so(3)).
Case 3. (0, 1). As in Case 2, with h,(0) 0 and h,() 1.

S S R3To construct the fourth immersion, note thatfl, o) x extends to
S x Bz in the obvious way, where e x S and/3 S x ,. Call this exten-
sion j Let C be a figure-8 embedded in Bz, parametrized by p" $1 C. Then

B 2

FIG. 46

our fourth immersionfis defined on S x S by

f: (01, 0.) --f(O 1, P(Oz)),

i.e.,f represents moving a figure-8 in a circle in R3, twisting once.

DEFINITION. The image offis called a twisted-8 torus.

Note that f(e) is a copy of C, and f(/) links the core S once. Thus it is easy
to see that in this case h,(e)= h,(/3)= 0, and so f is a representative of the
fourth homotopy class.
Thus each of fo. o), fo, 1), fl, o) and f represent distinct regular homotopy
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classes of S x $1; by Lemma 13 there can be at most four such classes and so
our list is exhaustive.
To construct a representative for a regular homotopy class of a surface of

genus g, simply form the connected sum of images of the f’s and f, and define
the immersion with image this sum in the obvious manner. An argument as
above shows that we can construct representatives of all 4g classes in this way,
and Lemma 13 again guarantees our list to be exhaustive. Thus we have:

COROLLARY 14. Any immersionfoo R3 iS regular homotopic to a connected
sum ofembedded and twisted-8 tori.

We use the following notion in the next chapter.

DEFINITION. an unsurface F2d- R4 is an embedding of a surface of genus
which is isotopic to an embedding whose image under projection is the
standard unknotted surface of genus g in R3. Thus each of the abovef’s is an
unsurface.

4. The unknotting theorem and another lifting ,theorem.
the main theorem of this chapter.

We can now prove

UNKNOTTING THEOREM 15. Letfbe an embedding covering fo as before"

F f R4

Then f can be changed to an unsurface by a sequence of isotopies and crossing
changes.

Proof. In 4.3 we saw that fo can be regularly homotoped to an immersion

f with image a connected sum of embedded or twisted-8 tori, and Proposition
11 shows that this homotopy can be covered by a sequence of isotopies and
crossing changes. Letf denote the resulting immersion of F in R’.
Each twisted-8 torus is immersed with one (unknotted) double curve 3; let s

and s2 be the two preimages of 3 infx(F) and let S sa. Let T be a small
neighborhood of S in f(F). Evidently T is a disjoint union of annuli. Isotope
f(F) so that f(F)- T is pushed into Ra along lines {(0, 0, 0, t)lt R} and let

f2 denote this new immersion of F. We can isotope f2 so that f2(F) c Ra is a
connected sum of a standard genus g surface with a sum of twisted-8 tori-
annuli. Now each twisted-8 torus is immersed in R3 as

D ,,) x S
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where x indicates a rotation about x S in Ra, and the connected sum is
built using disks in the annuli D x 1S. A movie of this piece off2(F) is then

S x SS xl
B

Now isotope the interval B in its copy of Ra as follows"

/ istpy

Then B can be isotoped into R3 to obtain an embedding:

O

Note that these isotopies are all rel D, and so can be performed on our
connected sum. Thus,f2 can be isotoped to an unsurface as claimed. |

As mentioned previously, this theorem is the analogue of Fact 1 for knots in
R3

The techniques in this chapter suggest another lifting theorem. First note
that any immersionfo: Fa--} R3 can be lifted to an immersionf: Fa-} R’; simply
find a 7: S---} R such that f(S)= (fo(S), 7(S)) is transverse to R3 x 0 and set
f =}(fo, 7).

PROPOSITION 16. In fact, every fo lifts to an immersion which is reffularly
homotopic to an embedding.

Proofi As already seen, the normal bundle Vo offo is trivial. But the normal
bundle v off satisfies v Vo ) e1, wheref is defined as above and e is a trivial
line bundle. Hence v is trivial, and by Smale-Hirsch [3-1, F is regularly
homotopic to (any) embedding. |

COROLLARY 17. No immersion of a surface in R4 with non-trivial normal
bundle projects to an immersion in R3. 1

Example. The movie in Fig. 47 of an immersed S2 in R’ does not project
after any isotopy.

FIG. 47
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5. Alexander polynomials of surfaces

Proceeding with our extension of Conway’s program to dimension 4, we
offer a conjecture of the proper definition of Alexander invariant of a surface
in R’ and in a special case speculate how it might transform under crossing
change. These conjectures fail in general, but we give a tantalizing example in
which they are adequate and leave full treatment as an open question.

1. Definition of A(t). First recall the definition of A(t) for a knot K in S3; see
[8]. We construct the infinite cyclic cover X of S3 K by gluing together an
infinite number of copies of S3- M, where M is a Seifert surface for K. Let
{0q} be a basis for Hi(M) and denote by 0q+ (resp. af) the homology class in
HI(S3 M) obtained by pushing a representative of 0q off of F in the positive
(resp. negative) normal direction. Then a Mayer-Vietoris sequence shows that
H(X) is isomorphic as a Z[t, t-]-module to H(Sa M) subject to relations
{+ t- }.
Now, Alexander duality gives the following map A"

HI(S3 HI(S3 M)/HIM).

A

Then since M is an oriented 2-manifold with boundary, H(S3- M) is flee.
Furthermore, A is given by A(x) l(x, a,)a, where denotes linking number.
Thus Hi(X) is isomorphic to H(M) subject to relations A(a -ta[)= 0;

but

and

A(a-) l(a-, Oj)Oj--" E l(a;, a,)aj.

Hence defining a matrix V (/(a+, aj)) we see that Ht(X) has presentation
matrix V- VT. Some standard algebra [8-1 now shows that A(t)= det (V
-tVr) is the well-defined (up to multiplication by +__tn) Alexander
polynomial.
We now develop analogous machinery for a surface F in S’. Thus suppose

M is a 3-manifold embedded in R4 with cM F. We use M as above to
construct the infinite cyclic cover X of S’- F from copies of S’- M. In the
S3 case, it was crucial that HI(S3- M) H(M) be free, but in our case,
Hx(M) - H2(S4 M) may not be free. Thus, the algebra requires that we use
homology with Q-coefficients; we do so for the remainder of this paper. Note,
however, that Hn- (any n-manifold with boundary) is free, and in particular
H2(M; Z) is free.
Aping the arguments given above for knots in S, we see that Hx(X) is

isomorphic as a Q[t, t-t]-module to H(S’- M) subject to relations +
t-, where {i) is a basis of H(M). Using A" H(S4 M) H2(M) as before,
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we then see that Hi(X) is H2(M subject to relations A(+ t-) 0. Letting
{fli) be a basis of H2(M), note that

A(?) l(?, j)j, A(-) l(o?, j)j.
Defining two matrices

V (l(t, flj)), I/’* (l(, flj)),

we see our module has presentation matrix V- V*. When F S2, this
matrix is square and we define A(t)= det (V- tV*). We leave the proper
definition of A(t) when genus (F) > 0 as an open question.

2. A special case. No triple points. Now supposef: F R4 is an embedding
such that the corresponding immersion fo has no triple points. We show how
to construct M and conjecture a Conway identity for the corresponding
polynomial.

Let
_
R3 be the singular value set of fo, so that fo(F)- is a disjoint

union of surfaces with boundary. Join these surfaces together along each arc of
S in an orientation preserving fashion to obtain a disjoint union of closed
surfaces Ni; see Fig. 48.

fo(F) fo(F)- S Ni
FIG. 48

Now push each Ni into a different 3-plane R3 ofR4, and note that the trace of
this push is a collar N x I with N x 1

_
R3. But N x 1 bounds an oriented

3-manifold Q in R/3, and we let R (N x I) w Q; see Fig. 49.

FIG. 49

Now we glue the R’s together to construct M. The N’s approach each other
along components of S- about which they locally are shown in Fig. 50.



CLASSICAL KNOT THEORY FOR SURFACES IN R4 627

Let Y denote the first factor in Fig. 49, so that changing each Y x 0 to + x 0
changes N back to fo(F). However, we can add a band b to each Y x 0 as
in Fig.)

FIG. 50

S x S

FIG. 51

and we can push these bands into R’ so that no two bands intersect and so
that

f(F) c3b w U Ni"
b

Furthermore, the desired M is b b i Ri.
Remark. This construction is merely the analogous construction of Seifert

surfaces for knots in S3.

Thus at a particular component of $-, we have added a band x S to recover
the embeddingf But we could alternatively add a band with opposite twisting
to obtain a different embedding. We call the move from the first embedding to
the second a proper crossing change. Notice that if e and e’ are two
components of S identified to , _ S by fo, and if y(e) > 7(e’), then a proper
crossing change at , changes 7 so that y(e) < 7(e’). As mentioned in Section 4.2,
a proper crossing change can be accomplished by ordinary crossing changes.
Now we proceed to calculate the effect of a proper crossing change on A(t).

We consider only the case in which some basis elements of H2(M and Hx(M)
pass through ,. Then we can rechoose a basis so that only one basis element
a H2(M and b Ha(M) pass through e. In the special case that

b Hx(M)/H(c3M),

a proper crossing change changes l(a +, b) by + 1, so as in [2] we have a
recursion

(2) A(t) A(t) (t 1)A(t)

where Al and A are the polynomials of the two embeddings obtained as
above, and A is the polynomial of the embedding before band addition. We
may now define a polynomial V(z) associated to an embedding by redefining
A(t) with the formula

A(t) det (tl/Ev t-1/2V*);
then (2) becomes

At(t) A,(t) (t 1/2 t-1/2)As(t).

Setting z /2 t-1/2 yields a definition of V(z).
If F, Fr, and Fs are the embeddings corresponding to V, Vr and Vs, we

write F F ) F or F F F.
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Note that we have not proved that V(z) (or even A(t)) is well defined in all
cases, and we leave that task to a future paper. Furthermore, an example of a
surface in R4 with Alexander polynomial 1 -2t will be given in Section 5.3,
showing that the definition of A(t) in general fails.

3. An example. Spun knots. A class of examples of knotted 2-spheres in R4

whose associated immersionsfo have no triple points is that of spun knots. For
example, the spun knot of the trefoil is an embedded S2 obtained by spinning
the knotted arc in Fig. 52 about the plane P in R4. Then a movie for this knot
is given in Fig. 53.

FG. 52

FIG. 53
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Then the projection into R3 is the immersion in Fig. 54.

,

FIG. 54

The shaded region is that contributed by the 0-handles and first 1-handle of
the movie. Thus if the sheets near labeled "+" are pushed into R4 farther
than those not so labeled, we recover the embedded surface.
We now show calculations which are for this example correct; as mentioned

previously, the general case requires more work. Using notation suggested
above, we have the result in Fig. 55.

/

in N )

FIG. 55
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But the embedding A is isotopic to a trivial embedding (just push the part
labeled a through the self-intersections, pushing into R4 if necessary), while B
decomposes as in Fig. 56.

B1 B2

FG. 56

B1 is isotopic in R4 to (and B2 to . Thus our spun knot decom-
poses into

Arguments asin [2] showthat (@ ()=0 and if we take //()
+ 1, then the polynomial of this knot becomes 1 z(- z) 1 + z.
Remarks. (1) This is the polynomial of the trefoil, which is expected since

nl(S3 K) rc(S’ -/()
where /( is the spun knot corresponding to K (see [12]) and since the
polynomial can be calculated from H1(see also [6]).

(2) (John Hughes). Changing two crossings of the above knot yields a

surface with the asymmetric Alexander polynomial 1 2t; see Fig. 57.
But A(t) was defined to be symmetric, and so its definition as given above
cannot in general be adequate.

4. Questions. We have left many stones unturned. Can V(z) be defined for
all links in S as it is for links in $3? If so, what is the structure of the Skein
algebra? What about the case where fo has triple points? Can one directly
show using these methods that V of a knot in Sa is the same as V of its spun
knot ? And finally, the machinery of Section 4.2 applied to regular homotopies
of Sd- R2 gives moves reminiscent of Tietze moves. Are there Tietze moves
for F2r-- R49.
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FIG. 57.
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