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EXPONENTIALLY BOUNDED POSITIVE
DEFINITE FUNCTIONS
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CHRISTIAN BERG AND P. H. MASERICK

Abstract

Equivalent conditions for scalar (or operator valued) positive definite func-
tions, on a commutative semigroup $ with identity e, to admit a disintegration
with respect to a regular positive (operator valued) measure supported by an
arbitrary compact subset of semicharacters are given. The theory links to the
theory of z-positive functions presented previously by the second author and
comparisons between the two are given. Old and new theorems to classical and
modern moment problems are obtained as a consequence.

Introduction

Lindahl-Maserick [7] and independently Berg, Christensen and Ressel [4]
studied bounded positive definite functions on commutative semigroups with
involution; the main result being an integral representation of these functions
with respect to non-negative regular Borel measures supported by the semi-
characters. The boundedness condition is a rather restrictive condition which
guarantees, that the measures be supported by compact sets of semicharacters
with values in the unit disk. On the other hand, there exist unbounded positive
definite functions which do not admit non-negative representing measures at
all, cf. [3]. In this work, we show that the weaker notion of "exponentially
bounded" characterizes those positive definite functions which admit (neces-
sarily unique) non-negative representing measures supported by arbitrary com-
pact subsets of semicharacters (Theorem 2.1).

In Section 1, we introduce the notion of an absolute value[. on a semi-
group S with involution and define boundedness with respect to it. The posi-
tive definite functions which are bounded with respect to a given absolute
value form a convex cone with compact base, so that Choquet theory implies
the desired integral representation for such functions.
Our main tool is the natural homomorphism s--E8 of S into the linear

operators on the reproducing kernel prehilbert space Hs associated with the
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EXPONENTIALLY BOUNDED P.D. FUNCTIONS 163

positive definite function f. It turns out that Es is bounded in norm by [s] if
and only if f is bounded with respect to [. [. Other conditions which are
equivalent to and which imply boundedness of Es are given in Theorem 1.3,
Corollary 1.4 and Proposition 1.5 respectively.

In Section 2, we study the close relation between exponentially bounded
positive definite functions and the z-positive functions introduced by the sec-
ond author 10]; our main result being that a function is z-positive with respect
to a "linearly admissible ", if and only if Tf is positive definite for each TE r
(Corollary 2.5). We conclude the section by giving a spectral resolution of
positive definite operator-valued functions and by showing that these func-
tions are exactly those of positive type in the sense of Nagy [15] (Theorem 2.6
and Corollary 2.7). The theory extends that given in Maserick [8] and implies
the standard spectral theorems for positive, hermitian, unitary and normal
operators.
When S is a group with s* s-1, the theory presented here adds nothing

new since every positive definite function is in fact bounded. However, general
semigroups admit unbounded positive definite functions. In Section 3, we give
an example where the exponentially bounded theory applies but the bounded
theory is trivial. By considering special families of shift operators, old and new
solutions to classical and modern moment problems are obtained.

1. Positive definite functions and representations of $

Throughout the sequel, S (S,., *) will denote a commutative semigroup
with involution * and identity e. For the precise definition, see [7]. A generator
set, G C S, is any subset such that every element s E S \ [e} is a finite product
of elements of G l0 G*. We equip the vector space :(S) :" of complex-
valued functions on S with the topology of point-wise convergence. It follows
that :’is a completely regular topological space. A function f" S-C is called
positive definite if

(s, t)--f(st*)

is a positive definite kernel on S x S, i.e., if F.,.cj-f(s,s;) > 0 for all choices
of sl,... ,s. S and scalars cl,... ,cn C. The set of positive definite func-
tions on S is denoted by (S) m . Clearly ? is a closed convex cone in ’.
Moreover, it is well known and follows easily that eachf has the following
properties for s, t S:

f(s*) f(s) f(ss*) > O, (1.1)

If(st*)l <_ f(ss*)f(tt*). (1.2)

In particular,

If(s) < f(e)f(ss*), (1.3)

which shows that f is identically zero whenever f(e) O.
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DEFINITION 1.1.
satisfying

and

An absolute value on S is a function

]ss* < Is] for all sE S, (1.4)

[el-> 1. (1.5)

DEFINITION 1.2. A function f: S-C is called bounded with respect to an
absolute value I" l, if there exists a constant K > 0 such that If(s) -< KIsl
for s E S, andf is called exponentially bounded iff is bounded with respect to
some absolute value.

LEMMA 1.1. Let f be a positive definite function which is bounded with
respect to the absolute value I" I. Then If(s) <- f(e)Isl for all s S.

Proof. Without loss of generality we may assumef(e) 1. For s C S and
a ss*, we find byp successive applications of (1.3) that If(s) <_ f(a-l).
Since a a* and If(s) <_ K]s for s C S, (1.4) leads to

If(s)[ " <_ Kla[- <_ Klsl ’.

Hence [f(s) < (lim, (R)K -") Is Is I,
Remark. If f is bounded then f is bounded with respect to the absolute

value sl -= 1, so the lemma implies that bounded positive definite functions
are in fact bounded byf(e). This particular case has been explored in detail; cf.
[4], [7] and [9]. Observe that if S is a group with s* s-, or an indempotent
semigroup with s s* or more generally an inverse semigroup (cf. [5]) with
s- s*, then (1.3) implies directly that every positive definite function is
bounded (and hence exponentially bounded) by f(e), so that nothing new is
gained in such settings.
For each s S, consider the shift operator E, defined on ’byEt) (st)

for " and t S. Clearly, E E,E, so that the complex linear span of
these operators is a commutative algebra o4. Defining

(,r
equips with an involution. An element T of an algebra with involution is
called hermitian if T* T.
For an arbitrary function f: S-C the subspace H C ’defined by

H [Tf TI
is invariant under each application of R 4. The restriction of R E toH is
given by Tf--.RT(f) and is still denoted by R. We denote the set of these
restrictions by ’, i.e.,
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t is again a commutative algebra with involution.
Similarly, for C let /be the set of restrictions of elements of to H.
Suppose f satisfies f(s*) f(s). Then T’f(s) Tf(s*), so Tlf T,f

implies Tl*f T*f and therefore the expression

< Tf, Rf> TR*f(e), , R. s,
yields a well defined sesquilinear form < .,. > on H/. For T ,.c,E., we find

< Tf, Tf>
Jffi

thus showing that <.,. > is a positive sesquilinear form if and only if f is
positive definite.

Supposing that f is positive definite the Cauchy-Schwarz inequality gives

Tf(s) [’- < Tf, E,.f>
_

< Tf, Tf>. < E,.f, E,.f>

or

l(Tf)(s)l -< llf,.fll, llTfll. (1.6)

Thus [1Tf[[ 0 implies Tf 0, which shows that < .,. > is a non-degenerate
inner product. Replacing Tby T. T, in (1.6) shows that Cauchy sequences in
H/are always pointwise Cauchy, so that the completion 7[/is continuously
embedded in :. Furthermore, the only possible continuous extension of an
operator TIn/E ’/to the completion ]qr/is given by T for ]qr/(2 .:. An ap-
plication of the closed graph theorem shows that T[H/admits a continuous ex-
tension to ]qr/ if and only if T(]qr/)C ]qr/. Notice that ]qr/is the classical
reproducing kernel Hilbert space of Aronszajn associated with f.

PROPOSITION 1.2. Let f . Then T s/ is a positive operator on the
prehilbert space H f and only if Tf is a positive definite function on S.

Proof. Let R cE,. Then

< TRy, Rf> (TRR *f)(e)

from which the assertion follows. [:]

. c, TE,,,f(e) . c, gj( Tf)(s,s*),

Iff the map s--E is a *-homomorphism of S into the linear operators
on H satisfying

f(s) <E,f,f>. (1.7)

In general any *-homomorphismE S---B(H) of S into the bounded operators
B(H) of a Hilbert space Hsuch that E, I will be called a representation of S.
If S admits a representation E and H, then the function defined by
f(s) <E,,> is positive definite and bounded with respect to the absolute
value Is lIE, I[, where [[. is the norm of the operator E. B(H).
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THEOREM 1.3. Iff and ]. is an absolute value on S, then thefollowing
are equivalent:

(i) [IE, -< Is lfor alls S.

(ii) f is bounded with respect to [. I.
(iii) (Nagy) ([s[’I- E,.) f is positive definitefor each s S.

(iv) (I s [I -E, --E,.) f is positive definitefor each s S.

v) lslI+ 1 aE,+ E,.)f is positive definite for each sS and
C with l 1.

Proo (i) implies (ii) as mentioned above, so we will assumefbounded with
respect to [. and show that (iii) holds. F T . Then TT*f by Proposi-
tion 1.2, so that

TT*f(ss*) <Z..f rT*f> IIE,,ftl. TT*fll
f’<<ss*)) rT*fll f’(e) TT*fll Is ,

Thus (1.3) implies [TT*f(s)[ Klsl for some constant K, so TT*f is
bounded with respect to I’ Applying Lemma 1.1 gives TT*f(ss*)

TT*f(e)[s[ , which shows

<([slV- e,.)rf, Tf> O.

Since T was arbitral, Is] I-E,. is a positive operator on Hy, which is
equivalent to positive definiteness of ([s]I E,.)f by Proposition 1.2.
Therefore (iii) follows from (ii). As is well known and easy to see, positiveness
of any operator I- AA* implies [[A [l so that (i), (ii) and (iii) are all
equivalent. Suppose that (v) holds. Clearly (iv) holds. Replacing s by ss* we get
that (Iss*ll- E..)f is positive definite, and using (1.4) we see that (iii) holds.
Since + A is a positive operator whenever A is hermitian and ]]A a,
then (v) follows from (i) upon replacing A by

and

COROLLARY 1.4. Letf . Thenf is exponentially bounded ifand only if
E sly is a bounded operator on Hyfor each s S.

Remarks. If E s/y is bounded for each s S, then the operator norm
I[EII is clearly the minimal absolute value which satisfies any of (ii) through
(v). If Is 0 then lIE, 0 so that E, and E,, (= E*) are the zero operators
on H. Also

If(sOl < f(e)IIE,. f(e)IIE, II" f(e)Is I",
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which explains the terminology "exponentially bounded" in the title. Defini-
tion 1.2 is weaker than that given by Szafraniec [16]. Other equivalent defini-
tions forfE to be exponentially bounded are

(a) f(ss*) K]sland
(b) [f(s’) K, lsl for n N,

where in the latter case the constant Ks may depend on s. It follows from the
remark after Lemma 1.1, that if S is an inverse semigroup, then each positive
definite function is bounded by f(e), thus IIEsll _< 1, without any further
boundedness restrictions.

Other conditions which imply boundedness of the operator Es E df can easi-
ly be derived from known relations between positiveness and boundedness of
operators by appealing to Proposition 1.2 as in the above proof. We list a
somewhat general scenario below which we will appeal to later.

Let A be an arbitrary commutative algebra with involution and identity I.
Following Maserick [10], we define a subset r C U to be admissible if

(i) T T* for every TC r.

(ii) I- TC alg span + r for every T r.

(iii) alg span r 13.

If condition (ii) is replaced by the stronger condition

(ii)’ I- T span + r for every TC r,

then the admissible subset r will be called linearly admissible.
If r is a (linearly) admissible subset of the algebra of shift operators, then

rs is (linearly) admissible in the algebra sf of restrictions to H, but the con-
verse is not in general true. If E denotes the unit shift operator on the semi-
group N [0, 1,2,...] under addition with k* k for all kE N, then
[I- E *, I- E, E} is an example of an admissible r which is not linearly ad-
missible for n > 2.

PROPOSITION 1.5. Let f and let r C sl be such that rs is linearly ad-
missible in s, Then each of the following conditions implies that Es is a
bounded operator on Hifor each s S:

(i) Tf is positive definite for each T r.

(ii) T(I- T)f is positive definite for each T r.

Proof. Since r is linearly admissible, then positiveness of each T r im-
plies positiveness of I- T. Using the identity T(1- T) T’(I- T)
+ T(I- T), then it is easily seen that T and 1- T are positive if and only if
their product T(I- T) is positive, and the latter condition certainly implies
boundedness of T. The assertion follows, since the algebraic span of z is a’. E]
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If f is positive definite and bounded with respect to [. l, then from the
remarks following Theorem 1.3, the operators E, and E,, are both zero on H/
whenever Is 0. If G C S is geneator set, then we set

r ITo., (I+ o E,+ o E.)lsG,a’= 11, (1.8)
21sl 2Is[

with the understanding that

1 E,= 1s-- E,. 0 whenever sl 0,

This subset r, is linearly admissible in sO/. Other examples will be mentioned in
3.

Remark. The representation of S in B(/r/) is similar to the so-called GNS-
construction on groups. The special case off being bounded is carried out in
Lindahl and Maserick [7]; see also Schempp [14].

2. Disintegration of exponentially bounded positive definite functions

For our purpose we define 0 E Y" to be a semicharacter if

o(e) :/: O, o(st) (s)o(t) and O(s*)= O(s)
for all s, t E S. We denote the set of all semicharacters on S by I’(S) I" and
equip I’ with the (completely regular) topology inherited from , i.e., the
topology of pointwise convergence. Clearly I C . For a compact subset
K I’ we define an absolute value I" Ix by

Isl -- supll (s)l Igl, sS.

Clearly Istl,, < Isl ltl , Iss*l Isl’-and lel 1
We denote the class of all non-negative Borel measures on I’ which are inner

regular with respect to compact subsets by Jl and the support of # d’/ by
supp(#). If # ,/l has compact support K __.C I’, then the function

f($)

is positive definite and bounded with respect to l" I. Thus Theorem 1.3 im-
plies that s--E, is a representation of S. For each T , the map 0 To(e) is a
continuous function on K. Since To(e)Ro(e) TRo(e) and T*o(e)
for all K, then the functions - To(e), T sl, form a dense subalgebra of
the algebra C(K) of all continuous functions on K. The map II H--L(#)
defined by

Tf--. [0 T(e)l
is well defined since Tf 0 implies

0 RTf(e) IRo.(e)To.(e)d for all R
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SO that To(e) 0 for all K. Since

< Tf, Rf> TR*f(e) To.(e)Ro(e) d#,

H densely embeds the prehilbert space Hj in the Hilbert space L,.(#). Thus we
have proved that if f admits a representing measure with compact support,
then (i) s--E, is a representation of S and (ii) L,_(#) is the completion ofH. Our
main result is the converse of (i); namely that such a representing measure
exists whenever s--E is a representation; i.e., IlEal] < oo for s S.

THEOREM 2.1. Iff S--C is positive definite and bounded with respect to
an absolute value [. ], then there is a unique g E all* satisfying

f(s) (s)dg( ). (2.1)

Moreover, supp(g) is a compact subset ofthe set ofthose semicharacters which
are bounded with respect to I" I.

Proof. (i) Existence of g. We assume f is bounded with respect to [. [,
and let #l. denote the set of all positive definite functions g which are bounded
with respect to [. [. Then l. is a closed convex cone in with base

B [gE#l.llg(e)= 1}

by Lemma 1.1. But since B is a closed subset of the product ILesD, where

Ds [zC [zl <-

B is compact in the topology of pointwise convergence. Let $ be an extreme
point of B. We will show to be a semicharacter. Using the notation of (1.8)
and assuming that [sl *: 0, we then have $ Tto,, $ + Tt_o., $. But Tto., $ is
positive definite by Theorem 1.3 (v). Since $ is positive definite, an application
of (1.3) shows -< dp(ss*)q(tt*) < Kltl’-. Thus T,.,$ is
bounded with respect to [. [, so that T., #1. I" Since is extreme, we must
have X T.. 4, for some ), > 0. Evaluating at t S and setting a 1 and
gives

1 $(st) + (s*t)(Re $(s))$(0 --and

(Im (s))$(t)= 1 $(st)- 1 do(s’t)
2i 2i

respectively. Thus (s)(t) go(st) provided sl 0= 0. But Is[ 0 implies
Iss*l 0 by (1.4), so that Definition 1.2 and formula (1.2) imply

p(st) (s)(t) for all s, t S.

Since $ is positive definite, it follows by (1.1) that $ is a semicharacter. The
integral representation as well as the assertions about supp(g) follow from the
integral version of the Krein-Milman Theorem; cf. [12].
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(ii) To establish uniqueness, we use that the set of all functions of the form

o--To(e) (T si)

is dense in the space of continuous complex-valued functions on each compact
subset of F. Assume the existence of v E /t/ such that f(s) O(s)dv(o) for
each s E S.Then we claim, supp(v) C__ supp(#),, where # M’/ is any measure
with compact support satisfying (2.1). For if not, there exists a compact set K,
disjoint from supp(#), such that v(K) > 0. Choose e > 0 such that

e2f(e) < v(K).

We can find a real-valued function O- T0(e) which is greater than on K and
is strictly between 0 and e on supp(#). Then 0--T’-o(e) is non-negative and

ef(e) < T(o)(e)dv T(o.)(e)d# < ef(e),

which is a contradiction. Uniqueness now follows by density of the functions
O--To(e) in the space C(supp(/,)) of continuous functions on supp(#). [--I

Remarks. (a) The proof given in (i) is an adaptation of that given by either
Berg et al. [4] or Maserick [10] to our setting. A shorter (but less motivated) ap-
proach is to appeal directly to Theorem 2.1 in Maserick [10] as follows. The
family

" {To,[ [sl *= 0, o4 1} Cs/
is admissible, and each T{ o., is a positive bounded operator onHby Theorem
1.3, so that all finite products of members of , are also positive operators.
Therefore,

IITo.,yf(e) < IITo.?f,f> > 0.

Hence the map T-- Tf(e) defines a ,-positive linear functional on s/. Applying
Theorem 2.1 of [10], one finds Tf(e) Ix(T)d/(x) which implies (2.1) above,
since x- Is- x(E,)] is a homeomorphism of the compact set of ,-positive multi-
plicative linear functionals on a’ onto a compact subset of I’. Still a third
proof of existence of # can be fashioned from the Spectral Theorem (cf. [13,p.
306]) by considering the commutative C*-algebra X in B(lir) generated by the
operators E, on lira. Then T I(T)dE(), where E is a spectral measure on
the compact spectrum ofX and 6 denotes a multiplicative linear functional on
X. But

f(s) <Esf,f> i5(Es)d <E(di)f,f>,

and (2.1) follows as above by considering the map -[s-8(E,)].

(b) The product of two exponentially bounded positive definite functions
is again of this type because is stable under pointwise products, and the
product of two absolute values on S is again an absolute value on S. The repre-
senting measure for the product is the convolution of the representing mea-
sures for the factors.
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(c) The integral representation implies that an exponentially bounded posi-
tive definite function with representing measure # is always bounded with
respect to an absolute value of the form I’ Ix with K supp(#). Assuming
f(e) 1, we have

IIE, lIE: "" <El’f,E:’f> ’/2" f’/2"((ss*)") (I IO(s) 12"d#) ’/’-".

But as is well known, this latter expression converges to the g-essential
supremum, Is Ix, of the function 0-- 0(s) ]. Since slr -> ]IE,]I by Theorem
1.3, we have

lIE, lim,f"2"((ss*)") [six.

(d) Since fE is bounded if and only iff is bounded with respect to the
absolute value sl 1, Theorem 2.1 subsumes the integral representations in
[41, [71 and [91.

(e) The set B [g ( 1. lg(e) is compact and convex, and the set ext B
of extreme points of B is contained in I’l.
which is compact. Actually ext B I’ I. I, which can be seen as in [4] or [9]. It
follows that B is a Bauer simplex.

COROLLARY 2.2. Letf admit a representing measure .ig with compact
support K and let T . Then Tf is positive definite fand only if To(e) > 0
for all O K. In this case, Tf is exponentially bounded with representing
measure To(e)d#(o).

Proof. Clearly,

Tf(s) Ir(To)(s)d# IrO(s)To(e)d#. (2.2)

Thus, if To(e) 0 for 0 K, then Tfis positive definite. Conversely, suppose
TfE . By (2.2), Tfis bounded with respect to I" Ix. From Theorem 2.1, there
exists a unique measure v / with compact support such that

Tf(s) O(s)dv.

Hence IRo(e)dv RTf(e)= IRo(e)To(e)d# for all Rs. Denseness in
C(K) of the functions o--Ro(e), R sl, implies To(e)d# dr, so that
To(e) 0 for all 0 K.

We cannot conclude that T1 T2f whenever f and Tf for j 1,2.
However, we can prove:

COROLLARY 2.3. Iff and Tf and Tf is exponentially bounded for
j 1,2, then TIT2f is positive definite and exponentially bounded.

Proof. From Theorem 2.1, we have the existence of # ’/ with com-
pact support Kj such that
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T,f(s) IxO(s)d#j, j 1,2. (2.3)

But sincef is positive definite, T:Tff is positive definite from Proposition 1.2,
and exponentially bounded from (2.3). Thus there exists E / with com-
pact support such that O(s)d: T: T:f(s) IKo(s)T: o(e)dtj. Therefore
T0(e) _> 0 on K:. But

IKlO(S)Tio(e)d#l TITf(s) I(s)Tt(e)dl
implies

To(e)d To(e)d,..

Setting d# TlO(e)dlz,., we have supp(#) C K1 f’)K2 and T1T2f(s) IO(s)d#.
But # is non-negative with compact support, so that TIT,_f is positive definite
and exponentially bounded. E]

Let r C s be any subset of the algebra of shift operators. A function
f" S--C is called z-positive if

Tf(e) >_ 0 for all T alg span +

Forf to be z-positive it clearly suffices to verify that TI... Tnf(e) >- 0 for all
choices of T,..., Tn E z. The set of r-positive functions is a closed convex
cone in :, and if f is r-positive so is Tf for any T alg span +

Linear functionals -C are in one-to-one correspondence with func-
tions f S---C via the formula L(E.) f(s). In case of an admissible
this correspondence makes it possible to apply Theorem 2.1 of [10] to show
that f is z-positive if and only iff admits a disintegration f(s) O(s)dlz(O),
where supp(/) is a compact subset of the z-positive semicharacters. Note that a
semicharacter 0 I’ is z-positive if and only if To(e)
because

TTo(e) To(e). To(e) for T, T
In particular, any r-positive function f, with r admissible, is positive definite
and exponentially bounded. Moreover Tf is positive definite for each T

It follows from Corollary 2.2 that the converse is also true: Iff is positive
definite and exponentially bounded and if Tf is positive definite for each
T r, thenfis z-positive. We suspect the hypothesis of exponentially bounded
can be eliminated when r is admissible. However the best we can prove is:

COROLLARY 2.4. Suppose z C / is admissible and f is positive definite.
Then Tf is positive definite and exponentially boundedfor each T z if and
only iff is r-positive.

Proof. Iff is r-positive, then the integral representation mentioned above,
which appears in [10], implies thatfsatisfies the stated conditions. Conversely,
assumef is positive definite and Tf is both positive definite and exponentially
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bounded for each T ,. Then Corollary 2.3 and the definition of admissible
implies that f is exponentially bounded. V1

When is linearly admissible, we can waive any boundedness restrictions, as
well as the positive definiteness requirement for f.

COROrLARY 2.5. /f " C g is linearly admissible, then f is y-positive if and
only if Tf is positive definite for each TE .

Proof. Assume Tfis positive definite for each TE z. Since z is linearly ad-
missible it follows that (I- T)f is positive definite as well as Tf. But then

f= (I- T)f+ Tf
is positive definite and T is a bounded operator on H/. But ’ is the algebraic
span of z, so that E, is bounded for each s S. Hence f is exponentially
bounded by Theorem 1.3, and it follows thatf is z-positive. The converse fol-
lows from Corollary 2.4.

Remark. The conclusion of Corollary 2.4 (2.5) holds for the weaker
hypothesis that -/be admissible (linearly admissible) in

Let H be an arbitrary Hilbert space. Following Maserick [8], we call an
operator-valued function F S--B(H) positive definite if for all st,..., sn S
and cl,...,cnC, the sum .jF(sis])c,-g is a positive operator. Every
representation E S--B(H) is positive definite. It is easily verified that F is
positive definite if and only if all of the scalar-valued functions

F(s) <F(s),>

for H are positive definite. An operator-valued function F is called ex-
ponentially bounded if there exists an absolute value [. on S and a constant
K > 0 such that I[F(s)II K[sl for each s S. Assume F is both positive
definite and exponentially bounded. Since <F(s), > _< [IF(s)I[’ [["
<- K lsl. 2, then F(s) is also exponentially bounded for each E K. Using
the integral representation for each F along the lines of [8], it is not hard to
obtain the following generalization of Theorem 3.2 therein.

THOgEM 2.6. A function F" S--B(H) is exponentially bounded andposi-
tive definite if and only if there exists a (necessarily unique) positive operator-
valued measure E on I with compact support such that

F(s) JrO(s)dE. (2.4)

Moreover, F is a representation of S if and only if E is a spectral measure.

Remark. In [8], boundedness of the positive (definite) operator-valued
functions considered must be assumed. This was clearly done for the semi-
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group case but was omitted in the definition of "positive" preceding Theorem
2.1 therein for the algebraic setting. With this insertion, it follows easily that

U ll -< (for Ilfll -< 1) as stated at the top of p. 498; otherwise this claim
is false.
Nagy [15] characterizes those operator-valued functions F on a semigroup S

which are the projections, PU, of representations U of S in an extension space
H. We now give an alternate description of those F.

COROLLARY 2.7. IfF $--B(H) ispositive definite, exponentially bounded
and normalized by the condition F(e) L then there exist a Hilbert space
H D H, a projection P" H--H and a representation U S--B(H) such that
F(s) PUs Ix. Moreover, H can be chosen to be densely spanned by

[Usl H,s S}.

Proof. Let E be the positive operator-valued measure satisfying (2.4).
Then E is normalized so that Neumark’s Theorem (cf. [15, p. 29]) implies the
existence of a Hilbert space H extending H and a B(H)-valued normalized
spectral measure E such that E PE[x, where P is the projection of H onto
H. Thus,

F(s) (PIr(s)dE)
The assertion follows since s- tr0(s)dE is a representation of S.

Remark. Nagy [15] proves Corollary 2.7 for the case where F is what he
defines to be of "positive type", and satisfies a boundedness condition analo-
gous to that given in Theorem 1.3 (iii). It is elementary to see that F is positive
definite whenever it is of positive type. Conversely, if F is normalized, positive
definite and exponentially bounded, then Corollary 2.7 implies that F is of
positive type.

3. Applications and examples

The classical moment problem, in modern terminology, asks for a descrip-
tion of those scalar-valued functions on a classical semigroup S which admits
an integral representation of the form

f(s) Jr, O(s)d#; r" c I’, # tl/. (3.1)

We list below some classical semigroups with a description of their semi-
characters for easy reference. We define 0= 1, N [0,1,...J and
Z 10,+1,+2,...}.
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(S,.) Involution Semicharacters
Related

Moment Problems

(3a) (N, +) n* n n--t (t E R) "Power"

(3b) (N, + (nj)* (nj) (n)-( II t (t E R) "Multidimensional power"

(3c) (N, +) (m,n)* (n, rn) (m, n)--.z".’ (z C) "Complex"

(3d) (Z, +) n* -n n--.z (zEC,[zl 1) "Trigonometric" (Herglotz)

(3e) (Z, +) n* n n--.t" (t E R \ {0))

The following proposition generalizes and unifies all solutions known to us
of the power moment problem (3a) for F’ [- 1,1], the complex moment
problem (3c), where F’ is the unit disc, and the trigonometric moment prob-
lem (3d) to arbitrary semigroups with involution.

PROPOSITION 3.1. Let G be a generator set for S andf be a scalar-valued
function on S. The following are equivalent:

(i) The function f is bounded and positive definite.
(ii) Thefunction T(o.s)f is positive definitefor each

__
s S andfourth root of unity o.

(iii)

(iv)

(v)

Thefunction f is r-positive, where r Tt Is E S, 04 }.

Thefunctionsfand (I- E.)f are positive definitefor each s G.

Thefunction fadmits a representing measure # with

supp(#) C [ r[I l -< 1}.

Proof. If f satisfies (i) it is bounded with respect to the absolute value
]s] -= 1, so Theorem 2.1 implies the equivalence of (i) and (v). That (i) and (ii)
are equivalent follows from Theorem 1.3; also (i) implies (iv) by Theorem 1.3.
By Proposition 1.2, (iv) implies that (/-E,,.) is a positive operator on Hs.
Thus ]IE, -< 1 for all s E G and hence for all s S, so that (iv) implies (i) by
Theorem 1.3. The equivalence of (ii) and (iii) follows from Corollary 2.5.

Remarks. The equivalence of (iii) and (v) is due to Maserick [9]. For the
classical cases of (3a), (3b) and (3c), the equivalence of (i), (iv) and (v) seems to
have been known for many years; of. Akhiezer [1], Atzmon [2] or Haviland
[6]. An example where S cannot be replaced by G in (ii) and (iii) is given in
Maserick [9]. That (iv) is equivalent to the other conditions seems not to have
been noticed in the above generality.
The next proposition generalizes all solutions known to us of Hausdorff’s
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"little" moment problem. Hausdorff’s original solution asserts that f: N--R
satisfies (3. l) for r’ [0, l] if and only iff is "completely monotonic". For
an arbitrary S with s* s and generator set G, a function f" S--R is called
completely monotonic (with respect to 0-’3 whenever f is -positivc for the
linearly admissible subset {E,, I-E, ls G}. The equivalence of (i) and
(v) of the following proposition shows complete monotonicity to be indepen-
dent of the choice of U.

PROPOSITION 3.2. Let G be a generator set for S andf be a real-valued
function on S. The following are equivalent:

(i)

(ii)

(iii)

(iv)

(v)

The function f is completely monotonic (with respect to G).

The functions E,f and (I- E,)f are positive definite for each s E G.

The functions f and E,(I- E)f are positive definite for each s G.

Thefunction E,f is bounded andpositive definitefor each s

The function f admits a representing measure # with

supp(/)C {orl0 _< _< 1}.

Proof. Assertion (i) is equivalent to (ii) by Corollary 2.5, and (ii) is
equivalent to (iii) by Proposition 1.5, because (ii) implies thatf . Assertion
(v) implies (ii) by Corollary 2.2, and (ii) implies (iv) because if (ii) holds, thenf
is positive definite and E, and I- E, are positive operators on H for s G. It
follows that )IE, -< 1 for all s G, and finally for all s S since G is a
generator set. Hence If(s)[ f(e) and in particular E,f is bounded for each
sGUle).

Finally assume (iv) holds. Then f is positive definite and bounded with
respect to I" 1, so Theorem 2.1 implies the existence of a representing
measure/z such that 10<t) -< for each 0 supp(#) and t S. Since E,f is
positive definite for each s G, Corollary 2.2 implies 0 _< E,o(e) O(s) for
each 0 supp(#) and s E G. Hence (v) follows from (iv) since G is a generator
set for S. U]

Remark. Various special cases of the above equivalences can be found in
Akhiezer [1], Atzmon [2], Lindahl-Maserick [7], Nussbaum [11] and Widder
17] among other places.

We now consider applications of the theory to cases where the exponentially
bounded positive definite functions discussed are in general unbounded. In
sharp contrast to the group case, we first make the following observation.

Example 3.3. For the classical semigroup in (3e) the only bounded positive
definite functions are n-a + b(- 1) for a,b >_ O. On the other hand every
semicharacter is exponentially bounded.
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Next, consider the classical semigroup S (Nk, +) of example (3b). By way
of motivation, we view the simplex

K I(tl, t2)ER2ltl O,t2 >_ 0 and (1-tl-t2) 0l
as a subset of the semicharacters on (N2, + ) via the map (m, n)-t’t. Let E1
and E,_ denote the unit coordinate shift operators as defined by

Elf(m, n) f(m + 1, n) and E2f(m, n) f(m, n + 1).

Set

r [El, E, I E1 EI.
Then r is linearly admissible in so that Corollary 2.5 implies that

f: N2--R

admits a representing measure/ supported by the simplex g if and only if
Ef,Ef and (I-El- E,)f are each positive definite. We generalize as
follows. Let K be a bounded convex polytope with non-void interior in Eucli-
dean k-dimensional space Rk. Then

K ItERIP,(t) -> 0}.

where p, is a polynomial in the variables tl,...,t of degree 1. For each
j 1,2,...,k, let E denote the unit shift operator Eto. o.l.o. o in the j-th
coordinate. Then each polynomial p in k variables defines a shift operator

p (E) p (E,...,E) ..
Since K has a non-void interior and is bounded, the defining polynomials, p,,
can be chosen so that {p(E)li 1,..., m} is linearly admissible in sO; cf.
Maserick [10, p. 145].

PROPOSITION 3.4. Let z and K be as above andf be a real-valuedfunction
on N, then the following statements are equivalent:

(i) The function f is r-positive.

(ii) Each p,(E)f is positive definite for 1,..., m.

(iii) The function f admits a representing measure supported by K.

Proof. The proof is a consequence of Theorem 2.1, Corollary 2.2 and
Corollary 2.5, since t R defines a r-positive semicharacter if and only if
tK.

The equivalence of (i) and (iii) has previously been established by Maserick.
In fact the above can be formulated more generally for arbitrary convex bodies
in R and the reader should consult [10].



178 CHRISTIAN BERG AND P. H. MASERICK

Remark. The z-positive functions are not all bounded unless K is con-
tained in[tERkl t,I -< 1}.
The standard spectral theorems for bounded positive, hermitian, unitary

and normal operators follow as an elementary application of Theorem 2.6. In
the first two cases we take S as in (3a) and consider the representation n
where ,4 is either a positive or Hermitian operator. In the third case we take S
as in (3d) and consider the representation n- U where U is unitary. Finally we
take S as in (3c) and consider the representation (m, n)--Am(A *)% where A is a
normal operator. The details are worked out in [8].
Added in proof. In a forthcoming paper by G. Cassier, Problbme des

moments sur un compact de R" et dcomposition de polynOmes i plusieurs
variables, the moment problem for an arbitrary compact set K with non-empty
interior in R" is solved by construction of a linearly admissible family of
polynomials of degree < 2 such that

K of, p-(O,].
An application of our Corollary 2.5 then leads to Theorems 2 and 3 in the
paper by Cassier.
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